

US007507872B2

(12) United States Patent

Akira et al.

(54) TRANSGENIC TOLL-LIKE RECEPTOR 9 (TLR9) MICE

- (75) Inventors: Shizuo Akira, Takatsuki (JP); Hiroaki Hemmi, Ibaraki (JP)
- (73) Assignee: Japan Science and Technology Agency, Saitama (JP)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 1067 days.
- (21) Appl. No.: 10/088,567
- (22) PCT Filed: Jun. 5, 2001
- (86) PCT No.: PCT/JP01/04731

§ 371 (c)(1), (2), (4) Date: Mar. 19, 2002

(87) PCT Pub. No.: **WO02/06482**

PCT Pub. Date: Jan. 24, 2002

(65) Prior Publication Data

US 2003/0124655 A1 Jul. 3, 2003

(30) Foreign Application Priority Data

Jul. 19, 2000 (JP) 2000-219652

- (51) Int. Cl. *A01K 67/27* (2006.01) *C12N 5/00* (2006.01)

See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

 4,946,778
 A
 8/1990
 Ladner et al.

 6,943,240
 B2 *
 9/2005
 Bauer et al.
 536/23.1

FOREIGN PATENT DOCUMENTS

WO	WO 01/55386	8/2001
WO	WO 01/81578	11/2001
WO	WO 01/90151	11/2001
WO	WO 02/22809	3/2002
WO	WO 02/31111	4/2002

OTHER PUBLICATIONS

Houdebine et al Journal of Biotechnology, 1994, vol. 34, pp. 269-287.*

Houdebine et al, Transgenic Research , 2000, 9: 305-320.*

Cameron et al, Molecular Biotechnology, 1997, 7: 253-265.*

Kolb et al, Gene, 1999, 227: 21-31.*

Holschneider DP and Shih JC. J. Devl Neuroscience, 2000, 18: 615-618.*

Taurog JD, J Immunol. 1988 ;141(11):4020-3.*

Mullins LJ, Mullins JJ. J Clin Invest. 1996 ;97(7):1557-60.*

Campbell KHS and Wilmut I. Theriogenology 1997, 47:63-72.*

(10) Patent No.: US 7,507,872 B2

(45) **Date of Patent:** Mar. 24, 2009

Moreadith RW, Radford NB.J Mol Med. 1997;75(3):208-16.* Mullins JJ et al EMBO J. 1989;8(13):4065-72.3 Mullins JJ, Peters J, Ganten D. Nature. 1990;344(6266):541-4.* Hammer RE, Cell. 1990;63(5):1099-112.* Takeuchi et al Immunity, 1999, 11, 443-452.* Hemmi et al Nature. Dec. 7, 2000; 408(6813): 740-5.* Kappel et al Current Opinions in Biotechnology ,1992, 548-553.* Sigmund CD. Arterioscler Thromb Vasc Biol. 2000;20(6):1425-9.* Neimann, H. Transgenic Res, 1998, 7: 73-75.* Wall RJ, Thenogenology, 1996, 45: 57-68.* Mullins et al Hypertension, 1993, 630-633.* Wolfer et al Trends in Neuroscience, 2002, 25 (7):336-340.* Babiuk et al Immunology 2004 113 114-120.* Griffiths Microscopy Research and Technique 1998, 41: 344-358.* Keri et al., (Proc Natl Acad Sci U S A. 2000; 97(1): 383-7.* Schoonjans et al Stem Cells, 2003; 21:90-97.* Carl Hashimoto et al., "The Toll Gene of Drosophila, Required for Dorsal-Ventral Embryonic Polarity, Appears to Encode Transmembrane Protein", Cell, vol. 52, 269-279, Jan. 29, 1988. Marcia P. Belvin et al., "A Conserved Signaling Pathway: The Drosophila Toll-Dorsal Pathway", Annu. Rev., Cell Dev. Biol. 12, pp. 393-416, 1996. Bruno Lemaitre et al., "The Dorsoventral Regulatory Gene Cassette spätzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults", Cell, vol. 86, pp. 973-983, Sep. 20, 1996. Scientific Correspondence, Nature 351, pp. 355-356, May 31, 1991. Luke A. J. O'Neill et al., "Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants", J. Leukoc. Biol. 63, pp. 650-657, Jun. 1988. Rusian Medzhitov et al., "A human homologue of the Drosophila Toll protein signals activation of adaptive immunity", Nature, vol. 388, pp. 394-397, Jul. 24, 1997. Fernando L. Rock et al., "A family of human receptors structurally related to Drosophila Toll", Proc. Acad. Sci. USA 95, pp. 588-593, Jan. 1998.

Preet M. Chaudhary et al., "Cloning and Characterization of Two Toll/Interleukin-1 Receptor-Like Genes TIL3 and TIL4: Evidence for a Multi-Gene Receptor Family in Humans", Blood, vol. 91, pp. 4020-4027, Jun. 1998.

(Continued)

Primary Examiner-Thaian N. Ton

Assistant Examiner-Anoop K Singh

(74) Attorney, Agent, or Firm—King & Spalding, LLP; Kenneth H. Sonnenfeld; Michael A. Willis

(57) **ABSTRACT**

The present invention provides a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence, a genomic DNA encoding it, an experimental animal model useful for examining responsiveness of a host immune cell against a bacterial infectious disease. DNA encoding a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence is screened by BLAST search, a number of EST clones having high homology with various TLRs is screened, these clones are used as a probe to isolate a full-length cDNA from mouse macrophage cDNA library, and the sequence of bases of the cDNA is analyzed to confirm that it is TLR9 comprising a conserved regions such as LRR and TIR regions, and then a knockout mouse is produced to confirm that TLR9 is a receptor protein of oligonucleotides having an unmethylated CpG sequence of bacterial DNA.

2 Claims, 6 Drawing Sheets

OTHER PUBLICATIONS

O. Takeuchi et al., "TLR6: A novel member of an expanding Toll-like receptor family", Gene 231, pp. 59-65, 1999.

Marta Muzio et al., The Human Toll Signaling Pathway: Divergence of Nuclear Factor KB and JNK/SAPK Activation Upstream of Tumor Necrosis Factor Receptor-associated Factor 6 (TRAF6), J. Exp. Med. 187, pp. 2097-2101, Jun. 15, 1998.

Rusian Medzhitov et al., MyD88 Is an Adaptor Protein in the hToll/ IL-1 Receptor Family Signaling Pathways, Molecular Cell, vol. 2, pp. 253-258, Aug. 1998.

Taro Kawai et al., "Unresponsiveness of MyD88-Deficient Mice to Endotoxin", Immunology, vol. 11, pp. 115-122, Jul. 1999.

Rusian Medzhitov et al., "Innate Immunity: The Virtues of a Nonclonal System of Recognition", Cell, vol. 91, pp. 295-298, Oct. 31, 1997.

David C. Morrison et al., "Bacterial Endotoxins and Host Immune Responses", Advances In Immunology, vol. 28, pp. 293-450, 1979. R.J. Ulevitch et al., "Receptor-Dependent Mechanisms of Cell Stimulation by Bacterial Endotoxin", Annu. Rev. Immunol. vol. 13, pp. 437-457, 1995.

Samuel D. Wright, "CD14, a Receptor for Complexes of Lipopolysaccharide (LPS) and LPS Binding Protein", Science 249, pp. 1431-1433, Sep. 21, 1990.

Katsuaki Hoshino et al., "Cutting Edge: Toll-Like Receptor 4 (TLR4)-Deficient Mice Are Hyporesponisve to Lipopolysaccharide: Evidence for TLR4 as the Lps Gene Product", J. Immunol. 162, pp. 3749-3752, 1999.

Osamu Takeuchi et al., "Differential Roles of TLR2 and TLR4 in Recognition of Gram-Negative and Gram-Positive Bacterial Cell Wall Components", Immunity, vol. 11, pp. 443-451, Oct. 1999.

Arthur M. Krieg, "Lymphocyte activation by CPG dinucleotide motifs in prokaryotic DNA", Trends In Microbiology, vol. 4, No. 2, pp. 73-76, Feb. 1996.

Grayson B. Lipford et al., "Bacterial DNA as immune cell activator" Trends In Microbiology, vol. 6, No. 12, pp. 496-500, Dec. 1998.

Hans Häcker et al. "Cell type-specific activation of mitogen-activated protein kinases by CpG-DNA controls interleukin-12 release from antigen-presenting cells", EMBO J., vol. 18, No. 24, pp. 6973-6982, 1999.

Thilo Jakob et al., "Activation of Cutaneous Dendritic Cells by CpG-Containing Oligodeoxynucleotides: A Role for Dendritic Cells in the Augmentation of Th1 Responses by Immunostimulatory DNA,", J. Immunol. 161, pp. 3042-3049, 1998.

G. Hartman et al., "CpG DNA: A potent signal for growth, activation, and maturation of human dendritic cells", Proc. Natl. Acad. Sci. USA 96, pp. 9305-9310, Aug. 1999.

Hermann Wagner, "Bacterial CpG DNA Activates Immune Cells to Signal Infectious Danger", Adv. Immunol., vol. 73, pp. 329-368, 1999.

Arthur M. Krieg, "The role of CpG motifs in innate immunity", Curr. Opin. Immunol. 12, pp. 35-43, 2000.

"Continuous cultures of fused cells secreting antibody of predefined specificity", Nature vol. 256, pp. 495-497 Aug. 7, 1975.

Danuta Kozbor et al., "The production of monoclonal antibodies from human lymphocytes", Immunology Today, vol. 4, No. 3, p. 72, 1983.

S.P.C. Cole et al., "The EBV-Hybridoma Technique and Its Application to Human Lung Cancer", Monoclonal Antibodies and Cancer Therapy, pp. 77-96, Alan R. Liss, Inc. 1985.

Leonard Davis et al., "Basic Methods In Molecular Biology", 2nd Edition, 1986, cover and bibliographic pages only.

France Pietri-Rouxel et al., "The biochemical effect of the naturally occurring Trp64-Arg mutation on human β 3-adrenoceptor activity", Eur. J. Biochem., 247, pp. 1174-1179, 1997.

Shin Takagi et al., "Expression of a Cell Adhesion Molecule, Neuropilin, in the Developing Chick Nervous System", Dev. Biol. 170, pp. 270-222, 1995.

Atsushi Kawakami et al., "Developmentally Regulated Expression of a Cell Surface Protein, Neuropilin, in the Mouse Nervous System", J. Neurobiol., vol. 29, No. 1, pp. 1-17, 1996. Makoto Matsumoto et al., "A Novel LPS-Inducible C-Type Lectin Is a Transcriptional Target of NF IL6 in Macrophages1", J. Immunol. 163, pp. 5039-5048, 1999.

Kayo Inaba et al., "Generation of Large Numbers of Dendritic Cells from Mouse Bone Marrow Cultures Supplemented with Granulocyte/Macrophage Colony-stimulating Factor", J. Exp. Med., vol. 176, Dec. 1992.

Taro Kawai et al., "Unresponsiveness of MyD88-Deficient Mice to Endotoxin", Immunity, vol. 11, pp. 115-122, Jul. 1999.

Hiroaki Hemmi et al., A Toll-like receptor recognizes bacterial DNA, Nature, vol. 408, pp. 740-745, Dec. 7, 2000.

Xin Du et al., "Three novel mammalian toll-like receptors: gene structure, expression, and evolution" Eur. Cytokine Netw., vol. 11, No. 3, pp. 362-371, Sep. 2000.

Gerard T. Hardiman et al., WO98/50547 (AU 9871754, EP980429). Elizabeth B. Kopp et al., "The Toll-receptor family and control of innate immunity", Curr. Opin Immunol. 11, pp. 13-18, 1999.

Fernando L. Rock et al., "A family of human receptors structurally related to Drosophila Toll", Proc. Natl. Acad. Sci. USA 95, pp. 588-593, Jan. 1998.

Douglas T. Fearon, "Seeking wisdom in innate immunity", Nature, vol. 388, pp. 323-324, Jul. 24, 1997.

WO99/51259 (AU9934678, EP1067956, US6218371).

Osamu Takeuchi et al., "Cellular responses to bacterial cell wall components are mediated through MYD88-dependent signaling cascades", Int. Immunol. 12, No. 1, pp. 113-117, 2000.

"Molecular Cloning: A Laboratory Manual", 2nd Edition, Cold Spring Harbor Laboratory Press, (cover and bibliographic pages only), 1989.

Hacker et al., Immune Cell Activation by Bacterial CpG-DNA through Myeloid Differentiation Marker 88 and Tumor Necrosis Factor Receptor-Associated Factor (TRAF) 6., J. Exp. Med., Aug. 2000, vol. 192, No. 4, pp. 595-600.

Dennis M. Klinman et al., "Immune Recognition of Foreign DNA: A Cure for Bioterrorism?", Immunity, Aug. 1999, pp. 123-129, vol. 11. Hans Häcker et al., "Immune Cell Activation by Bacterial CpG-DNA through Myeloid Differentiation Marker 88 and Tumor Necrosis Factor Receptor-Associated Factor (TRAF)6", J. Exp. Med., Aug. 21, 2000, pp. 595-600, vol. 192, No. 4.

Genbank Accession No. AF 259262 Modification date Feb. 6, 2001: (cited in EP Search Report dated Apr. 28, 2005).

Genbank Accession No. AF 245704 last update: Apr. 15, 2005.

Genbank Accession No. AB 045180-Modification date Feb. 10, 2001.

Genbank Accession No. AF 348140-Modification date Aug. 2, 2001.

Genbank Accession No. AF 314224—Modification date Sep. 24, 2002.

Genbank Accession No. AA 273731 (cited in EP Office Action Nov. 11, 2005).

Zimmerman et al., "Cutting Edge: CpG Oligodeoxynucleotides Trigger Protective and Curative Th1 Responses in Lethal Murine Leishmaniasis," Journal of Immunology, vol. 160, 3627-3630, 1998. Jakob et al., "Activation of Cutaneous Dendritic Cells by CpG-Containing Oligodeoxynucleotides: A Role for Dendritic Cells in the Augmentation of Th1 Responses by Immunostimulatory DNA," Journal of Immunology, vol. 161, pp. 3042-3049, 1998.

Krieg et al., "CpG DNA Induces Sustained IL-12 Expression In Vivo and Resistance to *Listeria monocytogenes* Challenge," Journal of Immunology, vol. 161, pp. 2428-2434, 1998.

Elkins et al., "Bacterial DNA Containing CpG Motifs Stimulates Lymphocyte-Dependent Protection of Mice Against Lethal Infection with Intracellular Bacteria," Journal of Immunology, vol. 162, pp. 2291-2298, 1999.

Wagner et al., "Immunostimulatory DNA sequences help to eradicate intracellular pathogens," Springer Semin Immunopathol, vol. 22, pp. 147-152, Jun. 2000.

Database EMBL Accession No. AB045181, XP001212803, Dec. 13, 2000.

* cited by examiner

FIG. 3

FIG. 4

+/+ : -/- :	87 5 <u>5</u> 1 5 1 7 7 7 87	<u>AAC</u> N <u>N</u> AAC	<u>ו</u> ו ו נדנ	90 CGG R R R CGG 90	Q Q Q Q CAG	<u>ה</u> ו ה	AAC N N AAC		AAG K K AAG	96 TGG W W TGG 96	AAC N I ATT	TGT C	CCA P S TCC	100 <u>ccc</u> P <u>T</u> Acc	ACT T T TGT	<u>GGC</u> G Р ССТ	CTT L R CGA	AGC S R CGG	<u>CCC</u> P <u>I</u> ATC	TTG L R CGA	<u>CAC</u> H <u>T</u> ACA	F F	TCT S D GAC	110 <u>TGC</u> C
+/+ : -/- ;	$\frac{CAC}{H}$	ATG M		ATT I R	GAG E F	CCC P	AGA R	ACC T	TTC F	120 <u>crg</u> L	GCT A	ATG M	CGT R S	<u>ACA</u> T	<u>כוה</u> נ	GAG E K	GAG E	<u>стс</u> L	AAC N	130 <u>CTG</u> L	AGC S	TAT Y	AAT N	<u>сст</u> с

FIG. 5

FIG. 7

Mar. 24, 2009

Sheet 4 of 6

TRANSGENIC TOLL-LIKE RECEPTOR 9 (TLR9) MICE

This application is a 371 of International Application No. PCT/JP01/04731, filed Jun. 5, 2001, which claims priority to 5 JP 2000-219652, filed Jul. 19, 2000, the contents of which are incorporated herein by reference.

TECHNICAL FIELD

The present invention relates to a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence, a gene of the receptor protein and uses of them.

BACKGROUND OF THE INVENTION

It is already known that Toll genes are necessary for determining the dorsoventral axis in the embryogeny of Dorsophilia (Cell 52, 269-279, 1988, Annu Rev. Cell Dev. Biol. 12, 20 393-416, 1996) and for antifungal immune responses in the adult fly (Cell 86, 973-983, 1996).

It has been shown that the Toll is a Type I transmembrane receptor comprising leucine-rich repeat (LRR) in extracellular domains, and its intracellular domains are highly homologous to the intracellular domains of mammalian interleukin-1 receptor (IL-1R) (Nature 351, 355-356, 1991, Annu. Rev. Cell Dev. Biol. 12, 393-416, 1996, J. Leukoc. Biol. 63, 650-657, 1998).

Recently, mammalian homologs of Toll called Toll-like $_{30}$ Receptor (TLR) have been identified, and six members of the family such as TLR2 and TLR4 have been reported (Nature 388, 394-397, 1997, Proc. Natl. Acad. Sci. USA 95, 588-593, 1998, Blood 91, 4020-4027, 1998, Gene 231, 59-65, 1999). It is known that a member of the TLR family mediates MyD88, $_{35}$ an adopter protein as IL-LR is, recruits IL-LR binding kinase (IRAK), activates TRAF6, and activates downstream NF- κ B (J. Exp. Med. 187, 2097-2101, 1998, Mol. Cell 2, 253-258, 1998, Immunity 11, 115-122, 1999). It is also thought that the role of the TLR family in mammals is related to innate $_{40}$ immune recognition as a pattern recognition receptor (PRR) recognizing bacterial common components (Cell 91, 295-298, 1997).

It is well known that one of the pathogen-associated molecular patterns (PAMP) recognized by the PRR men- 45 tioned above is lipopolysaccharide (LPS), which is a main component of the outer membrane of Gramm-negative bacteria (Cell 91, 295-298, 1997), the LPS stimulates a host cell to produce various inflammatory cytokines such as TNF α , IL-1 or IL-6 in the host cell (Adv. Immunol. 28, 293-450, 50 1979, Annu. Rev. Immunol. 13, 437-457, 1995), and the LPS captured by LPS-binding protein (LBP) is transferred to CD 14 on the surface of a cell (Science 249, 1431-1433, 1990, Annu. Rev. Immunol. 13, 437-457, 1995). The present inventors generated TLR4 knockout mice and reported that the 55 TLR4 knockout mice lack the ability to respond to LPS, a main component of the outer membrane of the Gram-negative bacteria (J. Immunol. 162, 3749-3752, 1999), and also generated TLR2 knockout mice and reported that macrophages derived from TLR2 knockout mice showed low levels of 60 response to cell wall of Gram-negative bacteria or peptidoglycan, a component of the Gram-negative bacteria (Immunity 11, 443-451, 1999).

On the other hand, from the fact that the oligonucleotides comprising bacterial DNA (DNA derived from bacteria) or an 65 unmethylated CpG sequence stimulate immune cells of mice or human (Trends Microbiol. 4, 73-76, 1996, Trends Micro-

biol. 6, 496-500, 1998), and stimulate a T helper 1 cells (Th1)-like inflammatory response dominated by the release of IL-12 and IFN γ (EMBO J. 18, 6973-6982, 1999, J. Immunol. 161, 3042-3049, 1998, Proc. Natl. Acad. Sci. USA 96, 9305-9310, 1999), it is advocated that the oligonucleotides comprising CpG sequence are possibly used as an adjuvant in vaccine strategies including vaccines to cancer, allergy and infectious diseases (Adv. Immunol. 73, 329-368, 1999, Curr.Opin. Immunol. 12, 35-43, 2000, Immunity 11, 123-129, 1999). Although its effects have been expected in the clinical practice in this way, the molecular mechanism by which bacterial DNA comprising an unmethylated CpG sequence

activates immune cells is unclear. Although the DNA derived from bacteria comprising an 15 unmethylated CpG motif activates immune cells significantly and induces response by Th1 as mentioned above, the activities at the molecular level are not well understood. The goal of the present invention is to provide a receptor protein TLR9, a member of TLR family specifically recognizing bacterial 20 DNA comprising an unmethylated CpG sequence, the DNA encoding it, and the artificial animal models useful in examining response of host immune cells to bacterial infectious diseases, which elucidate effects of oligonucleotides comprising an unmethylated CpG sequence of bacterial DNA at 25 the molecular level.

As a member of the mammalian TLR family, a pattern recognition receptor recognizing common structures of bacteria, relevant to innate immune recognition, six members (TLR1 to 6) have been publicized until now (Nature 388, 384-397, 1997, Proc. Natl. Acad. Sci. USA, 95, 588-593, 1998, Gene 231, 59-65, 1999), and TLR7 and TLR8, two novel members, are registered in GenBank (Registration No: AF240467 and AF246971). Although full-length cDNA is also found out for TLR9, and is registered in GenBank (Registration No: AF245704), its function has not been known.

The present invention relates to DNA encoding a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence ("1"), the protein according to "1" wherein a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence is either of the following proteins (a) or (b): (a) a protein comprising the sequence of amino acids shown in Seq. ID No: 2, or (b) a protein comprising a sequence of amino acids wherein one or more of amino acids are deleted, substituted, or added in the sequence of amino acids shown in Seq. ID No: 2, and having reactivity against bacterial DNA having an unmethylated CpG sequence ("2"), the DNA according to "1" comprising the sequence of bases shown in Seq. ID No: 1 or its complementary sequence, or part or whole of the sequences ("3"), the DNA according to "1" which hybridizes with the DNA comprising a gene according to "3" under a stringent condition ("4"), the protein according to "1" wherein a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence is either of the following proteins (a) or (b): (a) a protein comprising the sequence of amino acids shown in Seq. ID No: 4, or (b) a protein comprising a sequence of amino acids wherein one or more of amino acid are deleted, substituted, or added in the sequence of amino acids shown in Seq. ID No: 4, and having reactivity against bacterial DNA having an unmethylated CpG sequence ("5"), the DNA according to "1" comprising the sequence of bases shown in Seq. ID No: 3 or its complementary sequence, or part or whole of the sequences ("6"), and the DNA according to "1" which hybridizes with the DNA comprising the gene according to "6" under a stringent condition ("7").

The present invention also relates to a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence ("8"), the protein according to "8" comprising the sequence of amino acids shown in Seq. ID No: 2 ("9"), the protein according to "8" comprising a sequence of amino acids wherein one or more of amino acids are deleted, substituted or added in the sequence of amino acids shown in 5 Seq. ID No: 2 ("10"), the protein according to "8" comprising the sequence of amino acids shown in Seq. ID No: 4 ("11"), and the protein according to "8" comprising a sequence of amino acids wherein one or more of amino acids are deleted, substituted or added in the sequence of amino acids shown in 10 Seq. ID No: 4 ("12").

The present invention also relates to a fusion protein comprising the protein according to any one of "8" to "12" fused with a marker protein and/or a peptide tag ("13") an antibody specifically bound to the protein according to any one of "8" 15 to "12"("14"), the antibody according to "14" which is a monoclonal antibody ("15"), a host cell comprising an expression system expressing the protein according to any one of "8" to "12"("16").

The present invention also relates to a non-human animal 20 wherein a gene encoding a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence is excessively expressed ("17"), a non-human animal wherein a gene function encoding a receptor protein specifically recognizing bacterial DNA having an unmethy- 25 the DNA according to "3" ("30"). lated CpG sequence is destroyed on a chromosome ("18"), the non-human animal according to "18" having no reactivity against bacterial DNA having an unmethylated CpG sequence ("19"), the non-human animal according to any one of "17" to "19" characterized in that a rodent animal is a 30 mouse ("20").

The present invention also relates to a method of preparing a cell expressing a protein having reactivity against bacterial DNA having an unmethylated CpG sequence characterized in that the DNA according to any one of "1" to "7" is introduced 35 into a cell wherein a gene function encoding a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence is destroyed on a chromosome ("21"), and a cell expressing a receptor protein specifically recognizing bacterial DNA having an unmethylated CpQ 40 sequence obtained by the method of preparing a cell expressing a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence according to "21" ("22").

The present invention also relates to screening method for 45 an agonist or an antagonist of a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence comprising steps of: in vitro culturing a cell expressing a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence in the pres- 50 ence of a target substance, and measuring/evaluating TLR9 activity ("23"), a screening method for an agonist or an antagonist of a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence comprising steps of administrating a target substance to a non-human 55 animal wherein a gene function encoding a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence is destroyed on a chromosome, and measuring/evaluating TLR9 activity of macrophages or spleen cells obtained from the non-human animal ("24"), a screening 60 method for an agonist or an antagonist of a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence comprising steps of: administrating a target substance to a non-human animal wherein a gene encoding a receptor protein specifically recognizing bacterial 65 DNA having an unmethylated CpG sequence is excessively expressed, and measuring/evaluating TLR9 activity of mac4

rophages or spleen cells obtained from the non-human animal ("25"), a screening method for an agonist or an antagonist of a protein having reactivity against bacterial DNA having the unmethylated CpG sequence according to either of "24" or "25" using a mouse as a non-human animal ("26").

The present invention also relates to an agonist or an antagonist of a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence obtained by the screening method for an agonist or an antagonist of a receptor protein specifically recognizing bacterial DNA having the unmethylated CpG sequence according to any one of "23" to "26" ("27"), a pharmaceutical composition comprising whole or part of a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence as an active component ("28"), a pharmaceutical composition comprising the agonist or antagonist according to "27" as an active component ("29"), a kit used to diagnose diseases related to the deletion, substitution and/or addition in a sequence of DNA encoding a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence comprising the DNA according to "3", which can compare a sequence of DNA encoding a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence in a test body with a sequence of bases in

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a gene maps of TLR9 knockout mice in the present invention and wild-type mice.

FIG. 2 shows the result of Southern blot analysis of TLR9 knockout mice in the present invention.

FIG. 3 shows the result of Northern blot analysis of spleen cells from TLR9 knockout mice in the present invention.

FIG. 4 shows the result of comparing the sequence of amino acids from TLR9 knockout mice in the present invention and the sequence of amino acids from wild-type mice (SEQ ID NOS 6-9 disclosed respectively in order of appearance)

FIG. 5 shows the result of measurement of TNF α , IL-6 or IL-12 production induced by CpG ODN, PGN or LPS in TLR9 knockout mice in the present invention and in wildtype mice.

FIG. 6 shows the result of cellular proliferation response induced by CpG ODN or LPS in TLR9 knockout mice in the present invention or in wild-type mice.

FIG. 7 shows the result of measurement of IL-12 production induced by CpG ODN or LPS in TLR9 knockout mice in the present invention or in wild-type mice.

FIG. 8 shows the result of expression of CD40, CD80, CD86, and MHC class II induced by CpG ODN or LPS in TLR9 knockout mice in the present invention and in wildtype mice.

FIG. 9 shows the result of activation of NF- κ B induced by CpG ODN or LPS in TLR9 knockout mice in the present invention or in wild-type mice.

FIG. 10 shows the result of activation of JNK induced by CpG ODN or LPS in TLR9 knockout mice in the present invention or in wild-type mice.

FIG. 11 shows the result of activation of IRAK induced by CpG ODN or LPS in TLR9 knockout mice in the present invention or in wild-type mice.

BEST MODE TO CARRY OUT THE PRESENT INVENTION

As bacterial DNA comprising an unmethylated CpG sequence in the present invention, any DNA derived from

bacteria such as an oligodeoxynucleotide having an unmethylated CpG motif which activates immune cells such as T-cells, B-cells and antigen-presenting cells, and induces immune response can be used such as DNA derived from bacteria including Escherichia coli, Klebsiella pneumoniae, 5 Pseudomonas aeruginosa, Salmonella Typhimurium, Serratia marcescens, Shigella flexneri, Vibrio cholerae, Salmonella Minnesota, Porphylomonas gingivalis, Staphylococcus aureus, Corynebacterium diphtheriae, Nocardia coeliaca, Streptococcus pneumoniae.

As a receptor protein specifically recognizing bacterial DNA having the unmethylated CpG motif, there are no particular restrictions as long as the protein can specifically recognize bacterial DNA with an unmethylated CpG sequence, and can be exemplified by human-derived TLR9 15 shown in Seq. ID No. 2 in the list of sequence, a protein which comprises a sequence of amino acids wherein one or more of amino acids are deleted, substituted, or added in a sequence of amino acids shown in Seq. ID No: 2, and which specifically recognizes bacterial DNA having the unmethylated CpG 20 sequence, or their recombinant proteins. The receptor protein specifically recognizing bacterial DNA having the unmethylated CpG sequence can be prepared by well known methods based on the information of the DNA sequence and others.

DNA encoding a receptor protein specifically recognizing 25 bacterial DNA having an unmethylated CpG sequence of the present invention includes DNA encoding human-derived TLR9 shown in Seq. ID No: 2 in the list of sequence such as the one shown in Seq. ID No: 1, DNA comprising a sequence of amino acids wherein one or more of amino acids are 30 deleted, substituted or added in a sequence of amino acids shown in Seq. ID No: 2, and which can specifically recognize bacterial DNA having the unmethylated CpG sequence mentioned above, or DNA hybridized with the DNA under stringent conditions and encoding a protein that can specifically 35 recognize bacterial DNA having the unmethylated CpG sequence mentioned above. These can be prepared by well known methods based on the information of DNA sequence such as mouse RAW264.7 cDNA library or 129/SvJ mouse gene library for mouse-derived TLR9.

Further, it is possible to obtain DNA encoding a receptor protein specifically recognizing bacterial DNA having an immune-inducing unmethylated CpG sequence which has the same effect as TLR9, a receptor protein, by hybridizing mouse-derived DNA library with part or whole of a sequence 45 of bases shown in Seq. ID No: 1 or its complementary sequence under stringent conditions to isolate the DNA hybridized with the probe. Conditions on hybridization to obtain the DNA can, for example, be hybridization at 42° C. and wash treatment at 42° C. with a buffer containing 50 1% ×SSC and 0.1% of SDS, and more preferably be hybridization at 65° C. and wash treatment at 65° C. with a buffer containing 0.1×SSC and 0.1% of SDS. Furthermore, beside the temperature conditions mentioned above, there are various factors effecting the stringency of hybridization, and it is 55 possible for a person skilled in the art to realize the stringency equivalent to the stringency of hybridization illustrated above.

A fusion protein in the present invention can be the one obtained by combining a receptor protein specifically recog-60 nizing bacterial DNA having an unmethylated CpG sequence derived from mouse, human, and others with a marker protein and/or a peptide tag. A marker protein can be any marker protein previously well known, and can be exemplified by alkaline phosphatase, Fc region of an antibody, HRP, GFP 65 and others. As a peptide tag in the present invention, it can be concretely exemplified by previously well-known peptide

tags such as Myc tag, His tag, FLAG tag, GST tag. The fusion protein can be produced by a normal method, and is useful in purifying a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence by using affinity of Ni-NTA and His tag, detecting a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence, measuring of the amount of antibodies against a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence and as a research reagent in other relevant fields.

As an antibody specifically bound to a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence in the present invention, it can be concretely exemplified by immune-specific antibodies such as a monoclonal antibody, a polyclonal antibody, a chimeric antibody, a single-chain antibody, a humanizied antibody. These antibodies can be produced by a normal method by using a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence mentioned above as an antigen, and a monoclonal antibody is preferable in its specificity among them. The antibody specifically bound to a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence such as a monoclonal antibody and others is useful, for example, in diagnosing diseases caused by the mutation or deletion of TLR9 or elucidating the molecular mechanism controlling TLR9.

An antibody against a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence can be produced by administrating a fragment containing a receptor protein or an epitope specifically recognizing bacterial DNA having the unmethylated CpG sequence in animals (preferably, non-human), or a cell expressing the protein on the surface of its membrane by a conventional protocol, and any method can be used such as hybridoma method (Nature 256, 495-497, 1975), trioma method, human B cell hybridoma method (Immunology Today 4, 72, 1983), and EBVhybridoma method (MONOCLONAL ANTIBODIES AND CANCER THERAPY, 77-96, Alan R. Liss, Inc., 1985), which are used for preparing monoclonal antibodies and brings an antibody produced by the cultured successive cell lines. The following explains a method of producing a monoclonal antibody specifically bound to mouse-driven TLR9, that is, an mTLR9 monoclonal antibody, with mouse-driven TLR9 as an example of a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence.

The mTLR9 monoclonal antibody can be produced by a normal method of culturing hybridoma producing mTLR9 monoclonal antibody in vivo or in vitro. For example, in an in vivo systems they can be obtained by culturing in the visceral cavity of rodents, preferably of mice or rats, and in an in vitro system they can be obtained by culturing in a medium for culturing animal cells. A medium used for culturing hybridoma in an in vitro system can be exemplified by cell culture media such as RPMI1640 or MEN and others comprising antibiotics such as streptomycin or penicillin.

The hybridoma producing mTLR9 monoclonal antibody can be produced by immunizing BALB/c mouse with TLR9, a receptor protein obtained from mouse and others, fusing a spleen cell from an immunized mouse and a mouse NS-1 cell (ATCC TIB-18) by a normal method, and screening them by immunofluorescence staining patterns. A method of separating/isolating the monoclonal antibody can be any one as long as it is a method usually used for purifying proteins, and liquid chromatography such as affinity chromatography and others can be a concrete example.

It is also possible to apply the method of a single-chain antibody (U.S. Pat. No. 4,946,778) to produce single-chain antibodies against receptor proteins specifically recognizing bacterial DNA having the above-mentioned unmethylated CpG sequence of the present invention. Further, it is possible 5 to use transgenic mice or other mammals and the like to express humanized antibodies, isolate/identify the clones expressing a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence by using the antibodies, and purify the polypeptides by affinity chroma-10 tography. The antibodies against receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence are useful in elucidating the molecular mechanism of a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence.

It is also possible to carry out a functional analysis of a receptor protein specifically recognizing bacterial DNA having the unmethylated CpG sequence by using fusion proteins obtained by fusing proteins labeled with fluorescent substances such as FITC (fluorescein isothiocyanate) or tetram- 20 ethylrhodamine isocyanate, fusion proteins labeled with radio isotopes such as ¹²⁵I, ³²P, ³⁵S or ³H, enzymes such as Alkaline phosphotase, peroxidase, β-Galacotsidase or Phycoerythrin, or fluorescent proteins such as Green Fluorescent Protein (GFP). A method of immunoassay can be exemplified 25 by RIA, ELISA, fluorescence antibody method, plaque forming cell assay, spot method, hemagglutination reaction method, Ouchterlony Method, and others.

The present invention relates to a host cell comprising an expressing system that can express a receptor protein specifi- 30 cally recognizing bacterial DNA having the unmethylated CpG sequence. Introduction of a gene encoding a receptor protein specifically recognizing bacterial DNA having the unmethylated CpG sequence into a host cell can be carried out by the methods described in a number of standard laboratory 35 manuals such as in Davis et al. (BASIC METHODS IN MOLECULAR BIOLOGY, 1986) and Sambrook et al. (MO-LECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), such as calcium phosphate transfection, 40 DEAE-dextran-mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction, infection and others. A host cell can be exemplified by bacterial prokaryotes such as Escherichia coli, Streptomyces, Bacillus 45 subtitlis, Streptococcus, Staphylococcus and others, fungal cells such as veast and Aspergillus, insect cells such as Dorsophilia S2 or Spodoptera Sf9 and others, and animal and plant cells such as L cell, CHO cell, COS cell, Hela cell, C127 cell, BALB/c3T3 cell (including mutant strains lacking dihy- 50 drofolate reductase, thymidine kinase or others), BHK 21 cell, HEK293 cell, Bowes Melanoma cell, oocytes, and oth-

Further, the expression system can be any one as long as it is a system that can express a receptor protein specifically 55 recognizing bacterial DNA having the unmethylated CpG sequence in a host cell, and can be exemplified by expression systems derived from chromosome, episome and virus, such as vectors derived from bacterial plasmid, yeast plasmid, papovavirus such as SV40, vaccinia virus, adeno virus, fowl 60 poxvirus, pseudorabies virus, or vectors derived from retrovirus, vectors derived from bacteriophage or transposon or their combinations, which can be exemplified by plasmids such as cosmid and phagemid, which are derived from genetic factors of plasmids and bacteriophage. These expressing sys-65 tems may comprise a control sequence that not only causes expression but also regulates expression.

8

A receptor protein specifically recognizing a host cell comprising the expressing system or a cell membrane of the cell, bacterial DNA comprising an unmethylated CpG sequence obtained by culturing, and the cell can be used for the screening methods of the present invention as mentioned below. For example, a method described in F. Pietri-Rouxel et al. (Eur. J. Biochem., 247, 1174-1179, 1997) can be used as a method for obtaining cell membrane, and well known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion- or cation-exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxyapatite chromatography and lectin chromatography, preferably high-performance liquid chromatography can be used to collect a receptor protein specifically recognizing bacterial DNA having the unmethylated CpG sequence from the cell culture and to purify it. Specifically, it is possible to obtain a receptor protein specifically recognizing the bacterial DNA having an unmethylated CpG sequence by using a column to which a receptor protein antibody specifically recognizing bacterial DNA having the anti-unmethylated CpG sequence of anti-TLR9 monoclonal antibodies and others is bound, or in case an ordinary peptide tag is bound to a receptor protein such as TLR9 etc. specifically recognizing a column to which a substance having an affinity with a peptide tag is bound for affinity chromatography.

A non-human animal excessively expressing a gene encoding a receptor protein specifically recognizing bacterial DNA having the unmethylated CpG sequence mentioned above in the present invention can be a non-human animal producing a large amount of receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence compared with wild-type non-human animals. Further, a nonhuman animal whose gene function encoding a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence is deleted on the chromosome is a non-human animal wherein part or whole of genes encoding receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence on the a chromosome are inactivated by genetic mutations such as damaged, deleted, substituted, and others, and which lost a function of expressing a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence. Although the nonhuman animal used in the present invention can be exemplified by a non-human animal including rodents such as rabbits, mice, rats and others, it is not restricted to the animals.

Further, refractory against bacterial DNA having an unmethylated CpG sequence in the present invention means that the reactivity against stimuli by bacterial DNA shown by an organism, or a cell, a tissue or an organ constituting the organism is declined or almost totally lost. Therefore, a nonhuman animal with refractory against bacterial DNA having an unmethylated CpG sequence in the present invention is a non-human animal such as mice, rats, or rabbits, wherein the an organism's reactivity against bacterial DNA, or a cell, a tissue or an organ constituting the organism is declined or almost totally lost. Further, stimuli by bacterial DNA can be exemplified by an in vivo stimulus caused by administrating bacterial DNA to an organism, or an in vitro stimulus caused by contacting cells separated from an organism with bacterial DNA. Concretely, a non-human animal such as TLR9 knockout mice wherein TLR9 gene functions are destroyed on the chromosome can be an example.

A homozygote non-human animals born following Mendel's Law includes mice deficient of or excessively expressing receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence and their wild-type

littermates, and it is preferable to use wild-type non-human animals, that is, the same kind of animal as a non-human animal wherein gene functions encoding a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence are destroyed or are excessive, more 5 preferably their littermate animals, for example, during the screening of the present invention described below because accurate comparative experiments can be carried out at the level of individuals by using the homozygote non-human animals with its receptor proteins destroyed or the one with 10 receptor proteins expressing excessively or the wild-type non-human animals born from the same mother at the same time. In the following, a method of producing non-human animals wherein gene functions encoding a receptor protein specifically recognizing bacterial DNA having the unmethy- 15 lated CpG sequence are destroyed or excessively expressed on the chromosome is explained using knockout mice or transgenic mice whose receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence as an example.

For example, as for a mouse wherein gene functions encoding receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence are destroyed on a chromosome such as TLR9, that is, a knockout mouse lacking receptor proteins specifically recognizing bacterial DNA hav- 25 ing an unmethylated CpG sequence, gene fragments obtained from mouse gene library by a method of PCR or the like are used to screen genes encoding receptor proteins specifically recognizing bacterial DNA having the unmethylated CpG sequence, subclone a gene encoding a receptor protein spe- 30 cifically recognizing bacterial DNA having the screened unmethylated CpG sequence with viral vectors and others, and specified by DNA sequencing. Whole or part of the gene in the clone encoding a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence 35 is substituted with pMC1 neo gene cassette and others, and a targeting vector is produced by introducing diphtheria toxin A fragments (DT-A) genes or herpes simplex virus thymidine kinase (HSV-tk) genes and others on 3'-end side.

The produced targeting vector is linearlized, introduced 40 into ES cells by electroporation method and others, homologous recombination is performed, and ES cells which has caused homologous recombination by antibiotics such as G418 or gancyclovir (GANC) and others are selected from the homologous recombinants. It is preferable to confirm by 45 Southern blot technique that the selected ES cells are targeted recombinants. The clones of the confirmed ES cells are introduced to mouse blastocysts by microinjection, and the blastcysts are returned to recipient mice, and chimera mice were produced. The chimera mouse was intercrossed with a wild- 50 type mouse to produce a heterozygote mouse, and the heterozygote mice are intercrossed to produce a knockout mouse lacking a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence in the present invention. Further, a method of confirming whether knockout 55 mice lacking a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence is obtained, for example, may be examined by Northern blot technique, which isolates RNA from the mouse obtained by the method mentioned above, or the expression in the mice 60 may be examined by Western blot technique.

The fact that the produced TLR9 knockout mouse is refractory against bacterial DNA having an unmethylated CpG sequence can be confirmed by measuring the levels of the production of TNF- α , IL-6, IL-12, IFN- γ and others in the cells whose CpG ODN was contacted in vivo or in vitro with immune cells such as macrophages, mononuclear cells, dendritic cells from TLR9 knockout mice, the proliferation of response of spleen B cells, the expression of antibodies such as CD40, CD80, CD86, MHC class II on the surface of spleen B cells, and the activation of molecules on the signal transduction pathway of NF- κ B, JNK, IRAK and others. The knockout mice lacking TLR9 in the present invention can be used to elucidate functional mechanisms of bacterial DNA and others having an unmethylated CpG sequence and to developing vaccine against bacterial infections.

Transgenic mice overexpressing receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence can be generated by constructing introduced genes by fusing chicken ß actin, mouse neurofilament, promotors such as SV40, and rabbit β -globin, polyA such as SV40 or intron with cDNA encoding receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence such as TLR9, microinjecting the introduced genes to pronucleus of mouse fertilized eggs, transplanting the obtained cells to an oviduct of recipient mice after cultur-20 ing them, then breeding the transplanted animals, and selecting child mice having the cDNA from born child mice. Further, selection of the child mice having cDNA can be performed by dot hybridization wherein crude cDNA was extracted from mouse tails and others, and genes encoding receptor proteins specifically recognizing bacterial DNA having an introduced unmethylated CpG sequence is used as a probe, or PCR method using specific primers and others.

Further, the use of whole or part of DNA encoding receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence in the present invention enables us to prepare cells effective for genetic treatments for diseases caused by the deletion or abnormality of receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence. Methods of preparing the cells in the present invention can be exemplified by a method wherein part or whole of the DNA in the present invention is introduced into cells lacking gene functions encoding receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence on the chromosome by transfection and others, and thus obtaining a cell expressing receptor proteins specifically recognizing bacterial DNA having the unmethylated CpG sequence. It is preferable to use a cell in which the DNA and others is integrated onto the chromosome and shows TLR9 activity in a stable manner, particularly as a cell expressing receptor proteins specifically recognizing bacterial DNA having the unmethylated CpG sequence.

Furthermore, the use of DNA encoding receptor proteins specifically recognizing bacterial DNA having the unmethylated CpG sequence, antibodies against receptor proteins specifically recognizing bacterial DNA having a fused unmethylated CpG sequence comprising a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence bound to a marker protein and/or a peptide tag, a host cell comprising an expression system which can express a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence, nonhuman animals excessively expressing genes encoding receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence, non-human animals lacking gene functions encoding receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence on a chromosome, cells expressing receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence enables us to screen agonists or antagonists of the receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence in the present invention, or suppressing or promoting substances reactive to bacterial DNA having an unmethylated CpG sequence. What is obtained by the screening may be suppressing or promoting substances against bacterial infected diseases, suppressing agents, preventing agents or remedies against allergic diseases or cancers, agents suppressing or promoting side effects in genetic therapy or the like, or substances useful for diagnosing/treating diseases or the like caused by the deletion or abnormality of TLR9 activity.

Although the TLR activities can concretely be exemplified 10 by a function of reacting specifically to bacterial DNA having an unmethylated CpG sequence and transmitting signals into cells, and a signal transduction function is a function of producing cytokines such as TNF- α , IL-6, IL-12, IFN- γ or the like, a function of producing nitrous acid ion, a function of 15 proliferating cells, a function of expressing antibodies such as CD40, CD80, CD86, MHC class II and others on the surface of cells, and a function of activating molecules in signal transduction pathway of TLR9 such as NF- κ B, JNK, IRAK and others, it is not limited to these functions. 20

A screening method of agonists or antagonists of receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence in the present invention can concretely be exemplified by a method of performing in vitro culture of immune cells such as macrophages, spleen cells or 25 dendritic cells, cells expressing a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence, cells expressing a protein having reactivity against bacterial DNA having an unmethylated CpG sequence in a cell expressing a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence under the presence of target substance, and measuring/evaluating TLR9 activities, or a method of administrating target substance to wild-type non-human animals, non-human animals lacking a gene function of encoding receptor proteins specifi- 35 cally recognizing bacterial DNA an unmethylated CpG sequence, or non-human animals excessively expressing genes encoding receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence, and measuring/evaluating TLR 9 activities of immune cells such 40 as macrophages, spleen cells or dendritic cells derived from these non-human animals.

Further, in evaluating and measuring the levels of macrophage activities or spleen cell activities, it is preferable to evaluate and compare them with the measurement values 45 obtained from wild-type non-human animals, especially wild-type non-human animals born from the same parent to remove variances arising from individual differences. The same also applies to screening of suppressing or promoting substances reactive to bacterial DNA having an unmethylated 50 CpG sequence shown below.

Screening methods for suppressing or promoting substances reactive to bacterial DNA having an unmethylated CpG sequence can concretely be exemplified by a method comprising the steps of carrying out in vitro incubation of 55 proteins or cell membranes expressing the proteins having a reactivity against bacterial DNA having an unmethylated CpG sequence under the presence of target substances and bacterial DNA having an unmethylated CpG sequence, measuring/evaluating the reactivity of the protein, or a method 60 comprising the steps of first making macrophages or spleen cells obtained from non-human animals whose gene functions encoding proteins having reactivity against bacterial DNA having an unmethylated CpG sequence are destroyed on a chromosome contact in vitro with target substances, then 65 culturing the macrophages or spleen cells in the presence of bacterial DNA having an unmethylated CpG sequence, and

12

measuring/evaluating the levels of macrophage activities shown by the macrophages or the levels of spleen cell activities shown by the spleen cells, a method comprising the steps of making macrophages or spleen cells obtained from nonhuman animals whose gene functions encoding proteins having reactivity against bacterial DNA having an unmethylated CpG sequence contact in vitro with bacterial DNA having an unmethylated CpG sequence, then culturing the macrophages or spleen cells in the presence of target substances, and measuring/evaluating the levels of macrophage activities shown by the macrophages or the levels of spleen cell activities shown by the spleen cells, and a method of comprising the steps of first administrating target substances to non-human animals whose gene functions encoding proteins having reactivity against bacterial DNA having an unmethylated CpG sequence on a chromosome first, then culturing the macrophages or spleen cells obtained from the non-human animals in the presence of bacterial DNA having an unmethylated CpG sequence, and measuring/evaluating the levels of macroph-20 age activities shown by the macrophages or the levels of spleen cell activities shown by the spleen cells, a method comprising the steps of first administrating target substances to non-human animals whose gene functions encoding proteins having reactivity against bacterial DNA having an unmethylated CpG sequence is destroyed on a chromosome, then infecting the non-human animals by bacteria, and measuring/ evaluating the levels of macrophage activities shown by macrophages or the levels of spleen cell activities shown by the spleen cells obtained from non-human animals, a method of the steps of first administrating target substance to non-human animals whose gene functions encoding proteins having reactivity against bacterial DNA having an unmethylated CpG sequence on a chromosome, and measuring/evaluating the levels of macrophage activities shown by macrophages or the levels of spleen cell activities shown by spleen cells obtained from the non-human animals, a method comprising the steps of first infecting with bacteria non-human animals whose gene functions encoding proteins having reactivity against bacterial DNA having an unmethylated CpG sequence are destroyed on a chromosome, then culturing macrophages or spleen cells obtained from the non-human animals in the presence of target substances, and measuring/ evaluating the levels of macrophage activities shown by macrophages or the levels of spleen cell activities shown by spleen cells obtained from the non-human animals, a method comprising the steps of administrating target substances to non-human animals whose gene functions are encoding proteins having reactivity against bacterial DNA having an unmethylated CpG sequence are destroyed, infecting the nonhuman animals by bacteria, and measuring/evaluating the levels of macrophage activities or spleen cell activities in the non-human animals, and a method comprising the steps of infecting non-human animals whose gene functions encoding proteins having reactivity against bacterial DNA having an unmethylated CpG sequence are destroyed on a chromosome first, then administrating the target substances to the nonhuman animals, and measuring/evaluating the levels of macrophage activities or spleen cell activities in the non-human animals. Although as bacterial DNA having an unmethylated CpG sequence used in the screening methods, it is preferable to use CpG ODN (TCC-ATG-ACG-TTC-CTG-ATG-CT: Seq. ID No: 5), it is not limited to this.

The present invention also relates to a kit used to diagnose diseases relating to the activity or expression of receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence by comparing a sequence of DNA encoding receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence in a test body with a sequence of DNA encoding receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence in the present invention. The detection of mutated DNA encoding receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence can be carried out by detecting genetically mutated individuals at the level of DNA, and is effective for diagnosing diseases caused by hypotypic expression, hypertypic expression or mutated expression of receptor proteins specifically rec- 10 ognizing bacterial DNA having an unmethylated CpG sequence. Although a test body used in the detection can concretely be exemplified by genomic DNA of cells from subjects obtainable by biopsy from blood, urine, saliva, tissue and others, RNA, or cDNA, it is not limited to these. In using 15 the test body, it is possible to use the ones amplified by PCR and others. The deficiency or insertional mutation in sequences of bases can be detected by the changes of amplified products in size compared with normal genes, and point mutation can be identified by hybridizing the amplified DNA 20 with the gene encoding receptor proteins specifically recognizing bacterial DNA having labeled unmethylated CpG sequence. It is possible to diagnose or conclude diseases relevant to activity or expression of receptor proteins specifically recognizing bacterial DNA having an unmethylated 25 CpG sequence by detecting mutation of a gene encoding receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence.

The present invention also relates to a probe diagnosing a disease related to activities or expressions of a receptor pro- 30 tein specifically recognizing bacterial DNA having an unmethylated CpG sequence comprising whole or part of antisense chain of DNA or RNA encoding a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence, and a kit used to diagnose diseases 35 relating to activities or expressions of a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence comprising an antibody specifically bound to a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence of the probe and/or in 40 1999). the present invention. A probe used for the diagnosis is whole or part of an antisense chain of DNA (cDNA) or RNA (cRNA) encoding a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence, and there is no limitations on the probe as long as it is long enough (at least 45 20 bases or more) to establish as a probe. In order to make an antibody specifically bound to a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence of the probe and/or in the present invention an active component of a medicine diagnosing diseases such as bacte- 50 rial infection and others, it is preferable to dissolve it into appropriate buffers or sterilized water in which a probe is not decomposed. Further, it is possible to use the clinical test pharmaceuticals to diagnose a patient's symptoms such as bacterial infection diseases and others in the ways such as 55 immunofluorescence (Dev. Biol. 170, 207-222, 1995, J. Neurobiol. 29, 1-17, 1996), In situ hybridization (J. Neurobiol. 29, 1-17, 1996), or in situ PCR or others.

A pharmaceutical composition of the present invention can be any one as long as it comprises whole or part of the receptor 60 protein specifically recognizing bacterial DNA having an unmethylated CpG sequence of TLR9 or others, or comprises an agonist or an antagonist of the receptor protein. Concretely, vaccines against bacterial infectious diseases, vaccines against cancers, treating medicine for patients having 65 allergies such as bronchial asthma, reversal agents, suppressing agents, inhibiting agents and others for side effects by the

existence of a CpG motif inhibiting genetic treatments or treatments using antisenseoligonucleotides can be exemplified.

As mentioned above, a kit testing diagnoses relevant to the deletion, substitution and/or addition of DNA sequence encoding a receptor proteins specifically recognizing bacterial DNA having an unmethylated CpG sequence of the present invention can be any one as long as it comprises DNA encoding TLR9, and comparing a sequence of bases of DNA encoding the TLR9 with a sequence of bases of DNA encoding a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence in a tested body enables us to diagnose diseases related to deletion, substitution and/or addition of DNA sequence encoding a receptor protein specifically recognizing bacterial DNA having an unmethylated CpG sequence such as cancer, allergy, infectious diseases and others.

In the following, the present invention will further be explained with concrete examples. However, the technical scope of the present invention is not limited in any way by the following examples.

EXAMPLE 1

Cloning of TLR9

As a result of a GenBank search using the information of DNA sequence of human TLR4, a mouse EST having a significant homology (Registration No. AA273731; mouse) was found. Using PCR amplified mouse EST as a probe, mouse RAW 264.7 cDNA library was screened and a full length cDNA clone shown in Seq. ID No. 3 comprising the complete TLR9 open reading frame was isolated. Performing a Gen-Bank search based on the information of DNA sequence of the mouse TLR9, a human genomic sequence having a high level of homology was found. Based on the human genomic sequence, cDNA ends were amplified to isolate cDNA of the full length human TLR9 having a sequence of bases in Seq. ID No. 1 from U937 cells (J. Immunol. 163, 5039-5048, 1999).

EXAMPLE 2

Production of TLR Knockout Mice

The TLR9 genomic DNA was isolated from 129/SvJ mouse genomic library (Stratagene), subcloned in pBluescript II SK(+) vectors (Stratagene), and characterized by restriction enzyme mapping and DNA sequencing analysis. The targeting vector was constructed by replacing a 1.0 kb fragment encoding part of LRR (leucine-rich repeat) region with a neomycin-resistance gene cassette (pMC1-neo; Stratagene), and a herpes simplex virus thymidine kinase (HSV-TK) was inserted for negative selection (FIG. 1). The targeting vector was linearlized, and was electroporated into embryonic stem cells (ES cells) of E14-1, then 292 pieces of clones showing G418 and gancyclovir resistance were selected, and 14 pieces of clones were screened by PCR and Southern blotting.

Chimeric mice were produced by microinjecting 3 pieces of targeted ES clones comprising mutated TLR9 allele into C57BL/6 mouse blastocysts. The male chimeric mice were intercrossed with C57BL/6 female mice to produce a heterozygote F1 mouse, and a homozygote mice (TLR9 knockout mouse: TLR9^{-/-}) was obtained by intercrossing heterozygote F1 mouse (FIG. **2**). To confirm that the obtained mouse was homozygote, various genomic DNA extracted from a

mouse tail was digested by ScaI to perform Southern blotting using the probe shown in FIG. **1**. The TLR9 knockout mice $(TLR9^{-/-})$ of the present invention were produced following Mendel's law, and had not shown remarkable abnormality for 12 weeks.

To confirm that the inactivation of TLR9 arises by mutation, total RNA (10 µg) extracted from spleen cells from wild-type mice (+/+) and TLR9 knockout mice (-/-) was electrophoresed, and transferred to nylon membranes, Northern blotting was performed with the use of cDNA specific to 10 TLR9 c-terminal fragments or N-terminal fragments labeled with $[^{32}P]$, or β -actin (FIG. 3). The result shows that N-terminal fragments of TLR9 mRNA were not detected from the spleen cells of TLR9 knockout mice. Further, with a C-terminal fragment as a probe, almost the same size of Tlr9 15 transcripts derived from mutated mice as the ones from wildtype mice were detected. However, the amount of the production was small. Then, RT-PCR was performed using mRNA of spleen cells obtained from mutated mice to sequence the obtained products. The result shows that the Tlr9 gene tran-20 script comprises neo gene, and stop codons appear in a N-terminal domain of TLR9 by inserting the neo, and functional TLR9 proteins does not appear in mutated mice (FIG. 4). Further, as a result of examining lymph cells from TLR9 by flowcytometry knockout mice, no abnormal compositions 25 were found.

EXAMPLE 3

Preparation of Peritoneal Macrophages

2 ml of 4% thioglycolic acid medium (DIFCO) was injected to each peritoneum of wild-type mice and TLR9 knockout mice (TLR9^{-/-}), peritoneal exudation cells were isolated from peritonea from each mouse after 3 days, the ³⁵ cells were cultured in RPMI1640 medium to which 10% of fetal bovine serum (GIBCO) was added at 37° C. for 2 hours, and remove the unattached cells by washing with ice-chilled Hank's buffered salt solution (HBSS; GIBCO), and the attached cells were used as peritoneal macrophages in the ⁴⁰ following experiments.

EXPERIMENT 4 Response to Bacterial DNA Having an Unmethylated CpG Sequence in TLR9 Knockout Mice

It has recently been shown that the response of CpG ODN 45 (oligodeoxynucleotide) is dependent on MyD88, an adopter protein in a signaling transduction pathway mediating TLR. Although the MyD88 knockout mice do not show response to CpG ODN, TLR2 knockout mice or TLR4 knockout mice show normal response to it. This shows that CpG ODN recognizes TLRs other than TLR2 and TLR4, and then the response of a TLR9 knockout mouse against CpG ODN was examined. First, the amount of producing inflammatory cytokines in peritoneal macrophages were measured in the following way.

The macrophages prepared in Example 3 are co-cultured with various concentrations of CpG ODN shown in FIG. **5** (0.1 or 1.0 μ M; TIB MOLBIOL; TCC-ATG-ACG-TTC-CTG-ATG-CT) (SEQ ID NO: 5), PGN (10 μ g/ml; Sigma and Fluka; derived from *Staphylococcus aureus*), LPS (1.0 μ g/ml; 60 Sigma; derived from Salmonella minnesota Re-595) in the presence or absence of INF γ (30 unit/ml). The concentrations of TNF α , IL-6 and IL-12 p40 in the supernatants after culturing were measured by ELISA, and the results are shown in FIG. **5**. The results show that the macrophages from wild-type 65 mice (Wild-type) produce TNF α , IL-6 and IL-12 in response to CpG ODN, and further stimulation by IFN γ and CpG ODN

increases the amount of producing TNF α , IL-6 and IL-12. However, the macrophages derived from TLR9 knockout mice (TLR9^{-/-}) did not produce a detectable level of inflammatory cytokines in response to CpG ODN even in the presence of IFN γ . Further, it was found that the macrophages derived from wild-type mice and TLR9 knockout mice produce almost the same level of TNF α , IL-6 and IL-12 in response to LPS or PGN (FIG. **5**). Each experimental result shows the average level of n=3. N.D. in the figures means not detected.

Response of spleen cells from wild-type mice (Wild-type) and TLR9 knockout mice (TLR9^{-/-}) against CpG ODN or LPS was also examined. The spleen cells from each mouse (1×10^5) were isolated to culture in 96 well plates by CpG DNA or LPS of various concentrations shown in FIG. 6, and the spleen cells were stimulated. 40 hours later from culturing, 1µ Ci of [³H]-timidine (Dupont) was added, and then further cultured for 8 hours. The amount of uptaking [³H]timidine was measured by β scintillation counter (Packard) (FIG. 6). The results that although the spleen cells from wild-type mice promote cell proliferating reactions depending on the amount of administrating CpG ODN or LPS, the spleen cells from TLR9 knockout mice did not show any cell proliferating reaction by CpG ODN even with the stimulus of any concentration of CpG ODN. Further, the amount of expressing Major Histocompatibility Complex (MHC) class II on the surface of B cells derived from wild-type mice in response to CpG ODN was increased. However, such increase of the amount of expressing MHC class II induced by 30 CpG ODN in B cells derived from TLR9 knockout mice was not observed. These facts show that the macrophages or B cells from TLR9 knockout mice specifically lack the response against CpG ODN.

Next, it is well known that DNA derived from bacteria comprising CpG ODN potentially stimulates dendritic cells, and supports the development of Th1 cell (EMBO J. 18, 6973-6982, 1999, J. Immunol. 161, 3042-3049, 1998, Proc. Natl. Acad. Sci. USA 96, 9305-9310, 1999). Then, the production of CpG ODN-inducing cytokines and the upregulation of the surface molecule of dendritic cells derived from bone marrow were examined. The bone marrow cells from wild-type mice (Wild-type) or TLR9 knockout mice) were cultured with 10 ng/ml mouse granulocyte (TLR9-/ macrophage-colony stimulating factor (Peprotech) in RPMI1640 medium supplemented with 10% fetal bovine serum (J. Exp. Med. 176, 1693-1702, 1992), at day 6 of the culture, immature dendritic cells were harvested and cultured in the presence or absence of 0.1 μ M CpG ODN or 0.1 μ g/ml LPS in RPMI1640 medium supplemented with 10% fetal bovine serum for 2 days. After the culture, the concentration of IL-12 p40 in the supernatants was measured by ELISA (FIG. 7). The result shows that the dendritic cells derived from wild-type mice produced IL-12 in response to CpG ODN while the dendritic cells derived from TLR9 knockout 55 mice did not induce the production of IL-12 in response to CpG ODN.

After culturing in RPMI supplemented with 10% fetal bovine serum was cultured which contains 10 ng/ml mouse granulocyte macrophage-colony stimulating factor (Peprotech), the dendritic cells harvested at day 6 were stained with biotinylated antibodies against CD40, CD80, CD86 or MHC class II, developed with streptovidine labeled with phycoerythrin (PE; PharMingen). The cells were examined by using a FACSCalibur with CELLQuest software (Becton Dickinson) (FIG. 8). The result shows that stimulation by CpG ODN promotes the expression of CD40, CD80, CD86 and MHC class II on the surface of dendritic cells derived

from wild-type mouse while it does not promote the expression of these molecules on the surface of dendritic cells derived from TLR9 knockout mouse by the stimulation of CpG ODN (FIG. 8). The dendritic cells from wild-type mice and from TLR knockout mouse show similar responses in 5 response to LPS. This result shows that TLR9 is a receptor essential for cell response to CpG ODN.

EXAMPLE 5

Activation of NF-KB, JNK and IRAK in Response to CpG ODN of Macrophages Derived from TLR9 Knockout Mice

It is known that signaling via TLRs activates IRAK, a serine-threonine kinase mediated by MyD88, an adaptor molecule, and subsequently activates MAP kinase and NF- κ B (Immunity 11, 115-122, 1999). Whether CpG ODN activates the intracellular signaling or not was examined. The peritoneal macrophages (1×10⁶ cells) from wild-type and TLR9^{-/-} mice in Example 3 were stimulated by 1.0 μ M of CpG ODN²⁰ or 1.0 μ g/ml of LPS from Salmonella Minnesota Re-595 for the periods indicated in FIG. 9, nucleoproteins were extracted from the macrophages obtained from each mouse to be incubated together with a specific probe comprising NF- κ B DNAbinding sites, electrophoresed, and then visualized by auto-²⁵ radiography (FIG. 9).

The result shows that when stimulated by CpG ODN, the macrophages derived from wild-type mice increased NF- κ B DNA-binding activity while the macrophages derived from TLR9 knockout mice did not increase NF- κ B DNA-binding activity. When stimulated by LPS, the macrophages derived from TLR9 knockout mice and the macrophages derived from the wild-type mice show similar NF- κ B activities.

The result shows that the macrophages derived from a TLR9 knockout mouse specifically lack NF- κ B activity by the induction of CpG ODN. The arrows in the figures indicate the sites of the compounds of NF- κ B and specific probes, and the arrowheads indicate the sites of specific probes only.

As shown above, the macrophages from wild-type mice and TLR9 knockout mice stimulated by CpG ODN or LPS for the periods indicated in FIG. **10** and FIG. **11** were dissolved into a solvent buffer (a buffer comprising 1.0% Triton X-100, 137 mM of NaCl, 20 mM of Tris-HCl, 5 mM of EDTA, 10% glycerol, 1 mM of PMSF, 20 μ g/ml of aprotinin, 20 μ g/ml of leupeptin, 1 mM of Na₃VO₄ and 10 mM of β -glycerophosphate at the final concentrations; pH8.0), the cell lysates were immunoprecipated with anti-JNK antibody (Santa Cruz) or anti-IRAK antibody (Hayashibara Seikagaku Kenkyujo Kabushiki Kaisha). As described in a reference (Immunity

10 11, 115-122, 1999), the JNK activity and IRAK activity were measured by in vitro kinase assay using GST-c-Jun fusion protein (GST-c-Jun) as a substrate (top figures of FIG. 10 and FIG. 11; GST-c-Jun, Auto).

The cell lysates were separated by SDS-polyacrylamide gel electrophoresis to transfer them onto a nitrocellulose membrane and blotted the membrane with anti-JNK antibody (Santa Cruz) or anti-IRAK antibody (Transduction Laboratories) to visualize using an enhanced chemiluminescent system (Dupont) (bottom figures of FIG. **10** and FIG. **11**; WB). The result shows that CpG ODN activates JUN and IRAK of the macrophages derived from wild-type mice while it does not activate JUN and IRAK of the macrophages derived from TLR9 knockout mice (FIG. **10** and FIG. **11**). It is therefore found that the signaling transduction mediated by CpG ODN depends on TLR9.

INDUSTRIAL APPLICABILITY

Bacteria-derived DNA comprising an unmethylated CpG motif significantly activates immune cells and induce Th1 response, while a receptor recognizing such bacterial DNA remained unknown. The present invention has revealed a receptor of oligonucleotides comprising an unmethylated CpG sequence of bacterial DNA and will enable us to elucidate a receptor protein TLR9, a member of TLR family, specifically recognizing bacterial DNA having an unmethylated CpG sequence, the genetic DNA encoding it or others, which will be useful to diagnose and treat bacterial diseases and others. The use of the TLR9 knockout animals will also enable us to elucidate functional mechanisms of DNA derived from bacteria at the molecular level.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 5	
<210> SEQ ID NO 1 <211> LENGTH: 3257 <212> TYPE: DNA	
<213> ORGANISM: Homo sapiens <220> FEATURE:	
<221> NAME/KEY: CDS	
<222> LOCATION: (107)(3205)	
<400> SEQUENCE: 1	
cogotgotgo cootgtggga agggacotog agtgtgaago atoottooot gtagotgotg	60
tccagtctgc ccgccagacc ctctggagaa gcccctgccc cccagc atg ggt ttc Met Gly Phe 1	115
tac cac age gee etg cae eeg etg tet ete etg gtg cag gee ate atg	163
Cvs Arg Ser Ala Leu His Pro Leu Ser Leu Leu Val Gln Ala Ile Met	
5 10 15	
J 10 15	
ctq qcc atq acc ctq qcc ctq qqt acc ttq cct qcc ttc cta ccc tqt	211
Leu Ala Met Thr Leu Ala Leu Gly Thr Leu Pro Ala Phe Leu Pro Cys	

20					25					30					35	
gag Glu	ctc Leu	cag Gln	ccc Pro	cac His 40	ggc Gly	ctg Leu	gtg Val	aac Asn	tgc Cys 45	aac Asn	tgg Trp	ctg Leu	ttc Phe	ctg Leu 50	aag Lys	259
tct Ser	gtg Val	ccc Pro	cac His 55	ttc Phe	tcc Ser	atg Met	gca Ala	gca Ala 60	ccc Pro	cgt Arg	ggc Gly	aat Asn	gtc Val 65	acc Thr	agc Ser	307
ctt Leu	tcc Ser	ttg Leu 70	tcc Ser	tcc Ser	aac Asn	cgc Arg	atc Ile 75	cac His	cac His	ctc Leu	cat His	gat Asp 80	tct Ser	gac Asp	ttt Phe	355
gcc Ala	cac His 85	ctg Leu	ccc Pro	agc Ser	ctg Leu	cgg Arg 90	cat His	ctc Leu	aac Asn	ctc Leu	aag Lys 95	tgg Trp	aac Asn	tgc Cys	ccg Pro	403
ccg Pro 100	gtt Val	ggc Gly	ctc Leu	agc Ser	ccc Pro 105	atg Met	cac His	ttc Phe	ccc Pro	tgc Cys 110	cac His	atg Met	acc Thr	atc Ile	gag Glu 115	451
ccc Pro	agc Ser	acc Thr	ttc Phe	ttg Leu 120	gct Ala	gtg Val	ccc Pro	acc Thr	ctg Leu 125	gaa Glu	gag Glu	cta Leu	aac Asn	ctg Leu 130	agc Ser	499
tac Tyr	aac Asn	aac Asn	atc Ile 135	atg Met	act Thr	gtg Val	cct Pro	gcg Ala 140	ctg Leu	ccc Pro	aaa Lys	tcc Ser	ctc Leu 145	ata Ile	tcc Ser	547
ctg Leu	tcc Ser	ctc Leu 150	agc Ser	cat His	acc Thr	aac Asn	atc Ile 155	ctg Leu	atg Met	cta Leu	gac Asp	tct Ser 160	gcc Ala	agc Ser	ctc Leu	595
gcc Ala	ggc Gly 165	ctg Leu	cat His	gcc Ala	ctg Leu	cgc Arg 170	ttc Phe	cta Leu	ttc Phe	atg Met	gac Asp 175	ggc Gly	aac Asn	tgt Cys	tat Tyr	643
tac Tyr 180	aag Lys	aac Asn	ccc Pro	tgc Cys	agg Arg 185	cag Gln	gca Ala	ctg Leu	gag Glu	gtg Val 190	gcc Ala	ccg Pro	ggt Gly	gcc Ala	ctc Leu 195	691
ctt Leu	ggc Gly	ctg Leu	ggc Gly	aac Asn 200	ctc Leu	acc Thr	cac His	ctg Leu	tca Ser 205	ctc Leu	aag Lys	tac Tyr	aac Asn	aac Asn 210	ctc Leu	739
act Thr	gtg Val	gtg Val	ccc Pro 215	cgc Arg	aac Asn	ctg Leu	cct Pro	tcc Ser 220	agc Ser	ctg Leu	gag Glu	tat Tyr	ctg Leu 225	ctg Leu	ttg Leu	787
tcc Ser	tac Tyr	aac Asn 230	cgc Arg	atc Ile	gtc Val	aaa Lys	ctg Leu 235	gcg Ala	cct Pro	gag Glu	gac Asp	ctg Leu 240	gcc Ala	aat Asn	ctg Leu	835
acc Thr	gcc Ala 245	ctg Leu	cgt Arg	gtg Val	ctc Leu	gat Asp 250	gtg Val	ggc Gly	gga Gly	aat Asn	tgc Cys 255	cgc Arg	cgc Arg	tgc Cys	gac Asp	883
cac His 260	gct Ala	ccc Pro	aac Asn	ccc Pro	tgc Cys 265	atg Met	gag Glu	tgc Cys	cct Pro	cgt Arg 270	cac His	ttc Phe	ccc Pro	cag Gln	cta Leu 275	931
cat His	ccc Pro	gat Asp	acc Thr	ttc Phe 280	agc Ser	cac His	ctg Leu	agc Ser	cgt Arg 285	ctt Leu	gaa Glu	ggc Gly	ctg Leu	gtg Val 290	ttg Leu	979
aag Lys	gac Asp	agt Ser	tct Ser 295	ctc Leu	tcc Ser	tgg Trp	ctg Leu	aat Asn 300	gcc Ala	agt Ser	tgg Trp	ttc Phe	cgt Arg 305	gga gga	ctg Leu	1027
gga Gly	aac Asn	ctc Leu 310	cga Arg	gtg Val	ctg Leu	gac Asp	ctg Leu 315	agt Ser	gag Glu	aac Asn	ttc Phe	ctc Leu 320	tac Tyr	aaa Lys	tgc Cys	1075
atc Ile	act Thr 325	aaa Lys	acc Thr	aag Lys	gcc Ala	ttc Phe 330	cag Gln	ggc Gly	cta Leu	aca Thr	cag Gln 335	ctg Leu	cgc Arg	aag Lys	ctt Leu	1123
aac	ctg	tcc	ttc	aat	tac	caa	aag	agg	gtg	tcc	ttt	gcc	cac	ctg	tct	1171

cont	inuad
-cont	Inuea

Asn 340	Leu	Ser	Phe	Asn	Tyr 345	Gln	Lys	Arg	Val	Ser 350	Phe	Ala	His	Leu	Ser 355	
ctg Leu	gcc Ala	cct Pro	tcc Ser	ttc Phe 360	glà aaa	agc Ser	ctg Leu	gtc Val	gcc Ala 365	ctg Leu	aag Lys	gag Glu	ctg Leu	gac Asp 370	atg Met	1219
cac His	ggc Gly	atc Ile	ttc Phe 375	ttc Phe	cgc Arg	tca Ser	ctc Leu	gat Asp 380	gag Glu	acc Thr	acg Thr	ctc Leu	cgg Arg 385	cca Pro	ctg Leu	1267
gcc Ala	cgc Arg	ctg Leu 390	ccc Pro	atg Met	ctc Leu	cag Gln	act Thr 395	ctg Leu	cgt Arg	ctg Leu	cag Gln	atg Met 400	aac Asn	ttc Phe	atc Ile	1315
aac Asn	cag Gln 405	gcc Ala	cag Gln	ctc Leu	ggc Gly	atc Ile 410	ttc Phe	agg Arg	gcc Ala	ttc Phe	cct Pro 415	ggc Gly	ctg Leu	cgc Arg	tac Tyr	1363
gtg Val 420	gac Asp	ctg Leu	tcg Ser	gac Asp	aac Asn 425	cgc Arg	atc Ile	agc Ser	gga Gly	gct Ala 430	tcg Ser	gag Glu	ctg Leu	aca Thr	gcc Ala 435	1411
acc Thr	atg Met	glà dâa	gag Glu	gca Ala 440	gat Asp	gga Gly	д1У ддд	gag Glu	aag Lys 445	gtc Val	tgg Trp	ctg Leu	cag Gln	cct Pro 450	ggg ggg	1459
gac Asp	ctt Leu	gct Ala	ccg Pro 455	gcc Ala	cca Pro	gtg Val	gac Asp	act Thr 460	ccc Pro	agc Ser	tct Ser	gaa Glu	gac Asp 465	ttc Phe	agg Arg	1507
ccc Pro	aac Asn	tgc Cys 470	agc Ser	acc Thr	ctc Leu	aac Asn	ttc Phe 475	acc Thr	ttg Leu	gat Asp	ctg Leu	tca Ser 480	cgg Arg	aac Asn	aac Asn	1555
ctg Leu	gtg Val 485	acc Thr	gtg Val	cag Gln	ccg Pro	gag Glu 490	atg Met	ttt Phe	gcc Ala	cag Gln	ctc Leu 495	tcg Ser	cac His	ctg Leu	cag Gln	1603
tgc Cys 500	ctg Leu	cgc Arg	ctg Leu	agc Ser	cac His 505	aac Asn	tgc Cys	atc Ile	tcg Ser	cag Gln 510	gca Ala	gtc Val	aat Asn	ggc Gly	tcc Ser 515	1651
cag Gln	ttc Phe	ctg Leu	ccg Pro	ctg Leu 520	acc Thr	ggt Gly	ctg Leu	cag Gln	gtg Val 525	cta Leu	gac Asp	ctg Leu	tcc Ser	cac His 530	aat Asn	1699
aag Lys	ctg Leu	gac Asp	ctc Leu 535	tac Tyr	cac His	gag Glu	cac His	tca Ser 540	ttc Phe	acg Thr	gag Glu	cta Leu	cca Pro 545	cga Arg	ctg Leu	1747
gag Glu	gcc Ala	ctg Leu 550	gac Asp	ctc Leu	agc Ser	tac Tyr	aac Asn 555	agc Ser	cag Gln	ccc Pro	ttt Phe	ggc Gly 560	atg Met	cag Gln	ggc Gly	1795
gtg Val	ggc Gly 565	cac His	aac Asn	ttc Phe	agc Ser	ttc Phe 570	gtg Val	gct Ala	cac His	ctg Leu	cgc Arg 575	acc Thr	ctg Leu	cgc Arg	cac His	1843
ctc Leu 580	agc Ser	ctg Leu	gcc Ala	cac His	aac Asn 585	aac Asn	atc Ile	cac His	agc Ser	caa Gln 590	gtg Val	tcc Ser	cag Gln	cag Gln	ctc Leu 595	1891
tgc Cys	agt Ser	acg Thr	tcg Ser	ctg Leu 600	cgg Arg	gcc Ala	ctg Leu	gac Asp	ttc Phe 605	agc Ser	ggc Gly	aat Asn	gca Ala	ctg Leu 610	ggc Gly	1939
cat His	atg Met	tgg Trp	gcc Ala 615	gag Glu	gga Gly	gac Asp	ctc Leu	tat Tyr 620	ctg Leu	cac His	ttc Phe	ttc Phe	caa Gln 625	ggc Gly	ctg Leu	1987
agc Ser	ggt Gly	ttg Leu 630	atc Ile	tgg Trp	ctg Leu	gac Asp	ttg Leu 635	tcc Ser	cag Gln	aac Asn	cgc Arg	ctg Leu 640	cac His	acc Thr	ctc Leu	2035
ctg Leu	ccc Pro 645	caa Gln	acc Thr	ctg Leu	cgc Arg	aac Asn 650	ctc Leu	ccc Pro	aag Lys	agc Ser	cta Leu 655	cag Gln	gtg Val	ctg Leu	cgt Arg	2083

-continued

ctc Leu 660	cgt Arg	gac Asp	aat Asn	tac Tyr	ctg Leu 665	gcc Ala	ttc Phe	ttt Phe	aag Lys	tgg Trp 670	tgg Trp	agc Ser	ctc Leu	cac His	ttc Phe 675	2131
ctg Leu	ccc Pro	aaa Lys	ctg Leu	gaa Glu 680	gtc Val	ctc Leu	gac Asp	ctg Leu	gca Ala 685	gga Gly	aac Asn	cag Gln	ctg Leu	aag Lys 690	gcc Ala	2179
ctg Leu	acc Thr	aat Asn	ggc Gly 695	agc Ser	ctg Leu	cct Pro	gct Ala	ggc Gly 700	acc Thr	cgg Arg	ctc Leu	cgg Arg	agg Arg 705	ctg Leu	gat Asp	2227
gtc Val	agc Ser	tgc Cys 710	aac Asn	agc Ser	atc Ile	agc Ser	ttc Phe 715	gtg Val	gcc Ala	ccc Pro	ggc Gly	ttc Phe 720	ttt Phe	tcc Ser	aag Lys	2275
gcc Ala	aag Lys 725	gag Glu	ctg Leu	cga Arg	gag Glu	ctc Leu 730	aac Asn	ctt Leu	agc Ser	gcc Ala	aac Asn 735	gcc Ala	ctc Leu	aag Lys	aca Thr	2323
gtg Val 740	gac Asp	cac His	tcc Ser	tgg Trp	ttt Phe 745	д1 <u>у</u> ддд	ccc Pro	ctg Leu	gcg Ala	agt Ser 750	gcc Ala	ctg Leu	caa Gln	ata Ile	cta Leu 755	2371
gat Asp	gta Val	agc Ser	gcc Ala	aac Asn 760	cct Pro	ctg Leu	cac His	tgc Cys	gcc Ala 765	tgt Cys	ggg Gly	gcg Ala	gcc Ala	ttt Phe 770	atg Met	2419
gac Asp	ttc Phe	ctg Leu	ctg Leu 775	gag Glu	gtg Val	cag Gln	gct Ala	gcc Ala 780	gtg Val	ccc Pro	ggt Gly	ctg Leu	ccc Pro 785	agc Ser	cgg Arg	2467
gtg Val	aag Lys	tgt Cys 790	ggc Gly	agt Ser	ccg Pro	ggc Gly	cag Gln 795	ctc Leu	cag Gln	ggc Gly	ctc Leu	agc Ser 800	atc Ile	ttt Phe	gca Ala	2515
cag Gln	gac Asp 805	ctg Leu	cgc Arg	ctc Leu	tgc Cys	ctg Leu 810	gat Asp	gag Glu	gcc Ala	ctc Leu	tcc Ser 815	tgg Trp	gac Asp	tgt Cys	ttc Phe	2563
gcc Ala 820	ctc Leu	tcg Ser	ctg Leu	ctg Leu	gct Ala 825	gtg Val	gct Ala	ctg Leu	ggc Gly	ctg Leu 830	ggt Gly	gtg Val	ccc Pro	atg Met	ctg Leu 835	2611
cat His	cac His	ctc Leu	tgt Cys	ggc Gly 840	tgg Trp	gac Asp	ctc Leu	tgg Trp	tac Tyr 845	tgc Cys	ttc Phe	cac His	ctg Leu	tgc Cys 850	ctg Leu	2659
gcc Ala	tgg Trp	ctt Leu	ccc Pro 855	tgg Trp	cgg Arg	glà aaa	cgg Arg	caa Gln 860	agt Ser	glà aaa	cga Arg	gat Asp	gag Glu 865	gat Asp	gcc Ala	2707
ctg Leu	ccc Pro	tac Tyr 870	gat Asp	gcc Ala	ttc Phe	gtg Val	gtc Val 875	ttc Phe	gac Asp	aaa Lys	acg Thr	cag Gln 880	agc Ser	gca Ala	gtg Val	2755
gca Ala	gac Asp 885	tgg Trp	gtg Val	tac Tyr	aac Asn	gag Glu 890	ctt Leu	cgg Arg	д1À ддд	cag Gln	ctg Leu 895	gag Glu	gag Glu	tgc Cys	cgt Arg	2803
900 G1À G3G	cgc Arg	tgg Trp	gca Ala	ctc Leu	cgc Arg 905	ctg Leu	tgc Cys	ctg Leu	gag Glu	gaa Glu 910	cgc Arg	gac Asp	tgg Trp	ctg Leu	cct Pro 915	2851
ggc Gly	aaa Lys	acc Thr	ctc Leu	ttt Phe 920	gag Glu	aac Asn	ctg Leu	tgg Trp	gcc Ala 925	tcg Ser	gtc Val	tat Tyr	ggc Gly	agc Ser 930	cgc Arg	2899
aag Lys	acg Thr	ctg Leu	ttt Phe 935	gtg Val	ctg Leu	gcc Ala	cac His	acg Thr 940	gac Asp	cgg Arg	gtc Val	agt Ser	ggt Gly 945	ctc Leu	ttg Leu	2947
cgc Arg	gcc Ala	agc Ser 950	ttc Phe	ctg Leu	ctg Leu	gcc Ala	cag Gln 955	cag Gln	cgc Arg	ctg Leu	ctg Leu	gag Glu 960	gac Asp	cgc Arg	aag Lys	2995
gac Asp	gtc Val 965	gtg Val	gtg Val	ctg Leu	gtg Val	atc Ile 970	ctg Leu	agc Ser	cct Pro	gac Asp	ggc Gly 975	cgc Arg	cgc Arg	tcc Ser	cgc Arg	3043

-continued

tac Tyr 980	gtg Val	cgg Arg	ctg Leu	cgc Arg	cag Gln 985	cgc Arg	ctc Leu	tgc Cys	cgc Arg	cag Gln 990	agt Ser	gtc Val	ctc Leu	ctc Leu	tgg Trp 995	3091
ccc Pro	cac His	cag Gln	ccc Pro	agt Ser L000	ggt Gly	cag Gln	cgc Arg	agc Ser	ttc Phe L005	tgg Trp	gcc Ala	cag Gln	ctg Leu 1	ggc Gly L010	atg Met	3139
gcc Ala	ctg Leu	acc Thr	agg Arg L015	gac Asp	aac Asn	cac His	cac His	ttc Phe L020	tat Tyr	aac Asn	cgg Arg	aac Asn	ttc Phe 1025	tgc Cys	cag Gln	3187
gga Gly	ccc Pro 1	acg Thr L030	gcc Ala	gaa Glu	tag	ccgt	gago	eeg g	gaato	cctgo	ca co	ggtg	ccaco	2		3235
tcca	acact	ca d	cctca	accto	ct go	2										3257
<210 <211 <212 <213)> SE L> LE 2> TY 3> OF	Q II INGTH IPE : IGANI) NO H: 10 PRT SM:	2 32 Homo	> sar	iens	3									
<400)> SE	QUEN	ICE :	2												
Met 1	Gly	Phe	Суз	Arg 5	Ser	Ala	Leu	His	Pro 10	Leu	Ser	Leu	Leu	Val 15	Gln	
Ala	Ile	Met	Leu 20	Ala	Met	Thr	Leu	Ala 25	Leu	Gly	Thr	Leu	Pro 30	Ala	Phe	
Leu	Pro	Cys 35	Glu	Leu	Gln	Pro	His 40	Gly	Leu	Val	Asn	Cys 45	Asn	Trp	Leu	
Phe	Leu 50	Lys	Ser	Val	Pro	His 55	Phe	Ser	Met	Ala	Ala 60	Pro	Arg	Gly	Asn	
Val 65	Thr	Ser	Leu	Ser	Leu 70	Ser	Ser	Asn	Arg	Ile 75	His	His	Leu	His	Asp 80	
Ser	Asp	Phe	Ala	His 85	Leu	Pro	Ser	Leu	Arg 90	His	Leu	Asn	Leu	Lys 95	Trp	
Asn	Cys	Pro	Pro 100	Val	Gly	Leu	Ser	Pro 105	Met	His	Phe	Pro	Cys 110	His	Met	
Thr	Ile	Glu 115	Pro	Ser	Thr	Phe	Leu 120	Ala	Val	Pro	Thr	Leu 125	Glu	Glu	Leu	
Asn	Leu 130	Ser	Tyr	Asn	Asn	Ile 135	Met	Thr	Val	Pro	Ala 140	Leu	Pro	Lys	Ser	
Leu 145	Ile	Ser	Leu	Ser	Leu 150	Ser	His	Thr	Asn	Ile 155	Leu	Met	Leu	Asp	Ser 160	
Ala	Ser	Leu	Ala	Gly 165	Leu	His	Ala	Leu	Arg 170	Phe	Leu	Phe	Met	Asp 175	Gly	
Asn	Cys	Tyr	Tyr 180	Lys	Asn	Pro	Cys	Arg 185	Gln	Ala	Leu	Glu	Val 190	Ala	Pro	
Gly	Ala	Leu 195	Leu	Gly	Leu	Gly	Asn 200	Leu	Thr	His	Leu	Ser 205	Leu	Lys	Tyr	
Asn	Asn 210	Leu	Thr	Val	Val	Pro 215	Arg	Asn	Leu	Pro	Ser 220	Ser	Leu	Glu	Tyr	
Leu 225	Leu	Leu	Ser	Tyr	Asn 230	Arg	Ile	Val	Lys	Leu 235	Ala	Pro	Glu	Asp	Leu 240	
Ala	Asn	Leu	Thr	Ala 245	Leu	Arg	Val	Leu	Asp 250	Val	Gly	Gly	Asn	Суз 255	Arg	
Arg	Cys	Asp	His 260	Ala	Pro	Asn	Pro	Сув 265	Met	Glu	Суз	Pro	Arg 270	His	Phe	
Pro	Gln	Leu	His	Pro	Asp	Thr	Phe	Ser	His	Leu	Ser	Arg	Leu	Glu	Gly	

-continued

		275					280					285			
Leu	Val 290	Leu	Lys	Asp	Ser	Ser 295	Leu	Ser	Trp	Leu	Asn 300	Ala	Ser	Trp	Phe
Arg 305	Gly	Leu	Gly	Asn	Leu 310	Arg	Val	Leu	Asp	Leu 315	Ser	Glu	Asn	Phe	Leu 320
Tyr	Lys	Суз	Ile	Thr 325	Lys	Thr	Lys	Ala	Phe 330	Gln	Gly	Leu	Thr	Gln 335	Leu
Arg	Lys	Leu	Asn 340	Leu	Ser	Phe	Asn	Tyr 345	Gln	Lys	Arg	Val	Ser 350	Phe	Ala
His	Leu	Ser 355	Leu	Ala	Pro	Ser	Phe 360	Gly	Ser	Leu	Val	Ala 365	Leu	Lys	Glu
Leu	Asp 370	Met	His	Gly	Ile	Phe 375	Phe	Arg	Ser	Leu	Asp 380	Glu	Thr	Thr	Leu
Arg 385	Pro	Leu	Ala	Arg	Leu 390	Pro	Met	Leu	Gln	Thr 395	Leu	Arg	Leu	Gln	Met 400
Asn	Phe	Ile	Asn	Gln 405	Ala	Gln	Leu	Gly	Ile 410	Phe	Arg	Ala	Phe	Pro 415	Gly
Leu	Arg	Tyr	Val 420	Asp	Leu	Ser	Asp	Asn 425	Arg	Ile	Ser	Gly	Ala 430	Ser	Glu
Leu	Thr	Ala 435	Thr	Met	Gly	Glu	Ala 440	Asp	Gly	Gly	Glu	Lys 445	Val	Trp	Leu
Gln	Pro 450	Gly	Asp	Leu	Ala	Pro 455	Ala	Pro	Val	Asp	Thr 460	Pro	Ser	Ser	Glu
Asp 465	Phe	Arg	Pro	Asn	Cys 470	Ser	Thr	Leu	Asn	Phe 475	Thr	Leu	Asp	Leu	Ser 480
Arg	Asn	Asn	Leu	Val 485	Thr	Val	Gln	Pro	Glu 490	Met	Phe	Ala	Gln	Leu 495	Ser
His	Leu	Gln	Суз 500	Leu	Arg	Leu	Ser	His 505	Asn	Суз	Ile	Ser	Gln 510	Ala	Val
Asn	Gly	Ser 515	Gln	Phe	Leu	Pro	Leu 520	Thr	Gly	Leu	Gln	Val 525	Leu	Aab	Leu
Ser	His 530	Asn	Lys	Leu	Asp	Leu 535	Tyr	His	Glu	His	Ser 540	Phe	Thr	Glu	Leu
Pro 545	Arg	Leu	Glu	Ala	Leu 550	Asb	Leu	Ser	Tyr	Asn 555	Ser	Gln	Pro	Phe	Gly 560
Met	Gln	Gly	Val	Gly 565	His	Asn	Phe	Ser	Phe 570	Val	Ala	His	Leu	Arg 575	Thr
Leu	Arg	His	Leu 580	Ser	Leu	Ala	His	Asn 585	Asn	Ile	His	Ser	Gln 590	Val	Ser
Gln	Gln	Leu 595	Сүз	Ser	Thr	Ser	Leu 600	Arg	Ala	Leu	Asp	Phe 605	Ser	Gly	Asn
Ala	Leu 610	Gly	His	Met	Trp	Ala 615	Glu	Gly	Asp	Leu	Tyr 620	Leu	His	Phe	Phe
Gln 625	Gly	Leu	Ser	Gly	Leu 630	Ile	Trp	Leu	Asp	Leu 635	Ser	Gln	Asn	Arg	Leu 640
His	Thr	Leu	Leu	Pro 645	Gln	Thr	Leu	Arg	Asn 650	Leu	Pro	ГЛЗ	Ser	Leu 655	Gln
Val	Leu	Arg	Leu 660	Arg	Asp	Asn	Tyr	Leu 665	Ala	Phe	Phe	Гла	Trp 670	Trp	Ser
Leu	His	Phe 675	Leu	Pro	ГЛа	Leu	Glu 680	Val	Leu	Asp	Leu	Ala 685	Gly	Asn	Gln
Leu	Lys 690	Ala	Leu	Thr	Asn	Gly 695	Ser	Leu	Pro	Ala	Gly 700	Thr	Arg	Leu	Arg

-continued

Arg 705	Leu	Asp	Val	Ser	Cys 710	Asn	Ser	Ile	Ser	Phe 715	Val	Ala	Pro	Gly	Phe 720
Phe	Ser	Гла	Ala	Lys 725	Glu	Leu	Arg	Glu	Leu 730	Asn	Leu	Ser	Ala	Asn 735	Ala
Leu	Lys	Thr	Val 740	Asp	His	Ser	Trp	Phe 745	Gly	Pro	Leu	Ala	Ser 750	Ala	Leu
Gln	Ile	Leu 755	Asp	Val	Ser	Ala	Asn 760	Pro	Leu	His	Cys	Ala 765	Cys	Gly	Ala
Ala	Phe 770	Met	Asp	Phe	Leu	Leu 775	Glu	Val	Gln	Ala	Ala 780	Val	Pro	Gly	Leu
Pro 785	Ser	Arg	Val	Lys	Cys 790	Gly	Ser	Pro	Gly	Gln 795	Leu	Gln	Gly	Leu	Ser 800
Ile	Phe	Ala	Gln	Asp 805	Leu	Arg	Leu	Cys	Leu 810	Asp	Glu	Ala	Leu	Ser 815	Trp
Asp	Cys	Phe	Ala 820	Leu	Ser	Leu	Leu	Ala 825	Val	Ala	Leu	Gly	Leu 830	Gly	Val
Pro	Met	Leu 835	His	His	Leu	Cys	Gly 840	Trp	Asp	Leu	Trp	Tyr 845	Cys	Phe	His
Leu	Cys 850	Leu	Ala	Trp	Leu	Pro 855	Trp	Arg	Gly	Arg	Gln 860	Ser	Gly	Arg	Asp
Glu 865	Asp	Ala	Leu	Pro	Tyr 870	Asb	Ala	Phe	Val	Val 875	Phe	Asp	Lys	Thr	Gln 880
Ser	Ala	Val	Ala	Asp 885	Trp	Val	Tyr	Asn	Glu 890	Leu	Arg	Gly	Gln	Leu 895	Glu
Glu	Cya	Arg	G1y 900	Arg	Trp	Ala	Leu	Arg 905	Leu -	Cys	Leu _	Glu	Glu 910	Arg	Aap
Trp	Leu	Pro 915	Gly	Lys	Thr	Leu	Phe 920	Glu	Asn	Leu	Trp	Ala 925	Ser	Val	Tyr
GIY	930	Arg	гуа	Thr	Leu	935 Dha	vai	Leu	Ala	HIS	940	Asp	Arg	vai	Ser
945 2	Leu	Leu	Arg	Ala	950	Pne	Leu	Leu	AIA	955	GIN	Arg	Leu	Leu	960
Aab	Arg	цуз	Asp	vai 965 Val	Val	vai	Leu	val	970	Leu	Ser	Pro	Aab	975 975	Arg
Arg	Ser	Arg	1yr 980	Val	Arg	Leu	Arg	985	Arg	Leu	Суз	Arg	990	Ser	Val
Leu	Leu	995	Pro	His	GIn	Pro 1	Ser .000	GIY	GIN	Arg	Ser 1	Phe .005	Trp	Ala	GIN
Leu 1	.010	Met	Ala	Leu	Inr	Arg L015	Asp	Asn	HIS	H1S]	Pne 1020	Tyr	Asn	Arg	Asn
Phe 1025	Cys 5	GIN	GIY	Pro 1	LO30	AIa	GIU								
<210 <211 <212 <213 <220 <221 <222 <222)> SE .> LE .> TY .> OR .> FE .> NA .> LC .> SE	Q II NGTH PE: GANI ATUR ME/K CATI) NO I: 34 DNA SM: E: CEY: CON: ICE:	3 71 Mus CDS (107 3	musc 7)(ulus 3205	;;)								
tgaa	agto	gtc a	actto	ctca	aa tt	ctct	gaga	a gao	cct	ıgtg	tgga	acat	ca t	tctc	tgccg
ccca	igttt	gt d	cagaç	ggag	gc ct	cggg	gagaa	a tco	etcca	atct	ccca	ac a N	atg g let N	gtt c Val I	eu.

													1			
cgt Arg	cga Arg 5	agg Arg	act Thr	ctg Leu	cac His	ccc Pro 10	ttg Leu	tcc Ser	ctc Leu	ctg Leu	gta Val 15	cag Gln	gct Ala	gca Ala	gtg Val	163
ctg Leu 20	gct Ala	gag Glu	act Thr	ctg Leu	gcc Ala 25	ctg Leu	ggt Gly	acc Thr	ctg Leu	cct Pro 30	gcc Ala	ttc Phe	cta Leu	ccc Pro	tgt Cys 35	211
gag Glu	ctg Leu	aag Lys	cct Pro	cat His 40	ggc Gly	ctg Leu	gtg Val	gac Asp	tgc Cys 45	aat Asn	tgg Trp	ctg Leu	ttc Phe	ctg Leu 50	aag Lys	259
tct Ser	gta Val	ccc Pro	cgt Arg 55	ttc Phe	tct Ser	gcg Ala	gca Ala	gca Ala 60	tcc Ser	tgc Cys	tcc Ser	aac Asn	atc Ile 65	acc Thr	cgc Arg	307
ctc Leu	tcc Ser	ttg Leu 70	atc Ile	tcc Ser	aac Asn	cgt Arg	atc Ile 75	cac His	cac His	ctg Leu	cac His	aac Asn 80	tcc Ser	gac Asp	ttc Phe	355
gtc Val	cac His 85	ctg Leu	tcc Ser	aac Asn	ctg Leu	cgg Arg 90	cag Gln	ctg Leu	aac Asn	ctc Leu	aag Lys 95	tgg Trp	aac Asn	tgt Cys	cca Pro	403
ccc Pro 100	act Thr	ggc Gly	ctt Leu	agc Ser	ccc Pro 105	ttg Leu	cac His	ttc Phe	tct Ser	tgc Cys 110	cac His	atg Met	acc Thr	att Ile	gag Glu 115	451
ccc Pro	aga Arg	acc Thr	ttc Phe	ctg Leu 120	gct Ala	atg Met	cgt Arg	aca Thr	ctg Leu 125	gag Glu	gag Glu	ctg Leu	aac Asn	ctg Leu 130	agc Ser	499
tat Tyr	aat Asn	ggt Gly	atc Ile 135	acc Thr	act Thr	gtg Val	ccc Pro	cga Arg 140	ctg Leu	ccc Pro	agc Ser	tcc Ser	ctg Leu 145	gtg Val	aat Asn	547
ctg Leu	agc Ser	ctg Leu 150	agc Ser	cac His	acc Thr	aac Asn	atc Ile 155	ctg Leu	gtt Val	cta Leu	gat Asp	gct Ala 160	aac Asn	agc Ser	ctc Leu	595
gcc Ala	ggc Gly 165	cta Leu	tac Tyr	agc Ser	ctg Leu	cgc Arg 170	gtt Val	ctc Leu	ttc Phe	atg Met	gac Asp 175	д1у д9д	aac Asn	tgc Cys	tac Tyr	643
tac Tyr 180	aag Lys	aac Asn	ccc Pro	tgc Cys	aca Thr 185	gga Gly	gcg Ala	gtg Val	aag Lys	gtg Val 190	acc Thr	cca Pro	ggc Gly	gcc Ala	ctc Leu 195	691
ctg Leu	ggc Gly	ctg Leu	agc Ser	aat Asn 200	ctc Leu	acc Thr	cat His	ctg Leu	tct Ser 205	gtg Val	aag Lys	tat Tyr	aac Asn	aac Asn 210	ctc Leu	739
aca Thr	aag Lys	gtg Val	ccc Pro 215	cgc Arg	caa Gln	ctg Leu	ccc Pro	ccc Pro 220	agc Ser	ctg Leu	gag Glu	tac Tyr	ctc Leu 225	ctg Leu	gtg Val	787
tcc Ser	tat Tyr	aac Asn 230	ctc Leu	att Ile	gtc Val	aag Lys	ctg Leu 235	д1У даа	cct Pro	gaa Glu	gac Asp	ctg Leu 240	gcc Ala	aat Asn	ctg Leu	835
acc Thr	tcc Ser 245	ctt Leu	cga Arg	gta Val	ctt Leu	gat Asp 250	gtg Val	ggt Gly	д1 ^д ддд	aat Asn	tgc Cys 255	cgt Arg	cgc Arg	tgc Cys	gac Asp	883
cat His 260	gcc Ala	ccc Pro	aat Asn	ccc Pro	tgt Cys 265	ata Ile	gaa Glu	tgt Cys	ggc Gly	caa Gln 270	aag Lys	tcc Ser	ctc Leu	cac His	ctg Leu 275	931
cac His	cct Pro	gag Glu	acc Thr	ttc Phe 280	cat His	cac His	ctg Leu	agc Ser	cat His 285	ctg Leu	gaa Glu	ggc Gly	ctg Leu	gtg Val 290	ctg Leu	979
aag Lys	gac Asp	agc Ser	tct Ser 295	ctc Leu	cat His	aca Thr	ctg Leu	aac Asn 300	tct Ser	tcc Ser	tgg Trp	ttc Phe	caa Gln 305	ggt Gly	ctg Leu	1027
gtc	aac	ctc	tcg	gtg	ctg	gac	cta	agc	gag	aac	ttt	ctc	tat	gaa	agc	1075

-continued

Val	Asn	Leu 310	Ser	Val	Leu	Aab	Leu 315	Ser	Glu	Asn	Phe	Leu 320	Tyr	Glu	Ser	
atc Ile	aac Asn 325	cac His	acc Thr	aat Asn	gcc Ala	ttt Phe 330	cag Gln	aac Asn	cta Leu	acc Thr	cgc Arg 335	ctg Leu	cgc Arg	aag Lys	ctc Leu	1123
aac Asn 340	ctg Leu	tcc Ser	ttc Phe	aat Asn	tac Tyr 345	cgc Arg	aag Lys	aag Lys	gta Val	tcc Ser 350	ttt Phe	gcc Ala	cgc Arg	ctc Leu	cac His 355	1171
ctg Leu	gca Ala	agt Ser	tcc Ser	ttc Phe 360	aag Lys	aac Asn	ctg Leu	gtg Val	tca Ser 365	ctg Leu	cag Gln	gag Glu	ctg Leu	aac Asn 370	atg Met	1219
aac Asn	ggc Gly	atc Ile	ttc Phe 375	ttc Phe	cgc Arg	tcg Ser	ctc Leu	aac Asn 380	aag Lys	tac Tyr	acg Thr	ctc Leu	aga Arg 385	tgg Trp	ctg Leu	1267
gcc Ala	gat Asp	ctg Leu 390	ccc Pro	aaa Lys	ctc Leu	cac His	act Thr 395	ctg Leu	cat His	ctt Leu	caa Gln	atg Met 400	aac Asn	ttc Phe	atc Ile	1315
aac Asn	cag Gln 405	gca Ala	cag Gln	ctc Leu	agc Ser	atc Ile 410	ttt Phe	ggt Gly	acc Thr	ttc Phe	cga Arg 415	gcc Ala	ctt Leu	cgc Arg	ttt Phe	1363
gtg Val 420	gac Asp	ttg Leu	tca Ser	gac Asp	aat Asn 425	cgc Arg	atc Ile	agt Ser	ggg ggg	cct Pro 430	tca Ser	acg Thr	ctg Leu	tca Ser	gaa Glu 435	1411
gcc Ala	acc Thr	cct Pro	gaa Glu	gag Glu 440	gca Ala	gat Asp	gat Asp	gca Ala	gag Glu 445	cag Gln	gag Glu	gag Glu	ctg Leu	ttg Leu 450	tct Ser	1459
gcg Ala	gat Asp	cct Pro	cac His 455	cca Pro	gct Ala	cca Pro	ctg Leu	agc Ser 460	acc Thr	cct Pro	gct Ala	tct Ser	aag Lys 465	aac Asn	ttc Phe	1507
atg Met	gac Asp	agg Arg 470	tgt Cys	aag Lys	aac Asn	ttc Phe	aag Lys 475	ttc Phe	acc Thr	atg Met	gac Asp	ctg Leu 480	tct Ser	cgg Arg	aac Asn	1555
aac Asn	ctg Leu 485	gtg Val	act Thr	atc Ile	aag Lys	cca Pro 490	gag Glu	atg Met	ttt Phe	gtc Val	aat Asn 495	ctc Leu	tca Ser	cgc Arg	ctc Leu	1603
cag Gln 500	tgt Cys	ctt Leu	agc Ser	ctg Leu	agc Ser 505	cac His	aac Asn	tcc Ser	att Ile	gca Ala 510	cag Gln	gct Ala	gtc Val	aat Asn	ggc Gly 515	1651
tct Ser	cag Gln	ttc Phe	ctg Leu	ccg Pro 520	ctg Leu	act Thr	aat Asn	ctg Leu	cag Gln 525	gtg Val	ctg Leu	gac Asp	ctg Leu	tcc Ser 530	cat His	1699
aac Asn	aaa Lys	ctg Leu	gac Asp 535	ttg Leu	tac Tyr	cac His	tgg Trp	aaa Lys 540	tcg Ser	ttc Phe	agt Ser	gag Glu	cta Leu 545	cca Pro	cag Gln	1747
ttg Leu	cag Gln	gcc Ala 550	ctg Leu	gac Asp	ctg Leu	agc Ser	tac Tyr 555	aac Asn	agc Ser	cag Gln	ccc Pro	ttt Phe 560	agc Ser	atg Met	aag Lys	1795
ggt Gly	ata Ile 565	ggc Gly	cac His	aat Asn	ttc Phe	agt Ser 570	ttt Phe	gtg Val	gcc Ala	cat His	ctg Leu 575	tcc Ser	atg Met	cta Leu	cac His	1843
agc Ser 580	ctt Leu	agc Ser	ctg Leu	gca Ala	cac His 585	aat Asn	gac Asp	att Ile	cat His	acc Thr 590	cgt Arg	gtg Val	tcc Ser	tca Ser	cat His 595	1891
ctc Leu	aac Asn	agc Ser	aac Asn	tca Ser 600	gtg Val	agg Arg	ttt Phe	ctt Leu	gac Asp 605	ttc Phe	agc Ser	ggc Gly	aac Asn	ggt Gly 610	atg Met	1939
ggc Gly	cgc Arg	atg Met	tgg Trp 615	gat Asp	gag Glu	gjà djà	ggc Gly	ctt Leu 620	tat Tyr	ctc Leu	cat His	ttc Phe	ttc Phe 625	caa Gln	ggc Gly	1987

-continued

ctg Leu	agt Ser	ggc Gly 630	ctg Leu	ctg Leu	aag Lys	ctg Leu	gac Asp 635	ctg Leu	tct Ser	caa Gln	aat Asn	aac Asn 640	ctg Leu	cat His	atc Ile	2035
ctc Leu	cgg Arg 645	ccc Pro	cag Gln	aac Asn	ctt Leu	gac Asp 650	aac Asn	ctc Leu	ccc Pro	aag Lys	agc Ser 655	ctg Leu	aag Lys	ctg Leu	ctg Leu	2083
agc Ser 660	ctc Leu	cga Arg	gac Asp	aac Asn	tac Tyr 665	cta Leu	tct Ser	ttc Phe	ttt Phe	aac Asn 670	tgg Trp	acc Thr	agt Ser	ctg Leu	tcc Ser 675	2131
ttc Phe	ctg Leu	ccc Pro	aac Asn	ctg Leu 680	gaa Glu	gtc Val	cta Leu	gac Asp	ctg Leu 685	gca Ala	ggc Gly	aac Asn	cag Gln	cta Leu 690	aag Lys	2179
gcc Ala	ctg Leu	acc Thr	aat Asn 695	ggc Gly	acc Thr	ctg Leu	cct Pro	aat Asn 700	ggc Gly	acc Thr	ctc Leu	ctc Leu	cag Gln 705	aaa Lys	ctg Leu	2227
gat Asp	gtc Val	agc Ser 710	agc Ser	aac Asn	agt Ser	atc Ile	gtc Val 715	tct Ser	gtg Val	gtc Val	cca Pro	gcc Ala 720	ttc Phe	ttc Phe	gct Ala	2275
ctg Leu	gcg Ala 725	gtc Val	gag Glu	ctg Leu	aaa Lys	gag Glu 730	gtc Val	aac Asn	ctc Leu	agc Ser	cac His 735	aac Asn	att Ile	ctc Leu	aag Lys	2323
acg Thr 740	gtg Val	gat Asp	cgc Arg	tcc Ser	tgg Trp 745	ttt Phe	д1А ддд	ccc Pro	att Ile	gtg Val 750	atg Met	aac Asn	ctg Leu	aca Thr	gtt Val 755	2371
cta Leu	gac Asp	gtg Val	aga Arg	agc Ser 760	aac Asn	cct Pro	ctg Leu	cac His	tgt Cys 765	gcc Ala	tgt Cys	999 999	gca Ala	gcc Ala 770	ttc Phe	2419
gta Val	gac Asp	tta Leu	ctg Leu 775	ttg Leu	gag Glu	gtg Val	cag Gln	acc Thr 780	aag Lys	gtg Val	cct Pro	ggc Gly	ctg Leu 785	gct Ala	aat Asn	2467
ggt Gly	gtg Val	aag Lys 790	tgt Cys	ggc Gly	agc Ser	ccc Pro	ggc Gly 795	cag Gln	ctg Leu	cag Gln	ggc Gly	cgt Arg 800	agc Ser	atc Ile	ttc Phe	2515
gca Ala	cag Gln 805	gac Asp	ctg Leu	cgg Arg	ctg Leu	tgc Cys 810	ctg Leu	gat Asp	gag Glu	gtc Val	ctc Leu 815	tct Ser	tgg Trp	gac Asp	tgc Cys	2563
ttt Phe 820	ggc Gly	ctt Leu	tca Ser	ctc Leu	ttg Leu 825	gct Ala	gtg Val	gcc Ala	gtg Val	ggc Gly 830	atg Met	gtg Val	gtg Val	cct Pro	ata Ile 835	2611
ctg Leu	cac His	cat His	ctc Leu	tgc Cys 840	ggc Gly	tgg Trp	gac Asp	gtc Val	tgg Trp 845	tac Tyr	tgt Cys	ttt Phe	cat His	ctg Leu 850	tgc Cys	2659
ctg Leu	gca Ala	tgg Trp	cta Leu 855	cct Pro	ttg Leu	ctg Leu	gcc Ala	cgc Arg 860	agc Ser	cga Arg	cgc Arg	agc Ser	gcc Ala 865	caa Gln	gct Ala	2707
ctc Leu	ccc Pro	tat Tyr 870	gat Asp	gcc Ala	ttc Phe	gtg Val	gtg Val 875	ttc Phe	gat Asp	aag Lys	gca Ala	cag Gln 880	agc Ser	gca Ala	gtt Val	2755
gcg Ala	gac Asp 885	tgg Trp	gtg Val	tat Tyr	aac Asn	gag Glu 890	ctg Leu	cgg Arg	gtg Val	cgg Arg	ctg Leu 895	gag Glu	gag Glu	cgg Arg	cgc Arg	2803
ggt Gly 900	cgc Arg	cga Arg	gcc Ala	cta Leu	cgc Arg 905	ttg Leu	tgt Cys	ctg Leu	gag Glu	gac Asp 910	cga Arg	gat Asp	tgg Trp	ctg Leu	cct Pro 915	2851
ggc Gly	cag Gln	acg Thr	ctc Leu	ttc Phe 920	gag Glu	aac Asn	ctc Leu	tgg Trp	gct Ala 925	tcc Ser	atc Ile	tat Tyr	glà aàa	agc Ser 930	cgc Arg	2899
aag Lys	act Thr	cta Leu	ttt Phe 935	gtg Val	ctg Leu	gcc Ala	cac His	acg Thr 940	gac Asp	cgc Arg	gtc Val	agt Ser	ggc Gly 945	ctc Leu	ctg Leu	2947

					-
_	COD	t-	ıп	110	a
	COIL	. –		4	u.

cgc Arg	acc Thr	agc Ser 950	ttc Phe	ctg Leu	ctg Leu	gct Ala	cag Gln 955	cag Gln	cgc Arg	ctg Leu	ttg Leu	gaa Glu 960	gac Asp	cgc Arg	aag Lys	2995
gac Asp	gtg Val 965	gtg Val	gtg Val	ttg Leu	gtg Val	atc Ile 970	ctg Leu	cgt Arg	ccg Pro	gat Asp	gcc Ala 975	cac His	cgc Arg	tcc Ser	cgc Arg	3043
tat Tyr 980	gtg Val	cga Arg	ctg Leu	cgc Arg	cag Gln 985	cgt Arg	ctc Leu	tgc Cys	cgc Arg	cag Gln 990	agt Ser	gtg Val	ctc Leu	ttc Phe	tgg Trp 995	3091
ccc Pro	cag Gln	cag Gln	ccc Pro	aac Asn 1000	ggg Gly	cag Gln	ggg gly	ggc Gly	ttc Phe 1005	tgg Trp	gcc Ala	cag Gln	ctg Leu	agt Ser L010	aca Thr	3139
gcc Ala	ctg Leu	act Thr	agg Arg L015	gac Asp	aac Asn	cgc Arg	cac His	ttc Phe L020	tat Tyr	aac Asn	cag Gln	aac Asn	ttc Phe L025	tgc Cys	cgg Arg	3187
gga Gly	cct Pro	aca Thr L030	gca Ala	gaa Glu	tag	ctca	agago	caa d	cagct	ggaa	aa ca	aget	gcato	3		3235
ttc	atgco	ctg g	gttco	ccga	gt tç	getei	cgaat	c geo	cttgo	ctct	gtct	taci	cac a	accgo	ctattt	3295
ggc.	aagto	gcg (caata	atato	gc ta	accaa	ageca	a cca	aggco	ccac	ggaq	gcaaa	agg t	tgg	cagtaa	3355
agg	gtagt	tt t	cctto	cccat	cg ca	atcti	tcaç	g gaq	gagto	gaag	ataç	gaca	cca o	gacco	cacaca	3415
gaa	cagga	act g	ggagt	ttca	t ct	ctg	ccct	c dda	accco	cact	ttgo	ctg	cet (ctgta	at	3471
<21) <21; <21; <21;	0> SE L> LE 2> TY 3> OF	EQ II ENGTH PE : RGANI) NO 1: 10 PRT SM:	4)32 Mus	musc	culus	3									
<40)> SE	EQUEN	ICE :	4												
Met 1	Val	Leu	Arg	Arg 5	Arg	Thr	Leu	His	Pro 10	Leu	Ser	Leu	Leu	Val 15	Gln	
Ala	Ala	Val	Leu 20	Ala	Glu	Thr	Leu	Ala 25	Leu	Gly	Thr	Leu	Pro 30	Ala	Phe	
Leu	Pro	Cys 35	Glu	Leu	Lys	Pro	His 40	Gly	Leu	Val	Asp	Cys 45	Asn	Trp	Leu	
Phe	Leu 50	Lys	Ser	Val	Pro	Arg 55	Phe	Ser	Ala	Ala	Ala 60	Ser	Cys	Ser	Asn	
Ile 65	Thr	Arg	Leu	Ser	Leu 70	Ile	Ser	Asn	Arg	Ile 75	His	His	Leu	His	Asn 80	
Ser	Asp	Phe	Val	His 85	Leu	Ser	Asn	Leu	Arg 90	Gln	Leu	Asn	Leu	Lys 95	Trp	
Asn	Суз	Pro	Pro 100	Thr	Gly	Leu	Ser	Pro 105	Leu	His	Phe	Ser	Cys 110	His	Met	
Thr	Ile	Glu 115	Pro	Arg	Thr	Phe	Leu 120	Ala	Met	Arg	Thr	Leu 125	Glu	Glu	Leu	
Asn	Leu 130	Ser	Tyr	Asn	Gly	Ile 135	Thr	Thr	Val	Pro	Arg 140	Leu	Pro	Ser	Ser	
Leu 145	Val	Asn	Leu	Ser	Leu 150	Ser	His	Thr	Asn	Ile 155	Leu	Val	Leu	Asp	Ala 160	
Asn	Ser	Leu	Ala	Gly 165	Leu	Tyr	Ser	Leu	Arg 170	Val	Leu	Phe	Met	Asp 175	Gly	
Asn	Суз	Tyr	Tyr 180	ГЛа	Asn	Pro	Суз	Thr 185	Gly	Ala	Val	Lys	Val 190	Thr	Pro	
Gly	Ala	Leu 195	Leu	Gly	Leu	Ser	Asn 200	Leu	Thr	His	Leu	Ser 205	Val	Lys	Tyr	

-continued

Asn	Asn 210	Leu	Thr	Lys	Val	Pro 215	Arg	Gln	Leu	Pro	Pro 220	Ser	Leu	Glu	Tyr
Leu 225	Leu	Val	Ser	Tyr	Asn 230	Leu	Ile	Val	Lys	Leu 235	Gly	Pro	Glu	Asp	Leu 240
Ala	Asn	Leu	Thr	Ser 245	Leu	Arg	Val	Leu	Asp 250	Val	Gly	Gly	Asn	Cys 255	Arg
Arg	Сув	Asp	His 260	Ala	Pro	Asn	Pro	Cys 265	Ile	Glu	Сув	Gly	Gln 270	Lys	Ser
Leu	His	Leu 275	His	Pro	Glu	Thr	Phe 280	His	His	Leu	Ser	His 285	Leu	Glu	Gly
Leu	Val 290	Leu	Lys	Asp	Ser	Ser 295	Leu	His	Thr	Leu	Asn 300	Ser	Ser	Trp	Phe
Gln 305	Gly	Leu	Val	Asn	Leu 310	Ser	Val	Leu	Asp	Leu 315	Ser	Glu	Asn	Phe	Leu 320
Tyr	Glu	Ser	Ile	Asn 325	His	Thr	Asn	Ala	Phe 330	Gln	Asn	Leu	Thr	Arg 335	Leu
Arg	Lys	Leu	Asn 340	Leu	Ser	Phe	Asn	Tyr 345	Arg	Lys	ГÀа	Val	Ser 350	Phe	Ala
Arg	Leu	His 355	Leu	Ala	Ser	Ser	Phe 360	Lys	Asn	Leu	Val	Ser 365	Leu	Gln	Glu
Leu	Asn 370	Met	Asn	Gly	Ile	Phe 375	Phe	Arg	Ser	Leu	Asn 380	Lys	Tyr	Thr	Leu
Arg 385	Trp	Leu	Ala	Asp	Leu 390	Pro	Lys	Leu	His	Thr 395	Leu	His	Leu	Gln	Met 400
Asn	Phe	Ile	Asn	Gln 405	Ala	Gln	Leu	Ser	Ile 410	Phe	Gly	Thr	Phe	Arg 415	Ala
Leu	Arg	Phe	Val 420	Asp	Leu	Ser	Asp	Asn 425	Arg	Ile	Ser	Gly	Pro 430	Ser	Thr
Leu	Ser	Glu 435	Ala	Thr	Pro	Glu	Glu 440	Ala	Asp	Asp	Ala	Glu 445	Gln	Glu	Glu
Leu	Leu 450	Ser	Ala	Asp	Pro	His 455	Pro	Ala	Pro	Leu	Ser 460	Thr	Pro	Ala	Ser
Lys 465	Asn	Phe	Met	Asp	Arg 470	Cys	Lys	Asn	Phe	Lys 475	Phe	Thr	Met	Asp	Leu 480
Ser	Arg	Asn	Asn	Leu 485	Val	Thr	Ile	Lys	Pro 490	Glu	Met	Phe	Val	Asn 495	Leu
Ser	Arg	Leu	Gln 500	Суз	Leu	Ser	Leu	Ser 505	His	Asn	Ser	Ile	Ala 510	Gln	Ala
Val	Asn	Gly 515	Ser	Gln	Phe	Leu	Pro 520	Leu	Thr	Asn	Leu	Gln 525	Val	Leu	Asp
Leu	Ser 530	His	Asn	Lys	Leu	Asp 535	Leu	Tyr	His	Trp	Lys 540	Ser	Phe	Ser	Glu
Leu 545	Pro	Gln	Leu	Gln	Ala 550	Leu	Aab	Leu	Ser	Tyr 555	Asn	Ser	Gln	Pro	Phe 560
Ser	Met	Lys	Gly	Ile 565	Gly	His	Asn	Phe	Ser 570	Phe	Val	Ala	His	Leu 575	Ser
Met	Leu	His	Ser 580	Leu	Ser	Leu	Ala	His 585	Asn	Asp	Ile	His	Thr 590	Arg	Val
Ser	Ser	His 595	Leu	Asn	Ser	Asn	Ser 600	Val	Arg	Phe	Leu	Asp 605	Phe	Ser	Gly
Asn	Gly 610	Met	Gly	Arg	Met	Trp 615	Asp	Glu	Gly	Gly	Leu 620	Tyr	Leu	His	Phe

-continued

Phe 625	Gln	Gly	Leu	Ser	Gly 630	Leu	Leu	Lys	Leu	Asp 635	Leu	Ser	Gln	Asn	Asn 640
Leu	His	Ile	Leu	Arg 645	Pro	Gln	Asn	Leu	Asp 650	Asn	Leu	Pro	Lys	Ser 655	Leu
Lys	Leu	Leu	Ser 660	Leu	Arg	Asp	Asn	Tyr 665	Leu	Ser	Phe	Phe	Asn 670	Trp	Thr
Ser	Leu	Ser 675	Phe	Leu	Pro	Asn	Leu 680	Glu	Val	Leu	Asp	Leu 685	Ala	Gly	Asn
Gln	Leu 690	Lys	Ala	Leu	Thr	Asn 695	Gly	Thr	Leu	Pro	Asn 700	Gly	Thr	Leu	Leu
Gln 705	Lys	Leu	Asp	Val	Ser 710	Ser	Asn	Ser	Ile	Val 715	Ser	Val	Val	Pro	Ala 720
Phe	Phe	Ala	Leu	Ala 725	Val	Glu	Leu	Lys	Glu 730	Val	Asn	Leu	Ser	His 735	Asn
Ile	Leu	Lys	Thr 740	Val	Asp	Arg	Ser	Trp 745	Phe	Gly	Pro	Ile	Val 750	Met	Asn
Leu	Thr	Val 755	Leu	Asp	Val	Arg	Ser 760	Asn	Pro	Leu	His	Cys 765	Ala	Суз	Gly
Ala	Ala 770	Phe	Val	Asp	Leu	Leu 775	Leu	Glu	Val	Gln	Thr 780	Lys	Val	Pro	Gly
Leu 785	Ala	Asn	Gly	Val	Lys 790	Сүз	Gly	Ser	Pro	Gly 795	Gln	Leu	Gln	Gly	Arg 800
Ser	Ile	Phe	Ala	Gln 805	Asp	Leu	Arg	Leu	Cys 810	Leu	Asp	Glu	Val	Leu 815	Ser
Trp	Asp	Cya	Phe 820	Gly	Leu	Ser	Leu	Leu 825	Ala	Val	Ala	Val	Gly 830	Met	Val
Val	Pro	Ile 835	Leu	His	His	Leu	Cys 840	Gly	Trp	Asp	Val	Trp 845	Tyr	Cys	Phe
His	Leu 850	Cya	Leu	Ala	Trp	Leu 855	Pro	Leu	Leu	Ala	Arg 860	Ser	Arg	Arg	Ser
Ala 865	Gln	Ala	Leu	Pro	Tyr 870	Asp	Ala	Phe	Val	Val 875	Phe	Asp	Lys	Ala	Gln 880
Ser	Ala	Val	Ala	Asp 885	Trp	Val	Tyr	Asn	Glu 890	Leu	Arg	Val	Arg	Leu 895	Glu
Glu	Arg	Arg	Gly 900	Arg	Arg	Ala	Leu	Arg 905	Leu	Суз	Leu	Glu	Asp 910	Arg	Asp
Trp	Leu	Pro 915	Gly	Gln	Thr	Leu	Phe 920	Glu	Asn	Leu	Trp	Ala 925	Ser	Ile	Tyr
Gly	Ser 930	Arg	Lys	Thr	Leu	Phe 935	Val	Leu	Ala	His	Thr 940	Asp	Arg	Val	Ser
Gly 945	Leu	Leu	Arg	Thr	Ser 950	Phe	Leu	Leu	Ala	Gln 955	Gln	Arg	Leu	Leu	Glu 960
Asp	Arg	Lys	Asp	Val 965	Val	Val	Leu	Val	Ile 970	Leu	Arg	Pro	Asp	Ala 975	His
Arg	Ser	Arg	Tyr 980	Val	Arg	Leu	Arg	Gln 985	Arg	Leu	Суз	Arg	Gln 990	Ser	Val
Leu	Phe	Trp 995	Pro	Gln	Gln	Pro	Asn L000	Gly	Gln	Gly	Gly	Phe 1005	Trp	Ala	Gln
Leu 1	Ser L010	Thr	Ala	Leu	Thr	Arg L015	Asp	Asn	Arg	His	Phe 1020	Tyr	Asn	Gln	Asn
Phe 1025	СЛа СЛа	Arg	Gly	Pro	Thr 1030	Ala	Glu								

cont	÷	nuod	

-continued	
<210> SEQ ID NO 5	
<211> LENGTH: 20	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Description of Artificial Sequence:CpG ODN	
<400> SEQUENCE: 5	
tccatgacgt tcctgatgct	20

What is claimed:

 A transgenic mouse whose genome comprises a ¹⁵ ODN. homozygous inactivation of the Toll-like Receptor 9 (TLR9) gene such that no functional N-terminal fragment of TLR9 is produced; said TLR9 gene encodes a polypeptide that recognizes CpG oligodeoxynucleotide (ODN), wherein macroph-

ages of said mouse exhibit decreased responsiveness to CpG ODN.

44

 $\mathbf{2}.$ A cell obtained from the transgenic mouse according to claim $\mathbf{1}.$

* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

 PATENT NO.
 : 7,507,872 B2

 APPLICATION NO.
 : 10/088567

 DATED
 : March 24, 2009

 INVENTOR(S)
 : Akira et al.

Page 1 of 1

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the title page,

[*] Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 USC 154(b) by (1067) days

Delete the phrase "by 1067 days" and insert -- by 1008 days --

Signed and Sealed this

Twenty-second Day of December, 2009

David J. Kgppos

David J. Kappos Director of the United States Patent and Trademark Office