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ORTHOGONAL BASIS BUBBLE FUNCTION 
ELEMENT NUMERICAL ANALYSIS 

METHOD, ORTHOGONAL BASIS BUBBLE 
FUNCTION ELEMENT NUMERICAL 

ANALYSIS PROGRAM, AND ORTHOGONAL 
BASIS BUBBLE FUNCTION ELEMENT 

NUMERICAL ANALYZING APPARATUS 

TECHNICAL FIELD 

The present invention relates to an orthogonal basis bubble 
function element numerical analysis method, an orthogonal 
basis bubble function element numerical analysis program, 
and an orthogonal basis bubble function element numerical 
analyzing apparatus for performing highly reliable numerical 
simulation for analysis by finite element method (finite ele-
ment analysis) that adopts bubble function element by using 
a mass matrix composed only of diagonal terms having high 
computational efficiency. 

BACKGROUND ART 

Conventional bubble function element is explained. FIG. 
47 is a schematic showing a conventional two-dimensional 
bubble function element, and FIG. 48 is a schematic showing 
a conventional three-dimensional bubble function element. 
As shown in FIGS. 47 and 48, a triangular (tetrahedral) 
bubble function element is expressed by the following equa-
tion (1) in the isoparametric coordinate system [r, s] ({r, s, t}) 
by using 4 (5) nodes composed of 3 (4) points forming the 
triangle (tetrahedron) and a center of gravity point (refer to 
non-patent documents 1, 2, and 3). 

[Equations 1] 

N+1 

uhIf 2e= +OBUB=(DTU=uT(D 

2 
Three-Dimensions 

W1=1—r—s—t, W2—r, W3 s, W4 t 	 (8) 

Shape function B is called a bubble function. The bubble 
5 function is defined for each element such that the value is zero 

on the boundary of elements and is one at the center of gravity 
point. In an unsteady problem, a finite element formula adopt-
ing a bubble function element for spatial discretization can be 

10 expressed as the following equation (9). 

[Equations 4] 

Mu+F(u)r 	 (9) 

15 	In equation (9), u represents an unknown analytical physi- 
cal quantity (pollutant concentration, temperature, discharge, 
water depth, flow velocity, pressure, displacement, etc.), M is 
a mass matrix, and F(u) is a term collectively containing terms 
other than the temporal differential term. As temporal dis- 

20 cretization of equation (9), a four-step solution based on 
Taylor expansion is expressedby the following equations (10) 
to (13) (refer to non-patent document 4). 

25 
[Equations 5] 

Four-step solution 

< 1st step > 

+1/a = ~, 	M_' 
30 	

_ AtF(t) 	 (10) 

< 2nd step > 

=  , _ M —t AtF( t/4) 	 (11) 

35 	< 3rd step > 

un.+3/4 = un. _ M -1 At F(un.+2/4) 	 (12) 

2 

(2) 40 
< 4th step > 

= u" — M—'OtF(u"+314) 	 (13) 

In equation (1), cI and B represent the shape functions of 
bubble function element, ua and uB represent the values of 
each vertex (analytical physical quantity) of a triangle (tetra-
hedron) and the value of the center of gravity point (analytical 
physical quantity), and N represents the number of spatial 
dimensions. Shape functions are expressed by the following 
equations (3) to (6) in vector-based description. 

[Equations 2] 
Two-Dimensions 

(D7 1(D1(D2(DAB] 	 (3) 

uT [uiu2u3uB] 	 (4) 

Three-Dimensions 

(D7 1(D1(D2(D3(D4~B] 	 (5 ) 

uT [utu2u3u4uB] 	 (6) 

In equation (2), V. represents the shape function of the 
linear element of two dimensions or three dimensions, and is 
expressed by the following equations (7) and (8). 

[Equations 3] 
Two-Dimensions 

Ti 1—r—s, W2=r, W3=s 	 (7) 

The superscript n in equations (10) to (13) represents a 
45 known analytical physical quantity at present time n, and n+1 

represents an unknown analytical physical quantity at the 
time after an infinitesimal time At has elapsed from a given 
time n. 

50 	Non-patent document 1: D. N. Arnold, F. Brezzi and M. 
Fortin, "A Stable Finite Element for the Stokes Equations", 
Calcolo, Vol. 21, 1984, pp. 337-pp. 344 

Non-patent document 2: J. C. Simo, F. Armero and C. A. 
55 Taylor, "Stable and Time-Dissipative Finite Element Meth-

ods for the Incompressible Navier-Stokes Equations in 
Advection Dominated Flows", International Journal for 
Numerical Methods in Engineering, Vol. 38, 1995, pp. 1475-
pp. 1506 

60 Non-patent document 3: Jun-ichi Matsumoto, "Two-Level 
Three-Level Finite Element Method for Incompressible Vis-
cous Flow Analysis Based on Bubble Functions", Journal of 
Applied Mechanics (Japan Society of Civil Engineers), Vol. 

65 7, August 2004, pp. 339-pp. 346 

Non-patent document 4: Katsunori Hatanaka, "Computa-
tional Study on Forward and Inverse Analyses of Incompress- 
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ible Viscous Fluid Flow by Multistep Finite Element 
Method", PhD Thesis, Chuo University, 1993 

DISCLOSURE OF INVENTION 

Problem to be Solved by the Invention 

As shown in equations (10) to (13), the inverse matrix of a 
mass matrix is necessary for obtaining an unknown analytical 
physical quantity u"+1 from the known analytical physical 
quantity u'° using a four-step solution. FIG. 49 shows an 
analytical model for the analysis of a conventional Rotating 
Cone problem; FIG. 50 shows contours as an initial condition 
for the analysis of a conventional Rotating Cone problem; and 
FIG. 51 shows contours as the computed result of the analysis 
of a conventional Rotating Cone problem using a consistent 
mass matrix (refer to non-patent document 4). 

An analytical model 4900 shown in FIG. 49 is set as an 
initial condition (zero rotation). If the model is rotated a given 
number of times, e.g., five rotations, using the inverse matrix 
of a mass matrix, the contour model 5000, shown in FIG. 50, 
of the analytical model 4900 at the initial condition produces 
the result (contour model 5100) shown in FIG. 51. 

In general, as bubble function elements are used for tem-
poral discretization, the above mass matrix is a sparse distri-
bution matrix (consistent mass matrix). Therefore, numerical 
analysis for obtaining the inverse matrix of the distribution 
matrix (consistent mass matrix) requires large memory 
capacity and much computation time, and problems such as 
high manufacturing cost of the apparatus and delay of the 
analytical process exist. 

In order to solve these problems, an approximate matrix 
(lumped mass matrix), that is given components only in 
diagonal terms by summing (by concentrating) components 
of each row in a mass matrix, is commonly used. In the case 
a lumped mass matrix is used, as the components of a matrix 
are only diagonal terms, the inverse matrix of the lumped 
mass matrix is a matrix containing the reciprocals of each 
diagonal component and numerical analysis can be executed 
with a substantially small memory capacity and short com-
puting time compared to the case of using a consistent mass 
matrix without approximation and the inverse matrix of the 
consistent mass matrix. 

However, in the case that the above lumped mass matrix is 
used, the lumped mass matrix is not an identical matrix to its 
original matrix, but an approximate matrix. Therefore, if the 
analytical model 4900, at an initial condition (zero rotation) 
shown in FIG. 49, is rotated a given number of times, e.g., five 
rotations, the contour model 5000, shown in FIG. 50, of the 
analytical model 4900 at the initial condition produces the 
result (contour model 5200) shown in FIG. 52. As the contour 
model 5200 obtained by rotating the analytical model 4900 
five rotations is highly deformed compared to the contour 
model 5100 shown in FIG. 51, the precision of computation is 
low, and a problem of low reliability of the analysis results 
exists. 

In order to solve the problems associated with the conven-
tional techniques described above, an object of the present 
invention is to provide an orthogonal basis bubble function 
element numerical analysis method, an orthogonal basis 
bubble function element numerical analysis program, and an 
orthogonal basis bubble function element numerical analyz- 

4 
ing apparatus that are simple and that can realize highly 
reliable finite element analysis. 

Means for Solving Problem 
5 

To solve the above programs and achieve an object, the 
orthogonal basis bubble function element numerical analysis 
method, orthogonal basis bubble function element numerical 
analysis program, orthogonal basis bubble function element 

10 numerical analysis and orthogonal basis bubble function ele-
ment numerical analysis apparatus according to the present 
invention is characterized by acquiring a consistent mass 
matrix of each element of an analysis subject; generating, 
based on the bubble function of each element of the analysis 

15 subject, the diagonal mass matrix of each element by diago-
nalizing the consistent mass matrix of each element obtained 
at the acquiring; and analyzing a motion of the analysis sub-
ject based on a known analytical physical quantity of the 
analysis subject and the diagonal mass matrix of each element 

20 generated at the generating step. 
Further, generating the diagonal mass matrix of each ele-

ment may be by substituting an integration value of the bubble 
function of each element into the consistent mass matrix of 
each element. Moreover, computing the diagonal mass matrix 

25 of an entire analysis subject region based on the diagonal 
mass matrix generated; computing an inverse matrix of the 
diagonal mass matrix, for the entire analysis subject region; 
and analyzing the motion of the analysis subject based on the 
known analytical physical quantity of the analysis subject, the 

30 diagonal mass matrix for the entire analysis subject region, 
and the inverse matrix computed at the second computing 
may be also be performed. 

According to the present inventions, for finite element 
analysis using a bubble function element, without approxi- 

35 mation of a mass matrix, a bubble function that produces a 
mass matrix in the form of a diagonal matrix by satisfying the 
following conditional expression (14) is employed. 

40 [Equations 6] 

= 110BII , = CA2 	 (14) 

Two- dimensions 

3 
45 C= 4 

Three- dimensions 	 (15-1) 

4 

C 5 

50 
(Oa,i),e=~OBdn 

ne 

II@BII, = (@a, @a)n.e = (@a, ')
(15-2) 

@a do 	
(15-2) 

n 

55  
A, = 	 (15-3) f e dS2 

Jn 

The above equations (15-1) to (15-3) are integrals for the 
60 formulation of bubble function elements, and <•,•>Q rep-

resents the integral of element region Q, and Ae represents 
the area (volume) of element region Q. By the equations, it is 
possible to analyze using precise diagonal mass matrix of 
each element by introducing the condition that the basis 

65 (shape function) of bubble function element is orthogonal, 
without using a lumped mass matrix that is approximated by 
summing up components in the consistent mass matrix of 
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each element. The diagonal mass matrix for the entire region 
analysis subject and its inverse matrix can simply be com-
puted, and motion of the analysis subject can be analyzed 
precisely using a unknown physical quantity of the analysis 
subject. 

Effect of the Invention 

An orthogonal basis bubble function element numerical 
analysis method, an orthogonal basis bubble function element 
numerical analysis program, and an orthogonal basis bubble 
function element numerical analyzing apparatus related to the 
present invention facilitate improvement in the reliability of 
motion analysis of an analysis subject by a simple and precise 
analytical process. The present invention facilitates the real-
ization of an efficient analyzing method (orthogonal basis 
bubble function element numerical analysis method), such as 
reduction of required memory capacity and shortening of 
analysis time. 

BRIEF DESCRIPTION OF DRAWINGS 

FIG. 1 is a block diagram showing the hardware configu-
ration of a numerical analyzing apparatus according to an 
embodiment of the present invention; 

FIG. 2 is a block diagram showing the functional configu-
ration of a numerical analyzing apparatus according to an 
embodiment of the present invention; 

FIG. 3 is a schematic showing an information table of 
analytical physical quantities stored in a data storage unit of a 
numerical analyzing apparatus according to an embodiment 
of the present invention; 

FIG. 4 is a flowchart showing a protocol of a numerical 
analyzing process by a numerical analyzing apparatus 
according to an embodiment of the present invention; 

FIG. 5 is a schematic showing a two-dimensional bubble 
function element; 

FIG. 6 is a schematic showing a three-dimensional bubble 
function element; 

FIG. 7 is a schematic showing the shape B  of a triangular 
bubble function forming an orthogonal basis; 

FIG. 8 is a schematic showing the shape B2  of a triangular 
bubble function forming an orthogonal basis; 

FIG. 9 is a schematic showing the shape B  of a triangular 
bubble function forming an orthogonal basis; 

FIG. 10 is a schematic showing the shape B2  of a triangular 
bubble function forming an orthogonal basis; 

FIG. 11 is a schematic showing a two-dimensional bubble 
function element; 

FIG. 12 is a schematic showing a three-dimensional bubble 
function element; 

FIG. 13 is a schematic showing a domain size in an analysis 
of a Rotating Cone problem; 

FIG. 14 is a schematic showing a mesh of an analytical 
model in the analysis of the Rotating Cone problem; 

FIG. 15 is a schematic showing a flow velocity (flow con-
dition) of an analytical model used in the analysis of the 
Rotating Cone problem; 

FIG. 16 is a bird's eye view showing an initial condition in 
the analysis of the Rotating Cone problem; 

FIG. 17 a schematic showing contours of the initial condi-
tion used in the analysis of the Rotating Cone problem; 

FIG. 18 is a bird's eye view showing the computation result 
by a bubble function (equation (47)) using a consistent mass 
matrix; 

6 
FIG. 19 is a schematic showing contours of the computa-

tion result by a bubble function (equation (47)) using a con-
sistent mass matrix; 

FIG. 20 is a bird's eye view showing the computation result 
5 by a bubble function (equation (47)) using a lumped mass 

matrix; 
FIG. 21 is a schematic showing contours of the computa-

tion result by a bubble function (equation (47)) using a 
lumped mass matrix; 

10 	FIG. 22 is a bird's eye view showing the computation result 
by a bubble function (equation (48)) using a consistent mass 
matrix; 

FIG. 23 is a schematic showing contours of the computa-
tion result by a bubble function (equation (48)) using a con-

15  sistent mass matrix; 
FIG. 24 is a bird's eye view showing the computation result 

by a bubble function (equation (48)) using a lumped mass 
matrix; 

FIG. 25 is a schematic showing contours of the computa-
20  tion result by a bubble function (equation (48)) using a 

lumped mass matrix; 
FIG. 26 is a bird's eye view showing the computation result 

by a bubble function (equation (49)) using a diagonal mass 
matrix; 

25 	FIG. 27 is a schematic showing the contours of the com- 
putation result by a bubble function (equation (49)) using a 
diagonal mass matrix; 

FIG. 28 is a schematic showing a mesh (438413 nodes, 
2539200 elements) of an analytical model in the analysis of 

30 the Rotating Cone problem; 
FIG. 29 is a bird's eye view showing the initial condition of 

a cross-section at the perpendicular position-0 in the analysis 
of the Rotating Cone problem; 

35 	FIG. 30 is a schematic showing the contours of the initial 
condition at the portion of the perpendicular position-0 in the 
analysis of the Rotating Cone problem; 

FIG. 31 is a bird's eye view showing the result of the 
computation at the portion of the perpendicular position-0 by 

40 
a bubble function (equation (50)) using a consistent mass 
matrix; 

FIG. 32 is a schematic showing the contours of the com-
putation result at the portion of the perpendicular position-0 
by a bubble function (equation (50)) using a consistent mass 

45  matrix; 
FIG. 33 is a bird's eye view showing the computation result 

at the portion of the perpendicular position-O by a bubble 
function (equation (50)) using a lumped mass matrix; 

FIG. 34 is a schematic showing the contours of the com-

50 putation result at the portion of the perpendicular positioned 
by a bubble function (equation (50)) using a lumped mass 
matrix; 

FIG. 35 is a bird's eye view showing the result of the 
computation at the portion of the perpendicular position-0 by 

55 a bubble function (equation (51)) using a consistent mass 
matrix; 

FIG. 36 is a schematic showing the contours of the com-
putation result at the portion of the perpendicular position-0 
by a bubble function (equation (51)) using a consistent mass 

60 matrix; 
FIG. 37 is a bird's eye view showing the computation result 

at the portion of the perpendicular position=0 by a bubble 
function (equation (51)) using a lumped mass matrix; 

FIG. 38 is a schematic showing the contours of the com-
65 putation result at the portion of the perpendicular position-0 

by a bubble function (equation (51)) using a lumped mass 
matrix; 
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FIG. 39 is a bird's eye view showing the computation result 
at the portion of the perpendicular position=C by a bubble 
function (equation (52)) using a diagonal mass matrix; 

FIG. 40 is a schematic showing the contours of the com-
putation result at the portion of the perpendicular positions-0 
by a bubble function (equation (52)) using a diagonal mass 
matrix; 

FIG. 41 is a schematic (1) showing an isoparametric coor-
dinate system r; 

FIG. 42 is a schematic (2) showing an isoparametric coor-
dinate system r; 

FIG. 43 is a schematic showing the shape B  of a triangular 
bubble function using equations (81) and (93); 

FIG. 44 is a schematic showing the shape B2  of a triangular 
bubble function using equations (81) and (93); 

FIG. 45 is a schematic showing the shape of a triangular 
three-level bubble function using equation (132); 

FIG. 46 is a schematic showing the shape of the product of 
a triangular bubble function using equations (81) and (93) and 
a triangular three-level bubble function using equation (132); 

FIG. 47 is a schematic showing a conventional two-dimen-
sional bubble function element; 

FIG. 48 is a schematic showing a conventional three-di-
mensional bubble function element; 

FIG. 49 is a schematic showing an analytical model used in 
the analysis of the conventional Rotating Cone problem; 

FIG. 50 a schematic showing contours of the initial condi-
tion used in the analysis of the conventional Rotating Cone 
problem; 

FIG. 51 is a schematic showing the contours of the analyti-
cal result of the Rotating Cone problem computed by using a 
conventional consistent mass matrix; and 

FIG. 52 is a schematic showing the contours of the analyti-
cal result of the Rotating Cone problem computed by using a 
conventional lumped mass matrix. 

EXPLANATIONS OF LETTERS OR NUMERALS 

200 numerical analyzing apparatus 
201 data storing unit 
202 first acquiring unit 
203 second acquiring unit 
204 generating unit 
205 first computing unit 
206 second computing unit 
207 analyzing unit 

BEST MODE(S) FOR CARRYING OUT THE 
INVENTION 

With reference to the accompanying drawings, exemplary 
embodiments of an orthogonal basis bubble function element 
numerical analysis method, an orthogonal basis bubble func-
tion element numerical analysis program, and an orthogonal 
basis bubble function element numerical analyzing apparatus 
(hereinafter, "numerical analyzing apparatus") according to 
the present invention are explained in detail. 

(Hardware Configuration of a Numerical Analyzing Appara-
tus) 

The hardware configuration of the numerical analyzing 
apparatus related to this embodiment is described. FIG. 1 is a 
block diagram showing the hardware configuration of the 
numerical analyzing apparatus according to an embodiment 
of the present invention. The numerical analyzing apparatus 
is equipped with a CPU 101, a ROM 102, a RAM 103, an 
HDD (hard disk drive) 104, an HD (hard disk)105, an FDD 

8 
(flexible disk drive) 106, an FD (flexible disk) 107 as an 
example of removable recording medium, a display 109, an 
I/F (interface) 109, a keyboard 110, a mouse 111, a scanner 
112, and a printer 113. Each component is connected by a bus 

5  100. 

The CPU 101 manages control of the entire numerical 
analyzing apparatus. The ROM 102 stores programs such as 
a boot program, etc. The RAM 103 is used as a work area of 

10  the CPU 101. The HDD 104, under the control of the CPU 
101, controls the reading and writing of data on the ED 105. 
The HD 105 stores data written under the control of the HDD 
104. 

The FDD 106, under the control of the CPU 101, controls 
15 the reading and writing of data on the FD 107. The FD 107 

stores data written under the control of the FDD 106, and 
provides the numerical analyzing apparatus with the data 
stored on the FD 107. As a removable recording medium, in 
addition to the FD 107, a CD-ROM (CD-R, CD-RW), an MO, 

20 a DVD (Digital Versatile Disk), and a memory card can be 
used. The display 108 displays a cursor, icons, tool boxes, and 
data such as text, images, and information on functions. For 
the display 108, for example, a CRT, a TFT liquid crystal 
display, and plasma display can be adopted. 

25 	The I/F 109 is connected to a network, such as the internet, 
through telephone lines and then is connected to other devices 
via the network. The I/F 109 interfaces the internal units to the 
network, and controls the input and output of data from exter-
nal devices. For the I/F 109, for example, a modem and LAN 

30 adaptor can be adopted. 

The keyboard 110, equipped with keys for character, 
numeric, and various command entry, performs data input. 
The keyboard 110 can be substituted with a touch-panel input 

35  pad or a numeric key pad. The mouse 111 is used for moving 
a cursor, selecting an area, and moving and changing the size 
of windows. A device having functions equivalent to a point-
ing device may also be adopted, such as a track ball or a joy 
stick. 

40 	The scanner 112 optically reads images and imports image 
data into the numerical analyzing apparatus. The printer 113 
prints image data and text data. For the printer 113, for 
example, a laser printer or an inkjet printer can be adopted. 

45 
(Functional Configuration of a Numerical Analyzing Appa-
ratus) 

A functional configuration of the numerical analyzing 
apparatus according to an embodiment of the present inven-
tion is described. FIG. 2 is a block diagram showing the 

50 
functional configuration of the numerical analyzing appara-
tus according to an embodiment of the present invention. As 
shown in FIG. 2, a numerical analyzing apparatus 200 
includes a data storing unit 201, a first acquiring unit 202, a 
second acquiring unit 203, a generating unit 204, a first com-
puting unit 205, a second computing unit 206, and an analyz-
ing unit 207. 

The data storing unit 201 stores an information table of 
analytical physical quantities for the numerical analysis of an 
analysis subject. The information table of analytical physical 

60  quantities is explained. FIG. 3 is a schematic showing the 
information table of analytical physical quantities related to 
an embodiment of the present invention. 

As shown in FIG. 3, analytical physical quantity ID's, 
analytical physical quantity names (pollutants, heat, fluid, 

65 structure, etc.), and known analytical physical quantities are 
stored in the information table of analytical physical quanti-
ties related to the analysis subject. As known analytical physi- 
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cal quantities, known physical property values, boundary 
analytical physical quantities, and initial analytical physical 
quantities are stored. 

The analytical physical quantity ID and the analytical 
physical quantity names are information specified at the input 
operation performed by a user, and when the analytical physi-
cal quantity ID and the analytical physical quantity names are 
specified, known physical property values, boundary analyti-
cal physical quantities, and initial analytical physical quanti-
ties can be extracted. 

The known physical property value is information for 
determining the physical property of the analysis subject for 
which an analytical physical quantity ID or an analytical 
physical quantity name is specified at the input operation 
performed by the user. Diffusion coefficient, density, specific 
heat, thermal conductivity, coefficient of viscosity, coefficient 
of bottom friction, Young's modulus, and Poisson's ratio are 
examples of known physical properties. 

The boundary analytical physical quantity is information 
that indicates a condition under which analysis is performed 
of an analysis region (mesh consisting of triangular or tetra-
hedral partitions) that consists of each element of the analysis 
subject. Substantial concentration, temperature, flow veloc-
ity, pressure, discharge, water depth, and displacement are the 
examples of boundary analytical physical quantities. 

In the case that the analysis subject is, for example, a 
pollutant or heat, substantial concentration-origin (source) 
value, or temperature-origin (source) value at the origin 
(source) of the pollutant or heat, respectively, is the boundary 
analytical physical quantity. In the case that the analysis sub-
ject is fluid and a boundary is a wall, it is possible to set flow 
velocity-0 and discharge-0, and in the case that the analysis 
subject is a structure and the boundary is a fixed object, it is 
possible to set displacement-0. Steady problems (problems 
containing analytical physical quantities that are not time-
dependent and that do not change with time lapse) can be 
analyzed using the known physical property values and 
boundary analytical physical quantities. 

In the case of unsteady problems (problems containing 
analytical physical quantities that are time-dependent and 
that change with time lapse), initial analytical physical quan-
tities as initial conditions are additionally required. The initial 
analytical physical quantities are values of analytical physical 
quantities at the start of analysis. At the data storing unit 201, 
in order to execute temporal stepwise analytical computation, 
temporal increments and the number of computation steps are 
also stored in the analytical physical quantity information 
table as initial set up information (not illustrated). 

Mesh information that define an analysis range, such as a 
partitioning width, number of nodes, number of elements, 
nodal coordinate values corresponding to node numbers, and 
element coupling information corresponding to element 
numbers is also stored about the meshes. The meshes are 
finite shapes, such as triangles in the case that the analysis 
range is a two-dimensional space, and tetrahedrons in the case 
that the analysis range is a three-dimensional space. Meshes 
can also be imported by reading with the scanner 102 shown 
in FIG. 1. Specifically, for example, the function of the data 
storing unit 201 is realized, by the RAM 103, the HD 105, or 
the FD 107 shown in FIG. 1. 

The first acquiring unit 202 acquires a known analytical 
physical quantity of the analysis subject. Specifically, by 
manipulation of an input device (for example, the key board 
110 or the mouse 111 shown in FIG. 1), the analytical physi-
cal quantity ID of the analysis subject is selected, and a known 
analytical physical quantity is extracted from the data storing 
unit 201. Specifically for example, the function of the first 
acquiring unit 202 is realized by the CPU 101 executing a 
program stored in the ROM 102, RAM 103, HD 105 or FD 
107 shown in FIG. 1, or by the I/F 109 shown in FIG. 1. 

10 
The second acquiring unit 203 acquires the consistent mass 

matrix of each element (mesh) of the analysis subject. Spe-
cifically for example, the function of the second acquiring 
unit 203 is realized by the CPU 101 executing a program 

5  stored in the ROM 102, RAM 103, HD 105 or FD 107 shown 
in FIG. 1, or via the I/F 109 shown in FIG. 1. 

The generating unit 204 generates the diagonal mass 
matrix of each element by diagonalizing, based on the bubble 
function of each element of the analysis subject, the consis- 

10  tent mass matrix of each element that is acquired by the 
second acquiring unit 203. Specifically, for example, the 
function of the generating unit 204 is realized by the CPU 101 
executing a program stored in the ROM 102, RAM 103, HD 
105 or FD 107 shown in FIG. 1, or via the I/F 109 shown in 
FIG. 1. 

15 	The first computing unit 205 computes the diagonal mass 
matrix for the entire region subject to analysis based on the 
diagonal mass matrix of each element generated by the gen-
erating unit 204. Specifically for example, the function of the 
first computing unit 205 is realized by the CPU 101 executing 

20 a program stored in the ROM 102, RAM 103, HD 105 or FD 
107 shown in FIG. 1, or via the I/F 109 shown in FIG. 1. 

The second computing unit 206 computes, for the entire 
analysis region, the inverse matrix of the diagonal mass 
matrix that is computed by the first computing unit 205. 

25 Specifically for example, the function of the second comput-
ing unit 206 is realized by the CPU 101 executing a program 
stored in the ROM 102, RPM 103, HD 105 or FD 107 shown 
in FIG. 1, or via the I/F 109 shown in FIG. 1. 

The analyzing unit 207 analyzes the motion of the analysis 
30 subject based on the known analytical physical quantity 

acquired by the first acquiring unit 202 and on the diagonal 
mass matrix, of each element, generated by the generating 
unit 204. Specifically, the motion of the analysis subject is 
analyzed based on the known analytical physical quantity 

35  acquired by the first acquiring unit 202, a diagonal mass 
matrix for the entire analysis region computed by the first 
computing unit 205, and an inverse matrix computed by the 
second computing unit 206. In the case of a solution that 
analyzes the motion of the analysis subject using only the 
diagonal mass matrix of each element, without using a diago- 

40 nal mass matrix for the entire analysis region (for an example, 
refer to: O. C. Zienkiewicz, R. L. Taylor, S. J. Sherwin and J. 
Peiro, "On Discontinuous Galerkin Methods", International 
Journal for Numerical Methods in Engineering, Vol. 58, 
2003, pp. 1119-1148), the generating unit 204 and first com- 

45 puting unit 205 are one and the same, and also analysis can be 
proceeded to the second computing unit 206. Specifically, for 
example, the function of the analyzing unit 207 is realized by 
the CPU 101 executing a program stored in the ROM 102, 
RAM 103, HD 105 or FD 107 shown in FIG. 1, or via the I/F 

50 109 shown in FIG. 1. 
A protocol of a numerical analyzing process of the numeri-

cal analyzing apparatus 200 according to the present embodi-
ment is explained. FIG. 4 is a flowchart showing the protocol 
of a numerical analyzing process by the numerical analyzing 

55 
apparatus 200 according to an embodiment of the present 
invention. The known analytical physical quantity of the 
analysis subject is acquired (step S01) by the first acquiring 
unit 202. The consistent mass matrix of each element (ele-
ment level) is acquired (step S402) by the second acquiring 
unit 203. 

60 	Subsequently, bubble functions are integrated for each ele- 
ment (step S403) and the diagonal mass matrix of each ele-
ment (element level) is computed (step S404) by substituting 
the value integrated at step S403 for the consistent mass 
matrix of each element (element level). The diagonal mass 

65 matrix of the entire analysis region is computed (step S405) 
by the summation (superposition) of the diagonal mass 
matrix of each element (element level). 
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The inverse matrix of the diagonal mass matrix is com-
puted (step 5406), and the motion of the analysis subject is 
analyzed based on the known analytical physical quantity of 
the subject, the diagonal mass matrix of the entire analysis 
region, and the inverse matrix thereof. Specifically, for 5 
example, analysis is possible by substituting the aforemen-
tioned for equations (10) to (13). 

A specific analyzing process of a numerical analyzing 
apparatus 200 is explained, 

10 
<1. Orthogonal Basis Bubble Function Element> 

In analysis using a finite element method (finite element 
analysis), a mass matrix M is obtained by multiplying a 
weighting function by a function that results from the inter-
polation of a given analytical physical quantity, and then by 15 
integrating for a subject region. In the case a bubble function 
element is adopted, the mass matrix M is formed by super-
posing, on the entire system, an element group obtained by 
dividing an arbitrary region, which is the analysis subject, by 
the number of elements N, into triangular (tetrahedral) 
shapes; and by using integration for an element region, the 20 
mass matrix M is expressed as the following equation (16). 
[Equations 7] 

N, 	N, 	 (16) 

M= ((D,IT )~e =~M,y),i=1...N+2,J=1...N+2 	 25 
~t 	 ~t 

The following equations (18) and (20) must be satisfied in 
order for the basis (shape function) of a bubble function 
element to orthogonalize to equation (16). Equation (17) is 30 
used to induce equation (18). Equation (19) is used to induce 
equation (20). 
[Equations 8] 

= 1 ~1, ~B )n 	1 	~B ne =0,a=  1 ... N+1 	
(17) 35 

N+1 	e N+1 

[Equations 9] 

From equation (17), 	 (18) 

(1, @B)ne = II@BIIn, 	 40 

[Equations 10] 

1 
~R)ç = ~~a ~R) 	

(N +1)2   
 1, ~e)ne = 0, 	 (19) 45 

12 
<2. Bubble Function Satisfying Orthogonal Condition> 

A bubble function expressed by the following equation 
(22) is proposed as a function that satisfies equations (18) and 
(20). 

[Equations 13] 

(22) 

~B 	Ca1 + Ca2 + 1 

Where, 

ar, a2 are unknown quantities 

~B' B' B are bubble functions, each different 

The following equation (23) is induced by substituting 
equation (22) for equation (18). 

[Equations 14] 

l3iai +132az+133 +134aia2+l3sa1 +136x2 = 0 	 (23) 

l3 1 =(@B, 1) 	-II@BIIfe , 

/32 =B' 1)11, - I106Ul,e , /33 = (@B, 1)11, - II@BII1, 

Y4 = (OB' 1){l, + (~B' 1) - 2(~B , B) ' 

Y5 = (OB' i , + (~B' i) - 2(~B , OB)., 

Y6 = (OB , 1){l, + (OB , 1),,, - 2(OB , OB){2e . 

Or, 

= ((~B' 1)~, - II~BIIfe)A, 

/32 = ((@B, 1)11, - II@BIIfe)A, 

/33 = ((OB, 1)"e - II0BIIfe)A, 

Y4 = (B, 011, + (QIB , i) 	-2(B, 416)8 )A,1 , 

Y5 = ((OB' 1){l, + (~B' 1) - 2(~B , 08 )8' )'1', 

/36 =(B 1)  +(@e , 1)ne -2(@B, @B)n,e )Aei 

The following equation (24) is induced by substituting 
equation (22) for equation (20). 

[Equations 15] 

[Equations 11] 

From equation (19), 	 a2 = yi ai +y2 	 ( 24) 

(1, B)n, = (N + 1)z  W ,`13)~e 	 (20) 50 	(~B' i) - CA, 	(OB, 1) - CA, 
Yi= 	 ,Y2= 

(OB, 1)1e - CA, 	(OB, 1)1e - CA, 

The following equation (21) is obtained from equations 
(18) and (20). 
[Equations 12] 

«B , 1)n, = II BII2, = CA, 	 (21) 

Two-dimensions 

3 
C 4 

Three-dimensions 

4 
C 5 

Or, 

55 	
(B' 1)0 A -C 	(OB' 1) ,A i -C 

Yi= 
(OBI1)n,,Aei-C

'Yz= 
(OBI1)Q,A,1-C 

The following equation (25) containing a r as an unknown 
60 quantity is finally induced by substituting equation (24) for 

equation (23). 

[Equations 16] 

aa12ba1+N=0 
	

(25) 
65 

a(~=31+R2Y12+RM 1, b=2R2YrY2+R4Y2+R5+ReYv c=R2Y22+ 

R3+N6Y2 
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As equation (25) is a quadratic equation for a r, referring to when each exponent value in equation (30) are set as the 
a solution formula, ar can be obtained by the following equa- following equation (31). 
tion (26). 

5 [Equations 21] 

[Equations 17] 
1 	1 	3 	 (31) 

10 	5' 	4 
b ± 	b2 — 4., 	 (26) 

ai 	 2a [Equations 22] 

10 
Two-dimensions (triangle) 

<3. Specific Bubble Function Forming Orthogonal Basis> —b + 	b2 - 4ac 	 (32) 

A specific bubble function forming orthogonal basis is a1 = 	2a 	
= 3.1871016 ... 	a2 = -4.5742685 ... 

explained. FIGS. 5 and 6 are schematics showing a two- 
15 b2 	4ac 	 (33) —b _ 	— 

dimensional bubble function element and a three-dimen- a, = 	 = 3.1457828 ... 	a2 = —3.9426812 ... 2a 

sional bubble function element, respectively. 

In order to induce a specific bubble function that forms Three- dimensions (tetrahedron) 

orthogonal basis, a a-exponent bubble function (0<~<c) is —
b + 	

z 	
4~ 	 ( 

34
) adopted that divides the triangular (tetrahedral) element 20 a1 = 	2a 	= 3.127797 4 ... 	a2 = -3.8884541 ...  

region shown in FIGS. 5 and 6 into three (four) small triangles 
(tetrahedrons) w~, i=-1 ... N+1 using the center of gravity -b - 	b2 - 4~ 	 (35) 

point. The a-exponent bubble function is defined as the fol- 
ai = 	2a 	= 2.6785040 ... 	az = —4.0779944 ... 

2a 

lowing equations (27) and (28) by using an isoparametric 
coordinate system {r, s} ({r, s, t}) for each small triangle 25 The ar and a2 are expressed as the following equations 
(tetrahedron). (37) to (40) for a two-dimensional (triangle) and a three- 

dimensional 	(tetrahedron) bubble function, respectively, 
when each exponent value in equation (30) are set as the 

[Equations 18] following equation (36), (different values from equation 
30 

(31)). 
Two-dimensions 

3~(1 —r—s) 	in wi 	 (27) 
[Equations 23] 

çe = 	3~r 	in w2 

3 s~ 	inw3 
35 6 	 (36) 

=3,=2,= 

Three-dimensions [Equations 24] 

4'1 — r — s — t 	in wi 	 (28) Two- dimensions (triangle) 

4r 	 in w2 40 

—b + 	b2 — 4ac 	 (37) 
4s 	 in w3 ai = 2a 	= —0.1393869 ... 	a2 = —0.6433844 ... 

4th 	 in w4 
—b — 	b2 — 4ac 	 (38) 

ai = 2a 	= 1.2696544 ... 	a2 = —2.2134591 ... 
45 

The integration values for element regions of these bubble Three- dimensions (tetrahedron) 
functions can be obtained by the following equation (29). 

—b + 	b2 — 4ac 	 (39) 
ai = 2a 	= 0.7333511 ... 	,a 2 = —1.6387018 ... 

[Equations 19] 50 
—b — 	b2 — 4ac 	 (40) 

N! 	 (29) 
ai = 2a 	= 1.2578218 ... 	a2 = —2.2006346 ... 

(Oe, 1)c 	= 	 A, N 

I] (~ + Y) Y -1 

Equation (22) is defined as the following equation (30) by 
using the a-exponent bubble function. 

[Equations 20] 

B B , $B$B, $B $B 	 (30) 

Where, 

~,  , ~ are exponent values 

The a r and a2 are expressed as the following equations 
(32) to (35) for a two-dimensional (triangle) and a three-
dimensional (tetrahedron) bubble function, respectively, 

FIG. 7 is a schematic showing the shape 4B of a triangular 
55 bubble function that forms orthogonal basis using the al and 

a2 in equation (32); FIG. 8 is a schematic showing the shape 
(j)BZ of a triangular bubble function that forms orthogonal 
basis using the a r and a2 in equation (32). FIG. 9 is a sche-
matic showing the shape 4B of a triangular bubble function 

60 that forms orthogonal basis using the al and a2 in equation 
(37); FIG. 10 is a schematic showing the shape B2 of a 
triangular bubble function that forms orthogonal basis using 
the a r and a2 in equation (37). 

As expressed in equations (32) and (37) and as shown in 
65 FIGS. 7 to 10, bubble functions (shapes) satisfying equation 

(21) are innumerable, and therefore, specific bubble functions 
that form orthogonal basis and the shapes thereof have little 
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significance. An essential aspect of the orthogonal basis 	computing unit 205, by obtaining a sum (superposition) ofthe 
bubble function element is the invention of the conditional 	element level diagonal mass matrices M(e)t of each element. 
expression (21) for the basis of thebubble function element to 	The inverse matrix M-t of the diagonal mass matrix M can be 
be orthogonalized. 	 computed by the second computing unit 206. Motion of the 

<4. Element Level Mass Matrix of Orthogonal Basis Bubble 5 analysis subject can be analyzed by the analyzing unit 207 by 
Function Element> 	 substituting a known analytical physical quantity u, a diago- 

The element level consistent mass matrix, lumped mass 	nal mass matrix M, and the inverse matrix M-t for equations 
matrix of an ordinary bubble function element, and the ele- 	(10) to (13). 
ment level mass matrix (diagonal mass matrix) of an orthogo- 10 
nal basis bubble function element for two dimensions (tri- 
angle) and three dimensions (tetrahedron) are expressed in 	[Equations 25] 
the following equations (41) to (46). 

Triangular bubble function element 

15 Element level consistent mass matrix 

AQ 	AQ 	AQ AQ 	0 

10 	20 	20 20 
AQ 	AQ 	AQ AQ 	0 

20 	10 	20 20 

(41) 20 1T )Ie = M;j = 	Ae 	Ae 	Ae Ae 	0 + 
20 	20 	10 20 
AQ 	AQ 	AQ AQ 	0 

20 	20 	20 10 
0 	0 	0 00 

25 -2 -2 -2 

-2 -
2 -2 4 

-2  

16(1, 
Oe )Qe 	-2 -2 -2 -2 4 + 

-2 -2 -2 -2 4 

4 4 	4 4 	0 
30 

1 	1 	1 1 	-4 

1 	1 	1 1 	-4 

T611@aIIQe 1 	1 	1 1 	-4 

(42) 35 
-4 -4 -4 -4 	16 

Element level lumped mass matrix (when lumped) 

N+z 

(~, ~T )Ile = M;j 	dia 	M 	_ 

40 j-1 

A` 	0 0 	0 
3 

0 	A` 0 	0 
3 + 

45 0 	0— 0 

0 	0 00 

-1 	0 	0 0 	0 

50 4(1, OB )ne 0 	0 	-1 0 	0 

(43)  0 	0 	0 0 	4 

Element level diagonal mass matrix 

55 (orthogonal basis bubble function) 

A` 0 0 0 0 
20 

0 A` 0 0 0 
20 

60 

	

= M,y~ = 0 0 20 0 	0 

An element level diagonal mass matrix M(e)t in the equa- 	 Ae 
tion (43) is generated by the generating unit 204 by substitut- 	 0 0 0 20 0 

ing the integration value CAe of a bubble function 4B for the 	 4 
<148>Q and BM2S2e of an element level consistent mass 65 	 0 0 0 0 5Ae 

matrix M(e)t in the equation (41). The diagonal mass matrix 
M for the entire analysis region can be computed, by the first 

[Equations 25] 

Triangular bubble function element 

Element level consistent mass matrix 

A, A, A, 
0 

6 12 12 
AQ AQ AQ 

AQ AQ AQ 
12 12 6 0 
0 0 0 0 

-2 -2 -2 3 	 1 1 1 -3 

1 	-2 -2 -2 3 	1 	1 1 1 -3 

9~1' ~e)°e -2 -2 -2 3 
+ 9II BII~e 1 
	1 	1 -3 

3 3 30 	 -3 -3 -3 9 

Element level lumped mass matrix (when lumped) 

N+z 

((D, (DT ), = M`) dia 	M _ 
j=1 

A` 0 0 0 
3 	 -1 0 0 0 

0 A` 0 0 1 	0 -1 0 0 

0 0 -1 0 
0 0 3` 0 	 0 0 0 3 

0 0 00 

Element level diagonal mass matrix (orthogonal basis 

bubble function) 

AQ 
12 0 0 0 

0 Ae 0 0 

(( D, (DT )ne = M;~f ) _ 
0 0 A` 0 

12 
3 

0 0 0 4Ae 

(44)  

(45)  

(46)  
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An element level diagonal mass matrix in equation (46) is 
generated by the generating unit 204 by substituting the inte-
gration value CAe of a bubble function B for the <1,(D,>SZe, 
and BMM2SZe of an element level consistent mass matrix in 
equation (44). The diagonal mass matrix M for the entire 
analysis region can be computed by the first computing unit 
205 by obtaining a sum (superposition) of the element level 
diagonal mass matrices M(e)t of each element. The inverse 
matrix M-' of a diagonal mass matrix M can be computed by 
the second computing unit 206. Motion of the analysis subject 
can be analyzed by the analyzing unit 207 by substituting a 
known analytical physical quantity u, a diagonal mass matrix 
M, and the inverse matrix M' for equations (10) to (13). 

<5. Bubble Function> 
A bubble function is explained. FIG. 11 is a schematic 

showing a two-dimensional bubble function, and FIG. 12 is a 
schematic showing a three-dimensional bubble function. An 
arbitrary bubble function 4B can be selected provided that the 
definition of a shape function (a function that produces 1 at 
the center of gravity point and 0 at other points) is satisfied. In 
a comparative computation for verification, shown below, the 
most frequently used two bubble functions and the bubble 
function that forms orthogonal basis are used. By using an 
isoparametric coordinate system {r, s} ({x, s, t}) shown in 
FIGS. 11 and 12, the bubble functions are defined as equa-
tions (47) to (52). 

[Equations 27] 

Two-dimensions (triangle) 

Widely used bubble function 1 

9 	z 	81 	 (47) 
~a = 27(1 - r-s)rs, (@a, 1)ne = 20Ae II@aline = 280Ae 

Widely used bubble function 2 

3(1 — r — s) in wi 	 (48) 

@a = 3r 	in w2, (@a, 1)ne = 3Ae, II@BII = 6Ae 

3s 	in w3 

Orthogonal basis bubble function 

(49) 

@a = 
i@a+a2@a+@a, 

(@a, 1 )nQ = 
3

A_ I10allQQ = 3 AQ 
a1 +a2 +1 	 4 	 4 

[Equations 28] 

Three-dimensions (tetrahedron) 

Widely used bubble function 1 

32 	2 	8192 	(50) 
Oe=256(1—r—s—t)rst,(Oe,1)- 

=1OSAII 
II- 

=51975A, 

Widely used bubble function 2 

4(1—r—s—t) inwi 	 (51) 

4r 	 in w2 	 1 	z 	1 

Oa = 	
(Oa, 1)ne = 4Ae, lI@Blin, = 

4s 	 w3 	10 A` 

4t 	 in w4 

Orthogonal basis bubble function 

(52) 

@a = 
i@a + 2a2

~+1 fie, (@a, 1)n,e = SAe, II0allQI = 

<6. Rotating Cone Problem> 
As a validation calculation of the method invented, the 

Rotating Cone problem (advection problem of substance con- 

18 
centration), a famous bench mark problem for comparison 
and examination of the performance of numerical analyzing 
methods, is analyzed (refer to a non-patent document 4). FIG. 
13 is a schematic showing the domain size in the analysis of 

5 the Rotating Cone problem; FIG. 14 is a schematic showing 
the mesh (4921 nodes, 9600 elements) of an analytical model 
in the analysis of the Rotating Cone problem; and FIG. 15 is 
a schematic showing the flow velocity (flow condition) of the 
analytical model in the analysis of the Rotating Cone prob-
lem.  lem. 

FIG. 16 is a bird's eye view showing the initial condition 
(initial distribution of concentration) in the analysis of the 
Rotating Cone problem, and FIG. 17 a schematic showing the 
contours of the initial condition (initial distribution of con-
centration) in the analysis of the Rotating Cone problem. 

15 Assuming the steady constant flow velocity (flow condition) 
shown in FIG. 15 for the mesh shown in FIG. 14, within the 
region of computation shown in FIG. 13 of an unsteady 
advection equation, the Rotating Cone problem analyzes the 
advectional conditions of any physical quantity (such as pol- 

20 lutant concentration) shown in FIGS. 16 and 17. 
Although an actual physical quantity (such as pollutant 

concentration) is transported along the flow while the con-
centration diffuses, in the case that the computation is 
executed by eliminating the effect of diffusion (compute an 

25 advection equation), because only an advection effect acting 
on the physical quantity exists, the problem invariably yields 
the result that the distribution of a physical quantity is ideally 
identical with the initial distribution when the concentration, 
carried by the flow, revolves about in a computation region. 

30 Numerical analysis using this problem can evaluate the 
approximation error of a method subject and can verify the 
computation accuracy thereof. 

FIG. 18 is a bird's eye view showing the computation result 
of a bubble function (equation (47)) using a consistent mass 
matrix, and FIG. 19 is a schematic showing the contours of 

3s the computation result of a bubble function (equation (47)) 
using a consistent mass matrix. FIG. 20 is a bird's eye view 
showing the computation result of a bubble function (equa-
tion (47)) using a lumped mass matrix, and FIG. 21 is a 
schematic showing the contours of the computation result of 

40 a bubble function (equation (47)) using a lumped mass 
matrix. 

FIG. 22 is a bird's eye view showing the computation result 
of a bubble function (equation (48)) using a consistent mass 
matrix, and FIG. 23 is a schematic showing the contours of 

45 the computation result of a bubble function (equation (48)) 
using a consistent mass matrix. FIG. 24 is a bird's eye view 
showing the computation result of a bubble function (equa-
tion (48)) using a lumped mass matrix, and FIG. 25 is a 
schematic showing the contours of the computation result of 

50 a bubble function (equation (48)) using a lumped mass 
matrix. FIG. 26 is a bird's eye view showing the computation 
result by a bubble function (equation (49)) using a diagonal 
mass matrix, and FIG. 27 is a schematic showing the contours 
of the computation result of a bubble function (equation (49)) 
using a diagonal mass matrix. 

55 	As analyzing methods for the verification of all object 
bubble functions, a bubble function element stabilizing 
method (refer to non-patent document 3) is used for spatial 
discretization considering the stability of numerical analysis, 
a four-step solution is used for temporal discretization, and 

60 t/400 is adopted for At. FIGS. 18, 19, 22, and 23 illustrate the 
computation results of bubble functions (equations (47) and 
(48)) using consistent mass matrices. 

In contrast to these computation results, as shown by the 
computation results of bubble functions (equations (47) and 

65 (48)) using the lumped mass matrices illustrated in FIGS. 20, 
21, 24, and 25, oscillations are generated on the side opposite 
to the direction of movement of a physical quantity (cone), 




