

(12) United States Patent

Kikuchi et al.

US 7,132,587 B2 (10) **Patent No.:**

(45) Date of Patent: Nov. 7, 2006

(54) NON-AUTONOMOUS TRANSPOSON GENE OF RICE, TRANSFORMED PLANT AND METHOD OF USE

(75) Inventors: **Kazuhiro Kikuchi**, Okazaki (JP); Hiroyuki Hirano, Tokyo (JP);

Masamitsu Wada, Tokyo (JP)

Assignee: Agency of Industrial Science and

Technology, Saitama (JP)

Subject to any disclaimer, the term of this (*) Notice:

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 10/494,944

(22) PCT Filed: Nov. 6, 2002

(86) PCT No.: PCT/JP02/11585

§ 371 (c)(1),

(2), (4) Date: Sep. 29, 2004

(87) PCT Pub. No.: WO03/040363

PCT Pub. Date: May 15, 2003

(65)**Prior Publication Data**

US 2005/0125854 A1 Jun. 9, 2005

(30)Foreign Application Priority Data

Nov. 8, 2001	(JP)	2001-343002
Jan. 18, 2002	(JP)	2002-009729
Jun. 7, 2002	(JP)	2002-167345
Aug. 12, 2002	(JP)	2002-234412

(51) Int. Cl. C12N 15/01 (2006.01)C12Q 12/68 (2006.01)

(52) **U.S. Cl.** **800/276**; 435/91.2

(58) Field of Classification Search 536/23.1, 536/23.6; 435/468, 410, 320.1; 800/278, 800/291, 295, 298

See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

5,965,791 A 10/1999 Ebinuma 800/278

FOREIGN PATENT DOCUMENTS

EP	716147 A1	6/1996
EP	1275719 A1	1/2003
JР	9-154580 A	6/1997
JP	2001-343002	11/2001
JP	2002-009729	1/2002
JР	2002-167345	6/2002
JP	2002-234412	8/2002
WO	WO 96/15252 A1	5/1996
WO	WO 01/32881	* 10/2001

WO WO 01/73036 A1 10/2001

OTHER PUBLICATIONS

Yano et al. Hd1, a Major Photoperiod Sensitivity Quantitative Trait Locus in Rice, Is Closely Related to the Arabidopsis Flowering Time Gene CONSTANS (2000) Plant Cell vol. 12 pp. 2473-2483.* Kikuchi et al. The Plant MITE mPING is Mobilized in Anther Culture (2003) Nature vol. 421, pp. 167-170.*

Jurka, J. et al. "PIFs meet Tourists and Harbingers: A superfamily Reunion", PNAS, vol. 98(22) pp. 12315-12316, 2001.

Zhang, X. et al. "P instability factor: An active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases", PNAS Early Edition, pp. 1-6,

Scortecci, K. C. et al. "Somatic Excision of the Ac Transposable Element in Transgenic Arabidopsis thaliana after 5-Azacytidine Treatment", Plant Cell Physiol., vol. 38(3) pp. 336-343, 1997.

Sano, H. et al. "A single treatment of rice seedlings with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA", Mol Gen Genet, vol. 220 pp. 441-447, 1990. Le, Q.H. et al. "Tc8, a Tourist-like Transposon in *Caenorhabditis*

elegans", Genetics, vol. 158 pp. 1081-1088, 2001.

Nakazaki, T. et al. "Polymorphic insertion of transposon-like sequence in mutable slender-granule gene slg locus", Japanese Society of Breeding 100th Conference, Autumn meeting, Oct. 2001; This is the English translation of this paper, first cited in IDS filed Sep. 29, 2004 for this application.

Database EMBL 'Online! May 24, 2001, "Oryza sativa (japonica cultivar-group) genomic DNA, chromosome 1, BAC clone: B1158C05." XP 002359806 (abstract).

Database EMBL 'Online! Aug. 2, 2001, "Oryza sativa (japonica cultivar-group) genomic DNA, chromosome 6, BAC clone: OJ1057_A09, Working Draft Sequence, 1 ordered pieces." XP002359807 (abstract).

Database EMBL 'Online! May 31, 2001, "Oryza sativa (japonica cultivar-group) genomic DNA, chromosome 6, PAC clone: PO656E03." XP002359808 (abstract).

Turcotte Kime et al., "Survey of transposable elements from rice genomic sequences," Plant Journal, vol. 25, No. 2, Jan. 2001, pp. 169-179, XP002359802, Publisher: Blackwell Sciences, Oxford,

Chang-Gyun Han et al., "New transposable elements identified as insertions in rice transposon Tnr1," Genes Genet. Syst., 2000, vol.

Thomas E. Bureau et al., "A computer-based systematic survey reveals the predo, onance of small inverted-repeat elements in wild-type rice genes," Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 8524-8529; Publisher: National Academy of Sciences, Washington,

Long Mao et al., "Rice Transposable Elements: A Survey of 73,000 Sequence-Tagged-Connectors," Genome Research, 2000, vol. 10, pp. 982-990.

* cited by examiner

Primary Examiner—Ashwin D. Mehta Assistant Examiner—Cathy Kingdon Worley (74) Attorney, Agent, or Firm—Drinker Biddle & Reath LLP

(57)**ABSTRACT**

The invention includes a method of transposing a nonautonomous transposon gene of rice (Oryza sativa). The method comprises culturing anthers of rice or treating roots, seeds, leaves, and stems of axillary buds of rice, or a callus derived from them, with 5-azacytidine or 5-azadeoxycytidine. Also included in the invention is a plant or plant seeds produced by the method.

3 Claims, 11 Drawing Sheets

Figure 1

144010	144020	144030	144040	144050	144060	
TTTCAAGTAC	AATCTCAACT	TAGGGAAAGT	TGTGATTGAG	GGAGGATGTT	AGATAATGTT	
144070	144080	144090	144100	144110	144120	
AGTTAGTTTG	TTATAGAGAT	AGATTAGTTC	TGTTACCGCA	TGTACTTTCT	TGTATCTATC	
144130	144140	144150	144160	144170	144180	
TCTATATCCA	GGATTGTCTC	AGGTTGTTGA	GATTAATCCT	ATCCTTTGTA	CACGCCACGG	3'LTR
144190	144200	144210	144220	144230	144240	0 2
TAGAGGCTCT	TTCTGCCTAT	ATCAACAAAG	GTGCGGCCCC	GTAAAGGGGT	TCAACGCTTC	
144250	144260	144270	144280	144290	144300	
TCATTCCGTT	TTACAATCCT	CCTTCTTCCT	CCTGGTGTTG	GAAATTCGTT	GATCGAGTTG	
144310	144320	144330	144340	144350	144360	
AAACTCTCAT	CCTTCATCAT	GTGCTGCAGA	AACTAACGCG	TGCACAGATG	ATGGATGGGT	
144370	144380	144390	144400	144410	144420	
GTGGTGTGAC	ATGAAAGTGG	ATCAATGACA	CGCGGCACAT	TTAGGGGAGT	GTGTCGTGTC	
144430	144440	144450	144460	144470	144480	
TTGACTTCTT	CATGCAAAAG	TATACCAACC	CTGTATAAGG	CCAGTCACAA	TGGCTAGTGT	
144490	144500	144510	144520	144530	144540	
CATTGCACGG	CTACCCAAAA	TATTATACCA	TCTTCTCTCA	AATGAAATCT	TTTATGAAAC	
144550	144560	144570	144580	144590	144600	
AATCCCCACA	GTGGAGGGGT	TTCACTTTGA	CGTTTCCAAG	ACTAAGCAAA	GCATTTAATT	
144610	144620	144630	144640	144650	144660	
GATACAAGTT	GCTGGGATCA	TTTGTACCCA	AAATCCGGCG	CGGCGCGGA	GAATGCGGAG	Inverted
144670	144680	144690	144700	144710	144720	Repeats
GTCGCACGGC	GGAGGCGGAC	GCAAGAGATC	CGGTGAATGA	AACGAATCGG	CCTCAACGGG	•
144730	144740	144750	144760	144770	144780	
GGTTTCACTC	TGTTACCGAG	GACTTGGAAA	CGACGCTGAC	GAGTTTCACC	AGGATGAAAC	
144790	144800	144810	144820	144830	144840	
TCTTTCCTTC	TCTCTCATCC	CCATTTCATG	CAAATAATCA	TTTTTTATTC	AGTCTTACCC	
144850	144860	144870	144880	144890	144900	
CTATTAAATG	TGCATGACAC	ACCAGTGAAA	CCCCCATTGT	GACTGGCCTA	AGCATCTTTG	

Figure 2

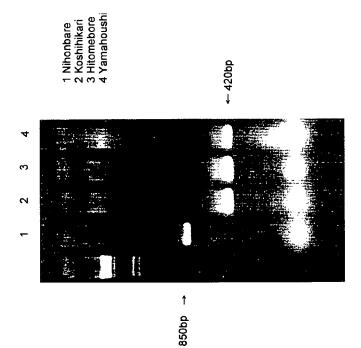


Figure 3

Nov. 7, 2006

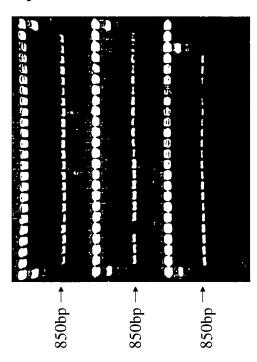


Figure 4

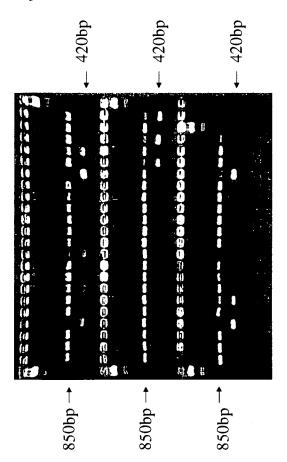


Figure 5

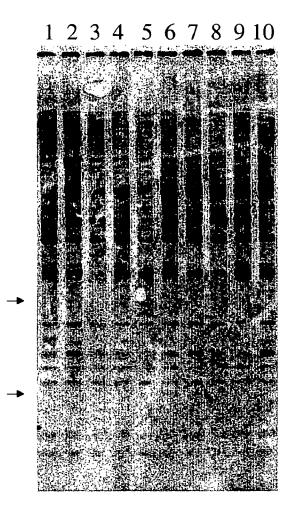
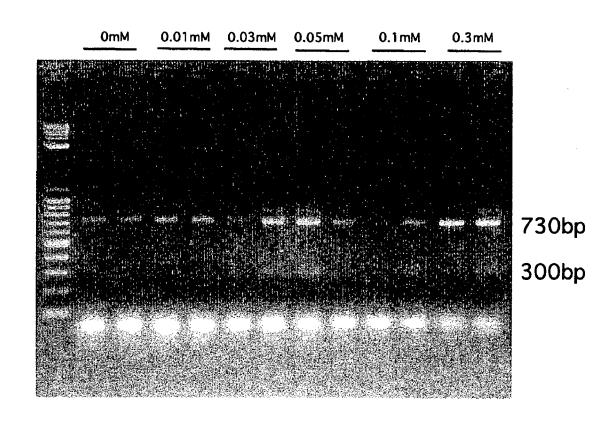
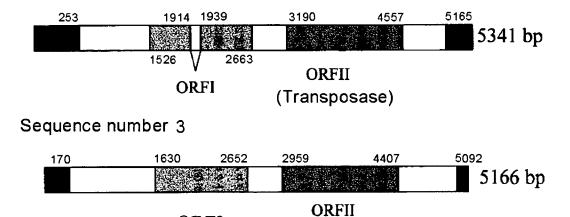



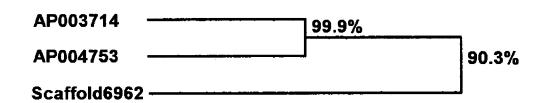
Figure 6

Figure 7



L05 AzaC-callus1 AzaC-callus2 AzaC-callus3 AzaC-callus4	ATGTAGTTTG ATGTAGTTTG ATGTAGTTTG ATGTAGTTTG ATGTAGTTTG	TCGGTAAGTT TCGGTAAGTT TCGGTAAGTT TCGGTAAGTT TCGGTAAGTT	TGATTATCAC TGATTATCAC	GGTAACCACA GGTAACCACA GGTAACCACA GGTAACCACA GGTAAC	AGTCAAGGGA AGTCAAGGGA
L05 AzaC-callus1	AAGATATGGA AAGATATGGA			CAATGGGGGT	TTCACTGGTG
AzaC-callus2		CTCCTTAATA			
AzaC-callus3	AAGAIAIGGA	CICCIIAAIA	A		
AzaC-callus4					
L05	TGTCATGCAC		GGTAAGACTG	AATAAAAAAT	GATTATTTGC
AzaC-callus1 AzaC-callus2					
AzaC-callus2 AzaC-callus3					
AzaC-callus4					
L05	ATGAAATGGG	GATGAGAGAG	AAGGAAAGAG	TTTCATCCTG	GTGAAACTCG
AzaC-callus1					
AzaC-callus2					
AzaC-callus3					
AzaC-callus4					
L05	TCAGCGTCGT			AGTGAAACCC	
AzaC-callus1					
AzaC-callus2					
AzaC-callus3					
AzaC-callus4					
L05	CGATTCGTTT	CATTCACCGG	ATCTCTTGCG	TCCGCCTCCG	CCGTGCGACC
AzaC-callus1					
AzaC-callus2					
AzaC-callus3					
AzaC-callus4					
L05	TCCGCATTCT	CCCGCGCCGC	GCCGGATTTT	GGGTACAAAT	GATCCCAGCA
AzaC-callus1					
AzaC-callus2					
AzaC-callus3					
AzaC-callus4					
L05	ACTTGTATCA	ATTAAATGCT	TTGCTTAGTC	TTGGAAACGT	CAAAGTGAAA
AzaC-callus1					
AzaC-callus2					
AzaC-callus3					
AzaC-callus4					
L05	CCCCTCCACT	GTGGGGATTG	TTTCATAAAA	GATTTCATTT	GAGAGAAGAT
AzaC-callus1					
AzaC-callus2					
AzaC-callus3					
AzaC-callus4					
L05				CACTAGCCAT	
AzaC-callus1					
AzaC-callus2					
AzaC-callus3 AzaC-callus4					
L05				TATGGAAAGA	
AzaC-callus1				TATGGAAAGA	
AzaC-callus2				TATGGAAAGA	
AzaC-callus3 AzaC-callus4				TATGGAAAGA TATGGAAAGA	

Figure 9


Sequence number 2

Nov. 7, 2006

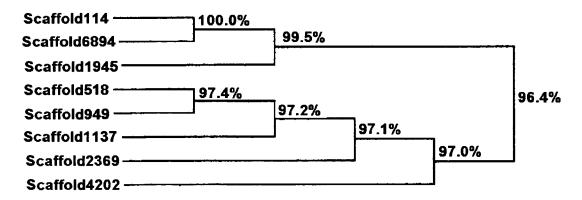

(Transposase)

Figure 10

ORFI

Figure 11

			MS	GNENQIPVSL
MQSLAISLLL	SETHSLFSHT	KTSSLLSLLF	LSSSKMSEQN	TDGSQVPVNL
				* ** *
LDEFLAEDEI	MDEIMDDVLH	EMMVLLQSSI	GDLEREAADH	RLHPRKHIKR
LDEFLAEDEI	IDDLLT	EATVVVQSTI	EGLQNEASDH	RHHPRKHIKR
****	* * *	* * ** *	* ** **	* ****
PREEAHQNLV	NDYFSENPLY	PSNIFRRRFR	MYRPLFLRIV	DALGQWSDYF
PREEAHQQLV	NDYFSENPLY	PSKIFRRRFR	MSRPLFLRIV	EALGQWSVYF
*****	*****	** ****	* ******	*****
TQRVDAAGRQ	GLSPLQKCTA	AIRQLATGSG	ADELDEYLKI	GETTAMDAMK
TORVDAVNRK	GLSPLQKCTA	AIRQLATGSG	ADELDEYLKI	GETTAMEAMK
****	****	****	****	*****
NFVKGIREVF	GERYLRRPTV	EDTERLLELG	ERRGFPGMFG	SIDCMHWQWE
NFVKGLQDVF	GERYLRRPTM	EDTERLLQLG	EKRGFPGMFG	SIDCMHWHWE
****	*****	*****	* *****	*****
RCPTAWKGQF	TRGDQKVPTL	ILEAVASHDL	WIWHAFFGVA	GSNNDINVLS
RCPVAWKGQF	TRGDQKVPTL	ILEAVASHDL	WIWHAFFGAA	GSNNDINVLN
*** ****	****	*****	*****	*****
RSTVFINELK	GQAPRVQYMV	NGNQYNEGYF	LADGIYPEWK	VFAKSYRLPI
QSTVFIKELK	GQAPRVQYMV	NGNQYNTGYF	LADGIMPEWA	VFVKSIRLPN
**** ***	*****	****	*****	** ** ***
	n 	П	DXG/AF/F mo	otif
TEKEKLYAQH	QEGARKDIER	AFGVLQRRFC	ILKRPARLYD	RGVLRDVVLG
TEKEKLYADM	QEGARKDIER	AEGVLQRRFC	ILKRPARLYD	RGVLRDVVLA
*****	*****	*****	*****	*****
	YREK n	notif		
CIILHNMIVE	DEKEARLIEE	NLDLNEPASS	STVQAPEFSP	DQHVPLERIL
CIILHNMIVE	DEKETRIIEE	DLDLNVPPSS	STVQEPEFSP	EQNTPFDRVL
*****	**** * ***	**** * **	**** ****	* * * *
EKDTSMRDRL	AHRRLKNDLV	EHIWNKFGGG	AHSSGNYVFI	LHY
EKDISIRDRA	AHNRLKKDLV	EHIWNKFGGA	AHRTGN	
*** * ***	** *** ***	*****	** **	

Figure 13

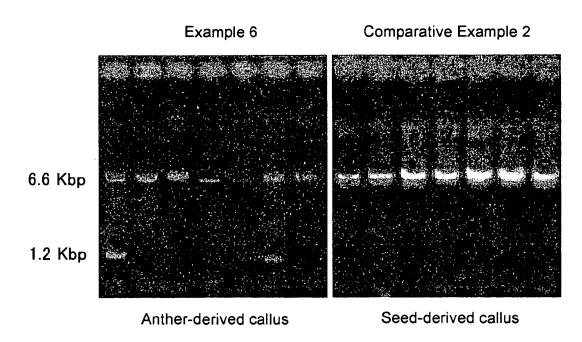
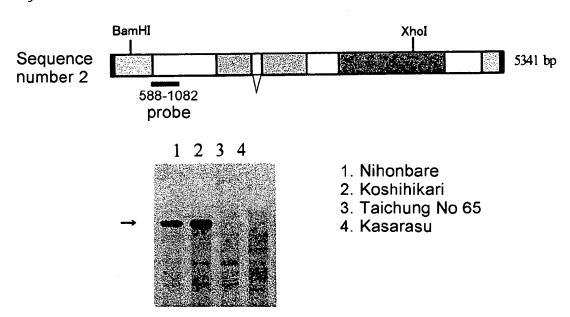
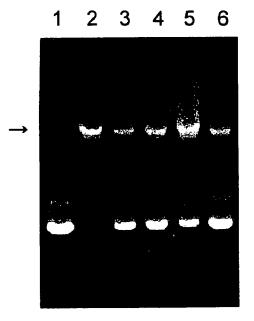
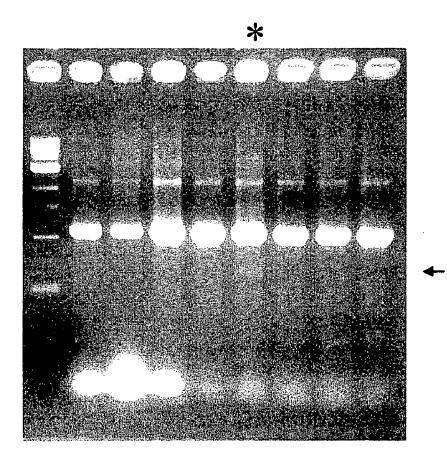




Figure 14



Nov. 7, 2006

- 1. Taichung No 65
- 2. Nihonbare
- 3-6. Gene-transduced Anther-derived callus

Figure 16

LO2 GCGTGGACAC ACTGATTGGC CTGACAAAAC ATAGTTAGCA ATTTGCATTA
Seq GCGTGGACAC ACTGATTGGC CTGACAAAAC ATAGTTAGCA ATT
LO2 GGCCAGTCAC AATGGCTAGT GTCATTGCAC GGCTACCCAA AATATTATAC Seq ————————————————————————————————————
LO2 CATCTTCTCT CAAATGAAAT CTTTTATGAA ACAATCCCCA CAGTGGAGGG
LO2 GTTTCACTTT GACGTTTCCA AGACTAAGCA AAGCATTTAA TTGATACAAG
LO2 TTGCTGGGAT CATTTGTACC CAAAATCCGG CGCGGCGCGG
LO2 AGGTCGCACG GCGGAGGCGG ACGCAAGAGA TCCGGTGAAT GAAACGAATC
LO2 GGCCTCAACG GGGGTTTCAC TCTGTTACCG AGGACTTGGA AACGACGCTG
LO2 ACGAGTTTCA CCAGGATGAA ACTCTTTCCT TCTCTCTCAT CCCCATTTCA Seq
L02 TGCAAATAAT CATTTTTAT TCAGTCTTAC CCCTATTAAA TGTGCATGAC Seq
L02 ACACCAGTGA AACCCCCATT GTGACTGGCC TTACGGCAAC ATTTGGATAT Seq
L02 CGAATTATGT CCAAAGAGCG AAGGTATCTG TTAGCTAATC ATCCGATCGG Seq ——ATGT CCAAAGAGCG AAGGTATCTG TTAGCTAATC ATCCGATCGG

LO6 TGGTCCTCGA TACTGTTGCC TGTTGGTACG GCACCACACC ACTCTGTTTT
Seq TGGTCCTCGA TACTGTTGCC TGTTGGTACG GCACCACAC ACTCTGTTTT
LO6 TATTAGGCCA GTCACAATGG CTAGTGTCAT TGCACGGCTA CCCAAAATAT Seq TATTAG
sed 191190
LO6 TATACCATCT TCTCTCAAAT GAAATCTTTT ATGAAACAAT CCCCACAGTG
Seq
LO6 GAGGGGTTTC ACTTTGACGT TTCCAAGACT AAGCAAAGCA
Seq ————————
LO6 ACAAGTTGCT GGGATCATTT GTACCCAAAA TCCGGCGCGG CGCGGGAGAA
Seq ————————
LO6 TGCGGAGGTC GCACGGCGGA GGCGGACGCA AGAGATCCGG TGAATGAAAC
Seq —————————
LO6 GAATCGGCCT CAACGGGGGT TTCACTCTGT TACCGAGGAC TTGGAAACGA
Seq ———————
·
LO6 CGCTGACGAG TTTCACCAGG ATGAAACTCT TTCCTTCTCT CTCATCCCCA Seq
Seq ————————
LO6 TTTCATGCAA ATAATCATTT TTTATTCAGT CTTACCCCTA TTAAATGTGC
Seq
LO6 ATGACACC AGTGAAACCC CCATTGTGAC TGGCCTTAGA GGTAAGTTTG
Seq ————————————————————————————————————
LO6 ATAGTACAGC CCACTACCAG CTCTAAATCA GTCAATGTAG TAGCTAATTC
Seg ATAGTACAGC CCACTACCAG CTCTAAATCA GTCAATGTAG TAGCTAATTC

NON-AUTONOMOUS TRANSPOSON GENE OF RICE, TRANSFORMED PLANT AND METHOD OF USE

RELATED APPLICATIONS

This application claims priority to PCT JP02/11585, and to Japanese Patent Application Nos. 2001-343002, 2002-9729, 2002-167345.

FIELD OF THE INVENTION

The present invention relates to a nonautonomous transposon gene, autonomous transposon gene and transposase gene of rice (Oryza sativa); and a method to transpose the 15 transposon gene; and transformed plants by the transposition.

DESCRIPTION OF THE BACKGROUND

A gene disruption method has been used as a tool to analyze genome of rice (Oryza sativa). To disrupt genomes of rice, a method to activate a segregation factor by mating an individual, wherein a transposase gene (transposition enzyme) is tranduced as an activator, with an individual, 25 wherein a segregation factor is introduced; a method to use T-DNA; and a method to use retrotransposon have been known. However, analysis of spontaneous mutants of rice has not served to find active transposons (Supplementary volume of Cell Engineering, Plant cell engineering series 14, 30 "Plant genome research protocols" 2000, February, Shujun press Co.).

On the other hand, a genome sequencing project is determining the nucleotide sequences of many plants as well 2

posons. However, enough elucidation has not been demonstrated. Additionally, a nucleotide sequence, assigned to a putative transposon gene has been found in a mutated rice induced by γ-irradiation (Tetsuya Nakazaki et al., "Polymorphic insertion of transposon-like sequence in mutable slender-granule gene slg locus" Japanese Society of Breeding 100th Conference, Autumn meeting, 2001, October).

Problems to be Solved by the Invention:

The inventors discovered an inverted repeated sequence characteristic to transposon genes in rice genome nucleotide sequence under investigation. Examining various tests on the possible transposon nucleotide sequence, the inventors confirmed that the nucleotide sequence is ascribed to a transposon gene (nonautonomous transposon).

Furthermore, the inventors discovered autonomous transposon genes on the basis of the nonautonomous transposon gene. Moreover, the inventors identified transposase genes, which enable to transpose the transposon gene.

Means of Solving the Problems:

The inventors, starting from chromosome No. 1, examined long terminal repeats (LTR) in rice genome sequence, which is registered seriatim in database. The inventors noticed a LTR on the clone, accession number AP002843, as shown in Table 1, investigated the sequence in detail and discovered the inverted repeat sequence characteristic to a transposon gene at the site of 144459th-144473rd and 144874th-144888th bases at adjacent downstream of LTR (FIG. 1, SEQ ID NO: 6). As disclosing in the example shown later, the inventors confirmed that the nucleotide sequence (SEQ ID NO: 1) located between the inverted repeats is a nonautonomous transposon gene, markedly transposable by such artificial treatment as anther culture.

TABLE 1

AP002843 Oryza	a sativa genomic DNA, chromosome 1, PA
ACCESSION	AP002843 NCBI SRS Genome-Net
ORGANISM	Oryza sativa NCBI SRS
LOCUS	AP002843 148762 bp DNA PLN 26-JAN-2001
FEATURES	Location/Qualifiers
source	1148762
	/chromosome="1"
	/clone="P0407B12"
	/cultivar="Nipponbare"
	/organism="Oryza sativa"
	/sequenced_mol="DNA"
LTR	139482139690
	/note="5' LTR"
CDS	139739144052
	/gene="P0407B12.28"
	/note="probably inactive due to frameshifts in CDS"
	/note="pseudogene, similar to Oryza longistaminata
	probable gag/pol polyprotein U72725"
	/pseudo
LTR	144047144255
	/note="3' LTR"
CDS	join(144653144692, 145148145311)
	/codon_start=1
	/gene="P0407B12.29"
	/note="hypothetical protein"
	/protein_id="BAB17191.1"
	translation="MRRSHGGGGRKRSVPSSSHPEKKAIDRIKREDAGRRAGRVSLVQ/
	PLAAFPATDGGGGGLARLLRWW"
	(SEQ. ID NO: 28)

as rice and the results are databanked. Furthermore, transsome extent, unique nucleotide sequences, whose information has enabled research on wider applications of trans-

Then, the inventors searched for homologous sequences poson genes, mobile genes in animal and plant, have, to 65 using the nonautonomous transposon gene (SEQ ID NO: 1) by Blast search. Most of the results of the search lead to the nonautonomous transposon gene (SEQ ID NO: 1) itself, but

additionally, accession numbers AP004236 and AP003968, which were expected as transposon genes, were found. Comparing the nucleotide sequence of AP004236 and AP003968, the inventors found that these are cloned on chromosome No. 6 and are the sequence of the identical 5 overlapped region.

3

Therefore, the homology between 1st–253rd bases of the nonautonomous transposon gene (SEQ ID NO: 1) and 89360th–89612nd bases of AP004236 was 252/253 (99%) and that between 254th–430th bases of the nonautonomous 10 transposon gene (SEQ ID NO: 1) and 94524th–94700th bases of AP004236 was 177/177 (100%). They are well-conserved sequences

Both nonautonomous transposon gene (SEQ ID NO: 1, 430 bp) and the transposon (SEQ ID NO: 2, 5341 bp) have 15 inverted repeats of 15 bp and TTA and TAA are recognized and inserted. Open Reading Frame (ORF) was searched on the basis of SEQ ID NO: 2 (5341 bp) and two kinds of putative ORFI and ORFII were obtained.

Open Reading Frame (ORF) was searched on the basis of 20 Sequence Number 2 (5341 bp) and two kinds of putative ORFI and ORFII were obtained.

The structure of the transposon gene comprising nucleotide sequence of SEQ ID NO: 2 is shown in the upper diagram of FIG. 9. The nonautonomous transposon gene 25 (SEQ ID NO: 1, 430 bp) is located at 1st-253rd and at 5165th-5341st bases, ORFI is located at 1526th-1914th bases and at 1939th-2663rd bases and ORFII is located at 3190th-4557th bases.

Furthermore, to obtain similar genes to the gene comprising nucleotide sequence of SEQ ID NO: 2, the inventors performed homological searches using nucleotide sequence of SEQ ID NO: 2 as Query (DNA for homological search) of Blast search and found accession numbers AP004753 (chromosome No. 2) and AP003714 (chromosome No. 6) as 35 well as the sequence of SEQ ID NO: 2 itself. These two clones have the identical nucleotide sequence (SEQ ID NO: 3) and located on different chromosomes (several copies). Since the nucleotide sequence is present also in indica (a cultivar of rice), the gene must be conserved in many 40 cultivars, from japonica to indica. The nucleotide sequence of SEQ ID NO: 3 (5166 bp) has inverted repeats, as the sequence of SEQ ID NO: 2 has, and TAA (3 bp) was also recognized and inserted.

Open Reading Frame (ORF) was searched on the basis of 45 the sequence of SEQ ID NO: 3 and ORFI and ORFII were obtained which may code two kinds of proteins. The structure of transposon gene comprising nucleotide sequence of SEQ ID NO: 3 is shown in the lower diagram of FIG. 9. The nonautonomous transposon gene (SEQ ID NO: 1, 430 bp) is 50 located at 1^{st} – 170^{th} and at 5092^{nd} – 5166^{th} bases, however, the homological nucleotide sequence to the nonautonomous transposon gene (SEQ ID NO: 1, 430 bp) is disappeared in the middle. ORFI is located at 1630^{th} – 2652^{nd} bases and ORFII is located at 2959th-4407th bases. The nucleotide 55 sequence of SEQ ID NO: 3 was compared between japonica (AP004753 and AP003714) and indica (Scaffold6962) and the homology of more than 90% was confirmed as shown in FIG. 10. Additionally, the inventors examined the mutation frequency of nonautonomous transposon gene (SEQ ID NO: 60 1, 430 bp) in indica, and confirmed that the sequence homology was more than 95% as shown in FIG. 11

The inventors have no idea on the function of ORFI in SEQ ID NOS 2 and 3, for the moment.

To examine whether ORFII encodes transposase (transposition enzyme) or not, the inventors checked whether the amino acid sequence of ORFII shares a conservative region

4

with that of known transposase gene. The amino acid sequences of ORFII in SEQ ID NO: 2 and in SEQ ID NO: 3 are shown as SEQ ID NOS 4 and 5, respectively. The alignment of amino acid sequences of these two ORFII (SEQ ID NOS 4 and 5) is shown in FIG. 12 and the homology of these sequences was more than 75% (77%). These two amino acid sequences have DXG/AF/F motif and YREK motif (SEQ ID NO: 39) (Q. H. Le, K. Turcotte and T. Bureau, Genetics 158: 1081–1088 (2001)), then it is concluded that thee belong to IS transposase family.

Also, the homology of the nucleotide sequences of ORFII in SEQ ID NO: 2 and that in SEQ ID NO: 3 was more than 75% (79.3%).

Therefore, the present invention is a transposon gene of rice consisting of a nucleotide sequence which is at least 95% homological to SEQ ID NO: 1. The DNA being at least 95% homological to SEQ ID NO: 1 is considered to be functional as nonautonomous transposon, which is transposable by anther culture or by the treatment with chemical agents. Also, the present invention is the transposon gene of rice, wherein enhancers or promoters are inserted.

Furthermore, the present invention is the transposon gene of rice, whose nucleotide sequence is at least 90% homological to the nucleotide sequence of SEQ ID NO: 2 or 3. The DNA being at least 90% homological to the nucleotide sequence of SEQ ID NO: 2 or 3 is considered to be functional as an autonomous transposon gene, which is transposable by anther culture or by the treatment with chemical agents.

Also, the present invention is the transposase gene of rice, whose DNA being at least 75% homological to the nucleotide sequence of 3190th-4557th bases off SEQ ID NO: 2 or the nucleotide sequence of 2959th-4407th bases of SEQ ID NO: 3. The DNA being at least 75% homological to these nucleotide sequences is considered to be functional as the gene, which enables transpose the transposons.

Also, the present invention is the transposase gene encoding a protein consisting of an amino acid sequence of SEQ ID NO: 4 or 5 or an amino acid sequence wherein one or several amino acids are deleted, substituted or added in said amino acid sequence. Also, the transposase could be a transposon gene of rice, whose amino acids sequence is at least 75% homological to SEQ ID NO: 4 or 5.

Moreover, the present invention is the transposase gene encoding this protein. Also, the present invention is the plasmid containing any one of said transposon genes. Still furthermore, the present invention is the plasmid containing promoters and anyone of said transposase genes. Such binary vector as Ti plasmid and pBI-121 plasmid can be used for the purpose. 35S promoter of cauliflower mosaic virus, heat shock promoter, chemotaxis promoter and others can be used for the purpose of this invention. There are no restrictions on the method of incorporation of promoters and said genomes and general method of genetic engineering can be applied.

Also, the present invention is the transfomants, wherein any of said transposon genes are transduced. Preferably, plants, especially, rice, barley, wheat or maize are used as the host. To transform these plants, using general method of genetic engineering, we can insert these genomes into said plasmid and transform the plants.

Still moreover, the present invention is the transfomants, wherein promoters and said transposase genes are transduced. Other transposon genes can be transduced, if necessary. Said promoters can be used for the present purpose. Preferably, plants, especially, barely, wheat or maize are used as the host. To transform these plants, using general

method of genetic engineering, we can insert said genomes into said plasmid and transform the plants.

Also, the present invention is the method for transposing any of said transposon genes, comprising subjecting said transformants to anther culture or treating any of the transformants with a chemical agent.

Furthermore, the present invention is the plant or the seed, which is transformed by the transposition of said transposon genes by any one of said methods. Preferably, rice or barley, 10 a vicinal species of rice, wheat or maize is used as the plant.

Also, the present invention is a method for determining the integrated region of transposon gene, which comprises the steps of transposing any one of said transposon gene by any one of the above methods, extracting DNA from the 15 plant obtained by the previous step, digesting said DNA by a restriction enzyme with no cutting sites inside the transposon gene, ligating said DNA fragments obtained by the previous step, conducting PCR for said DNA fragments obtained by the previous step, and determining the nucle- 20 otide sequence of said PCR products obtained by the previous steps. The primers of said PCR involve the oligonucleotides, which comprises 10 consecutive bases, preferably 10~20 consecutive bases, more preferably 10~15 consecutive bases in the nucleotide sequence from the 5'-end 25 of SEQ ID NO: 1; and the oligonucleotide, which comprises 10 consecutive bases, preferably 10~20 consecutive bases, more preferably 10~15 consecutive bases in the nucleotide sequence from the 3'-end of SEQ ID NO: 1, or the oligonucleotides, comprising the nucleotide sequences comple- 30 mentary to said sequences. Since the origonucleotide comprising 10~15 consecutive bases from the 5'-end of the nucleotide sequence overlaps with that comprising 10~15 consecutive bases in the nucleotide sequence from the 3'-end of that of SEQ ID NO: 1, we can use single kind of primer, 35 if the oligonucleotide bases comprises less than 15 consecutive bases. In other words, in this case, we can use the oligonucleotide comprising 10~15 consecutive bases in the nucleotide sequence from the 5'-end of SEQ ID NO: 1 or the oligonucleotides complementary to said nucleotide 40 sequences as the PCR primer. In this way, identification of the integration site of the transposon enables to find the disrupted genomes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a part (SEQ. ID NO: 6) of genomic nucleotide sequence of accession number AP002843. The inverted repeated sequences characteristic to the transposon gene are located at the positions of 144459 to 144473 and 144874 to 144888, immediately after LTR.

FIG. 2 shows the result of agarose gel electrophoresis of PCR products of the DNA region (Accession Number AP002843) containing the transposon DNA from four cultivars of rice mature leaves (Example 2). An approximately 850 bp band in Nihonbare shows that a transposon gene (430 bp) is inserted in the region. While, approximately 420 bp bands for Koshihikari, Hitomebore and Yamahoushi show that transposon genes are not inserted.

FIG. 3 shows the result of agarose gel electrophoresis of PCR products of the DNA region (Accession Number AP002843) containing transposon DNA in calli derived from Nihonbare seeds (Comparative Example 1).

FIG. 4 shows the result of agarose gel electrophoresis of 65 PCR products of the DNA region (Accession Number AP002843) containing transposon DNA in various calli

6

derived from Nihonbare anthers (Example 3). The DNA bands of approximately 420 bp demonstrate that the transposon gene is deleted.

FIG. 5 shows the result of agarose gel electrophoresis of DNA from various calli derived from Nihonbare anthers (Example 4). Lane 1 shows control Nihonbare and Lanes 2–10 show plant regenerated from anther derived-calli. DNA bands were detected using a probe comprising a part of the transposon nucleotide sequence. Lanes 2 and 6 show new bands (indicated by arrowheads), which were not found in control Nihonbare.

FIG. 6 is a photograph of a phenotypic transformer found in regenerated rice in example 4. The leaves of the rice are curly and short.

FIG. 7 shows the result of agarose gel electrophoresis of PCR products of the DNA region containing the transposon DNA from various calli derived from Nihonbare seeds (Example 5). The numbers on the upper margin indicate concentrations of 5-azacytidine. The DNA bands of approximately 300 bp demonstrate that the transposon gene (430 bp) is deleted.

FIG. **8** shows the base sequence of 4 clones, from which the transposon gene (430 bp) is deleted (SEQ. ID NOS.: 36, 30, 31, 32 and 33, respectively in order of appearance).

FIG. 9 shows the structure of the transposon genes with nucleotide sequences of SEQ. ID NOS.: 2 and 3.

FIG. 10 shows the homology of nucleotide sequence between japonica (AP004753 and AP003714) and indica (Scaffold6962) in the region of SEQ. ID NO.: 3.

FIG. 11 shows the mutation frequency of transposon gene (SEQ. ID NO: 1, 430 bp) in indica.

FIG. 12 shows the alignment of amino acid sequence of ORFII in SEQ. ID NO.: 2 and in SEQ. ID NO.: 3. The homology of their sequence is more than 75% (77.8%; in the figure, the homological amino acids are shown by *) and both sequences have DXG/AF/F motif and YREK motif (SEQ ID NO: 39). The upper line shows the amino acid sequence of SEQ ID NO: 4 (correspond to ORF II of SEQ. ID NO.: 2), and the lower line shows that of SEQ. ID NO.: 5 (correspond to ORF II of SEQ. ID NO.: 3).

FIG. 13—left shows the result of agarose gel electrophoresis of PCR products of the DNA region (accession number AP004236) containing transposon DNA in various calli derived from anthers of Nihonbare (Example 6). The DNA bands of 1.2 kbp indicate deletion of the transposon gene. FIG. 13—right shows the result of agarose gel electrophoresis of the DNA region (accession number AP004236) containing the transposon DNA in various calli derived from seeds of Nihonbare (Comparative Example 2).

FIG. 14 is the result of gel electrophoresis of DNA, which shows presence or absence of the autonomous transposon gene (SEQ ID NO: 2; shown on the upper margin of the photograph) in various rice cultivars (Example 7). A DNA band (shown by an arrow) indicating the presence of the autonomous transposon gene (SEQ. ID NO.: 2) was found in Nihonbare (lane 1) and in Koshihikari (lane 2), while, the DNA band was absent in Taichung No. 65 (lane 3) and in Kasarasu (lane 4).

FIG. 15 is the result of gel electrophoresis of DNA from calli derived from anthers of Taichung No. 65, wherein the autonomous transposon gene from Nihonbare (SEQ. ID NO.: 2) was transduced (example 8). The DNA bands (shown by an arrow) indicating that the autonomous transposon gene (SEQ. ID NO.: 2) was absent in original Taichung No. 65 (lane 2), but present in calli derived from

anthers of Taichung No. 65 (lanes 3 to 6), wherein the autonomous transposon gene (SEQ. ID NO.: 2) was transduced

FIG. 16 is the result of gel electrophoresis of PCR products of the DNA region containing the nonautonomous 5 transposon gene of calli derived from anthers of Taichung No. 65, wherein the autonomous transposon gene from Nihonbare (SEQ. ID NO.: 2, Example 8) was transduced. On L06 gene locus, such size of DNA band (shown by an arrow) that is suggestive of deletion of the nonautonomous 10 transposon gene, was observed.

FIG. 17 shows the nucleotide sequence of such size of DNA fragment SEQ. ID NO.: 34 that is suggestive of deletion of the nonautonomous transposon gene located in L02 gene locus (SEQ ID NOS 37). The nucleotide sequence 15 of the nonautonomous transposon gene (SEQ. ID NO.: 1) is deleted

FIG. 18 shows the nucleotide sequence of such size of DNA fragment SEQ. ID NO.: 35 that is suggestive of deletion of the nonautonomous transposon gene located in 20 L06 gene locus (SEQ ID NO: 38). The nucleotide sequence of the nonautonomous transposon gene (SEQ. ID NO.: 1) is deleted.

FEATURE OF EMBODIMENT

First of all, this invention is the nonautonomous transposon gene (SEQ. ID NO.: 1) of rice with the DNA size of 430 bp. This transposon gene has terminal inverted repeats with the size of 15 bp and has a symmetric structure with 215 bp $_{30}$ (CT).

Then, two kinds of transposon genes (SEQ. ID NOS.: 2 and 3) encode transposases (SEQ ID NOS 4 and 5) and are autonomous transposon genes.

An autonomous transposon gene is characteristic in 35 encoding transposases, is mobile and induces transposition of a nonautonomous transposon gene. Whereas, a nonautonomous transposon gene is lacking a transposase, is not mobile and needs a help of autonomous transposon gene to transpose. The comparison structurally of autonomous transposon gene with nonautonomous gene, demonstrated the characteristics that the nucleotide sequences of both genes are homological and are well conserved except the DNA region deleted.

The plants carrying the transposon of this invention; or the plants transformed by the transposon of this invention; or the plants carrying the transposase gene of this invention; or the plants transformed by the transposase gene of this invention enable to transpose the transposons of this invention by activation, induced by irradiation; induced by treatment with chemical agents; or induced by anther culture. Since transposons can be greatly activated by these methods, transposition of an artificial transposon takes place easily.

Treatment with chemical agents is carried out by treating seeds, leaves, roots, and stems of axillary buds of a plant 55 such as rice; or by treating calli derived from them, with chemical agents. For example, the treatment of these plants with 5-azacytidine or 5-azadeoxycytidine is generally carried out by transplanting them on solid or liquid medium containing 0.01~5 mM, preferably 0.05~2 mM of these 60 chemical agents. As used therein, callus means a cellular mass, formed by dedifferentiation of differentiated plant organs, obtained by culturing plant organs such as roots, leaves or stems in an appropriate medium supplemented with appropriate concentrations of auxin or cytokinin. This 65 cellular mass is not differentiated and has totipotency in differentiation. Totipotency of differentiation means that the

8

cellular mass can regenerate new organs such as buds or roots. For example, a single leaf can produce hundreds of clones, mediated by callus.

Anther culture is a kind of method to produce doubled haploid breeding. Anthers are taken out from the tip of stamens of rice and are cultured in a medium supplemented mainly with such hormone as auxin together with such polyploidy-iducing chemicals as colchicine and others. Since haploid cells can easily turn to diploid, it is easy to obtain diploid cells from anthers, i.e. haploid cells with a set of genes. Anther-derived callus of rice spontaneously doubles the number of chromosome, resulting in doubled haploid breeds, during prolonged culture period. A homozygote seed, a mutant plant, can be obtained by regeneration culture of the callus. We mainly, for regeneration culture, used the medium supplemented with such hormone as cytokinin.

The disrupted transposon gene, due to the insertion of transposed transposon gene, could be identified using the probe prepared by PCR using a primer set derived from appropriate two different nucleotide sequences in the transposon gene. An examination of correlation between transoformed rice mutant and its gene enables to clarify the function of the gene.

It is a challenging object to identify easily a disrupted gene by a transposon tagging system. A lot of methods are known to determine the exact integration site of a transposon such as transposon display. However, they usually accompany complicated handlings. We inventors established a simple method using inverse PCR. In this method, an important key step is the design of PCR primers in the interior of the transposon gene. DNA is isolated from plants, digested by a restriction enzyme (we used AluI in this example), which has no cutting sites in the internal region of the transposon gene, and ligated intramolecularly to circularize the DNA by a ligase. On the basis of the obtained circular DNA as a template, we performed a PCR reaction using a primer set, which originally pointed away each other but which, after ligation, will prime towards one another around the circular DNA. The designed primer set, which consists of the oligonucleotide comprising at least 10 consecutive bases from the 5'-end of the nucleotide sequence of SEQ. ID NO.: 1, and the oligonucleotide comprising at least 10 consecutive bases from the 3'-end of the nucleotide sequence of SEQ. ID NO.: 1, preferably in the internal region of terminal inverted repeats (15 consecutive bases from both the 5'- and 3'-end of SEO. ID NO.: 1); or oligonucleotides comprising the nucleotide sequence complementary to them, can be used for the inverse PCR. DNA sequencing of the obtained PCR products clarifies the integration site of the transposon gene. As an example of application of the nonautonomous transposon (SEQ. ID NO.: 1), integration of enhancers or promoters into the internal region of the nonautonomous transposon enables to induce transposition of these enhancers or promoters together with the nonautonomous transposon. More specifically, transducing the genome, wherein enhancers or promoters are inserted, into rice or other plants; or culturing of anthers; or treating them with chemical agents; or inducing the transposition of the genome, we can demonstrate active expression other genomes flanking to the integration site of the transposed genome and, as a result, we can get a lot of mutants with gain-of-function.

As promoters and enhancers for said example, we can use the 35S promoter of cauliflower mosaic virus and four sets in series of enhancer region (at positions –90 to –440 in the sequence) in the 35S promoter, respectively. There are no

restrictions on the integration site for the enhancer except the internal region of the inverted repeats of the genome with SEQ. ID NO.: 1. Also on the integration site of the promoters, there are no restrictions except the internal region of the inverted repeats of the genome with SEQ. ID NO.: 1 and 5 except nonexistence of methionine in the adjacent downstream region of the integrated site. Preferably, both enhancers and promoters are integrated at position around 250 of SEQ. ID NO.: 1, if there are no troubles in the transposition of the transposon. To integrate enhancers and promoters, we 10 can use the restriction enzyme site, which divides in two the nucleotide sequence of the genome of SEQ. ID NO.: 1 or use the cloning sites prepared by PCR.

EFFECTS OF THE INVENTION

The present invention, for the first time, demonstrated mobile transposon genes of rice, since previously these rice genes have not been known. Furthermore, inventors confirmed, by such simple method as anther culture and others, 20 that nonautonomous transposon genes are transposable. In other words, we succeeded to provide a new method to transpose artificially a nonautonomous transposon gene.

Also in the examples, we demonstrated that nonautonomous transposon genes are deletable by such artificial treatment as anther culture and others. Furthermore, we directly confirmed the genetic locus, wherein nonautonomous transposon genes are inserted. Since we found artificially transposable transposon genes, we succeeded, for the first time, in preparing an artificial system of transposon tagging in 30 rice.

Furthermore, the present invention demonstrated autonomous transposon genes (SEQ. ID NOS.: 2 and 3) of rice and transposase genes included in the genomes. The inventors confirmed, by such simple method as anther culture or drug 35 treatment, that the transposon gene could be transposed in rice, wherein the autonomous transposon gene was transduced. In other words, the present invention provides a method to transform these plants easily and artificially, whereby the autonomous transposon genes or transposase 40 genes are transduced artificially into rice and other plants.

The autonomous transposon genes of this invention can be used as a source of random mutagens and can produce a system of transposon tagging in rice and other plants. This invention can be used to produce several dozen of plant 45 breeds, wherein the transposons are randomly transposed. Since spontaneous transposition in growing natural plants are very rare, efficient induction of transposition can be achieved in callus derived from induced anthers in plant tissue culture or callus derived from seeds treated with 5-azacytidine. It is possible to induce efficient transposition in plants other than rice, wherein the autonomous transposon genes of this invention are transduced by a transformation method. The mutated plants thus obtained can be analyzed by genetic analysis or by reverse genetic analysis.

Genetic analysis is a method to isolate a causal gene from phenotypes of mutants. If a transposon gene of this invention is linked to a phenotype of mutants, the causal gene of the phenotype can easily be isolated by the help of tagging (the transposon).

For example, if one wishes to look for a rice breed tolerant to salt, one may examine the tolerance of rice grown from seeds from the system of transposon tagging and may find the desired rice.

Reverse genetic analysis is a method to isolate a mutant, 65 wherein genetic function is lost, from a pool of wild host. If a desired gene of a plant is tagged by the transposon, the

10

phenotype related to the gene should be mutated. DNA is isolated from various mutants and a genomic library of a tagged genome is prepared. We can request a transposon tagging system from a public stock centers. Screening the transposon tagging system, we can isolate tagged desired gene-transposon ensemble by PCR.

Recent progress of genome project made it cyclopaedically possible to prepare a set of mutants corresponding to entire genomes of rice and to prepare a database for the site of insertion of transposon corresponding to the mutants. User can order seeds of desired mutant by searching the database.

The following examples illustrate this invention, however, it is not intended to limit the scope of the invention.

EXAMPLE 1

DNA was extracted from mature leaves of Nihonbare, a rice cultivar (Kikuchi et al. (1998) Plant Biotechnology 15: 45-48). To amplify the central DNA region between both inverted terminal repeats located on both ends of transposon DNA, we used the oligonucleotide comprising the sequence of SEQ. ID NO.: 7 as PCR primers. We carried out PCR using GENEAMP9600® system (ABI Co.). Each reaction mixture (100 µl) contained 200 ng of DNA, 2.5 units of TAKARA EX TAQ® (Takara Co.), 10 µl of 10×Ex Taq buffer, 8 µl of dNTP mixture (2.5 mM each dNTP) and 200 pmol of primers. Each cycle of the polymerase reaction consisted of a denaturation step at 94° C. for 30 sec, an annealing step at 55° C. for 1 min and an extension step at 72° C. for 12 min. This cycle was repeated 35 times. After the reaction, DNA was separated on 1% SEAKEM GTG agarose® (FMC Co.). The amplified DNA fragment with approximately 450 bp was recovered from the gel and it was subcloned in plasmid pCRII-TOPO using TA CLONING KIT® (In Vitrogen). The nucleotide sequence of the obtained clone was determined using 310 DNA SEQUENCER® (ABI Co.). The nucleotide sequence thus determined was shown as SEQ. ID NO.: 1, consisted of 430 bp.

EXAMPLE 2

DNA was isolated from leaves of 4 cultivars of rice, Nihonbare, Koshihikari, Hitomebore and Yamahoushi. To amplify the DNA region containing the transposon DNA (accession number AP002843) by PCR, we used the oligonucleotides comprising the sequences of SEQ. ID NOS.: 8 and 9 as PCR primers. Each reaction mixture (100 µl) contained 200 ng of DNA, 2.5 units of AMPLITAQ GOLD® (ABICo.), 10 µl of GENEAMP10®×PCR buffer (contains 15 mM MgCl₂), 10 µl of GENE AMP MIX-TURE® (2 mM each dNTP) and 200 pmol of primers. Each 55 cycle of the polymerase reaction consisted of a denaturation step at 96° C. for 30 sec, an annealing step at 55° C. for 1 min and an extension step at 72° C. for 1 min. This cycle was repeated 35 times. After the reaction, DNA was separated on 2% LO3 AGAROSE® (Takara Co.). FIG. 2 shows the result 60 of the agarose gel electrophoresis. The DNA band of approximately 850 bp was found only for Nihonbare (lane 2). The DNA band of approximately 850 bp indicates the DNA fragment, including the transposon gene (430 bp) of SEQ. ID NO.: 1 as described in example 1. While, DNA fragments of 420 bp, not including the transposon gene, were found for Koshihikari, Hitomebore and Yamahoushi. The fact that the gene comprising the sequence of SEQ. ID

NO.: 1 was found only for Nihonbare among these rice cultivars suggests that the gene may function as a transposable element.

COMPARATIVE EXAMPLE 1

The seeds of Nihonbare were sterilized in 3% sodium hypochlorite solution for 15 to 30 min, washed with sterilized water, inoculated on a 90×20 mm of Petri dish (Iwaki Co.) containing 20~30 ml of media at the rate of 9 seeds per 10 dish and subjected to growth culture under light for 24 h at 30° C. We used a solid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 2 mg of 2,4dichloro-phenoxyacetic acid (Sigma Co.), 0.3 g of casamino 15 acids (DIFCO), 0.1 g of myo-inositol (Sigma Co.), 2.878 g proline (Wako), 30 g of sucrose (Wako), 2 g of GELRITE® (Wako) in 1 L of medium. On the 10^{th} day of inductive culture, the calli derived from induced seeds were transplanted to a 90×20 mm of Petri dish (Iwaki Co.) containing 20 20~30 ml of medium and subjected to growth culture under light for 24 h at 30° C. We used a solid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 2 mg of 2,4-dichloro-phenoxyacetic acid (Sigma Co.), 0.3 g of 25 casamino acids (DIFCO), 0.1 g of myo-inositol (Sigma Co.), 2.878 g proline (Wako), 30 g of sucrose (Wako), 2 g of GELRITE® (Wako) in 1 L of medium.

DNA was extracted from calluses derived from seeds in growth culture for two weeks. To amplify the DNA region 30 containing the transposon DNA by PCR, we used the oligonucleotides comprising the sequences of SEQ. ID NOS.: 8 and 9 as PCR primers as described in Example 2. Each reaction mixture (100 µl) contained 200 ng of DNA, 2.5 units of GOLD AMPLITAQ GOLD® (ABI Co.), 10 µl 35 of GENEAMP10®×PCR buffer (contains 15 mM MgCl₂), 10 μl of GENE AMP MIXTURE® (2 mM each dNTP) and 200 pmol of primers. Each cycle of the polymerase reaction consisted of a denaturation step at 96° C. for 30 sec, an annealing step at 55° C. for 1 min and an extension step at 40 72° C. for 1 min. This cycle was repeated 35 times. After the reaction, DNA was separated on 2% LO3 AGAROSE® (Takara Co.). FIG. 3 shows the result of the agarose gel electrophoresis. Only a single DNA band of approximately 850 bp was found. The DNA band of approximately 850 bp 45 indicates the DNA fragment, including the transposon gene. The expected DNA band of 420 bp, wherein transposon gene was deleted, could not be found. The probability that the band of size of approximately 420 bp is found was 0 callus per 64 calli (0%). Therefore, it was confirmed that transpo- 50 son genes were not mobile in seed (scutellum)-derived calli.

EXAMPLE 3

Spikes of Nihonbare were harvested at pre-emergence, 55 kept in cold treatment for 10 days at 10° C., sterilized in 1% sodium hypochlorite solution for 1 min and washed with sterilized water. Then, anthers were picked out from the floret, seeded in a 35×10 mm Petri dish (CORNING Co.) containing 3 ml of liquid medium at the rate of 50 anthers 60 per dish and subjected to induction culture under light for 24 h at 30° C. Used was a liquid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 2 mg of 2,4-dichloro-phenoxyacetic acid (Sigma Co.), 30 g of 65 sucrose (Wako) in 1 L of medium. After 3~4 weeks of inductive culture, the calli derived from induced anthers

12

were transplanted to a 90×20 mm of Petri dish (Iwaki Co.) containing 20~30 ml of medium and subjected to growth culture under light for 24 h at 30° C. We used a solid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 2 ml of α -naphthalene acetic acid solution (Sigma Co.), 2 ml of kinetin solution (Sigma Co.), 3 g of casamino acids (DIFCO), 30 g of sucrose (Wako), 2 g of GELRITE® (Wako) in 1 L of medium.

DNA was extracted from calli derived from anthers in growth culture for 2 weeks. To amplify the DNA region containing the transposon DNA by PCR, we used the oligonucleotides comprising the sequences of SEQ. ID NOS.: 8 and 9 as PCR primers as described in example 2. Each reaction mixture (100 µl) contained 200 ng of DNA, 2.5 units of AMPLITAQ GOLD® (ABI Co.), 10 µl of GENEAMP10®×PCR buffer (contains 15 mM MgCl₂), 10 μl of GENE AMP MIXTUR® (2 mM each dNTP) and 200 pmol of primers. Each cycle of the polymerase reaction consisted of a denaturation step at 96° C. for 30 sec, an annealing step at 55° C. for 1 min and an extension step at 72° C. for 1 min. This cycle was repeated 35 times. After the reaction, DNA was separated using 2% LO3 AGAROSE® (Takara Co.). FIG. 4 shows the result of the agarose gel electrophoresis. As shown in FIG. 4, two DNA bands of approximately 850 bp and 420 bp were obtained. The DNA band of approximately 850 bp indicates the DNA band including a transposon gene. While, the band of approximately 420 bp indicates that transposon genes were deleted. The probability that the DNA band of approximately 420 bp is observed was 11 calli per 64 calli (17.2%).

Since the DNA bands of approximately 420 bp, indicating the deletion of the transposon gene, was the PCR products from anther derived calli in this example, the amplified DNA fragments (approximately 420 bp, N=5) were recovered from the gel and subcloned into plasmid PCRII-TOPO USING TA CLONING KIT® (In Vitrogen). The nucleotide sequence of 5 clones thus obtained was determined by 310 DNA SEQUENCER® (ABI Co.). The alignment of these nucleotide sequences clarified the absence of the transposon gene sequence in these 5 clones (data not shown). Therefore, the inventors confirmed the deletion of the transposon gene on the basis of nucleotide sequences.

In comparative example 1, the transposon gene in scutellum (seed) derived cell cultures was not mobile, however, in this example, the transposon gene in anther derived cell cultures was mobile highly frequently.

EXAMPLE 4

Spikes of Nihonbare were harvested at pre-emergence, kept in cold treatment for 10 days at 10° C., sterilized in 1% sodium hypochlorite solution for 1 min and washed with sterilized water. Then, anthers were picked out from the floret, seeded in a 35×10 mm Petri dish (CORNING Co.) containing 3 ml of liquid medium at the rate of 50 anthers per dish and subjected to induction culture under light for 24 h at 30° C. We used a liquid medium consisting of 4 g of CHU(N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 2 mg of 2,4dichloro-phenoxyacetic acid (Sigma Co.), 30 g of sucrose (Wako) in 1 L of medium. After 3~4 weeks of inductive culture, the calli derived from induced anthers were transplanted to a 90×20 mm of Petri dish (Iwaki Co.) containing 20~30 ml of medium and subjected to growth culture under light for 24 h at 30° C. We used a solid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma

Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 2 ml of α-naphthalene acetic acid solution (Sigma Co.), 2 ml of kinetin solution (Sigma Co.), 3 g of casamino acids (DIFCO), 30 g of sucrose (Wako), 2 g of GELRITE® (Wako) in 1 L of medium. The anther derive calli in growth 5 culture for two weeks were transplanted in a 90×20 mm Petri dish (Iwaki Co.) with 20~30 ml of medium and were cultured for regeneration under light for 24 h, at 30° C. We used a solid medium consisting of 4.3 g of MS BASAL SALT MIXTURE® (Gibcobrl Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 10 ml of 6-benzylamino-purine solution (Sigma Co.), 2 ml of α-naphthalene acetic acid solution (Sigma Co.), 2 g of casamino acids (DIFCO), 30 g of sorbitol (Wako), 30 g of sucrose (Wako), 2 g of GEL-RITE® (Wako) in 1 L of medium. The regenerated plant, in 15 regeneration culture for 3~4 weeks, was transplanted in a growth culture and, when it was grown up, transferred to the soil. As a growth medium, we used a solid medium consisting of 4.3 g of MS BASAL SALT MIXTURE® (Gibcobrl. Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma 20 Co.), 30 g of sucrose (Wako) and 2 g of GELRITE® (Wako) in 1 L of medium.

DNA was extracted from 9 young seedlings, regenerated from anther-derived calli by CTBA method. The extracted DNA was digested with a restriction enzyme HindIII, sepa- 25 rated on 0.8% LO3 AGAROSE® (Takara Co.) gel electrophoresis and transferred to a Nylon membrane (HybondN+) (Amersham Co.) by alkaline blotting. The DIG LUMINES-CENCE DNA DETECTION KIT® (Roche Co.) was used for Southern hybridization. The PCR DIG PROBE SYN- 30 THESIS KIT® (Roche Co.) was used for preparation of probes. To amplify the internal DNA region containing the transposon DNA by PCR, we used the oligonucleotides comprising the sequences of SEQ. ID NOS.: 10 and 11 (both sequences are located inside the SEQ. ID NO.: 1 (transposon 35 gene)) as PCR primers as described in example 2. FIG. 5 shows the result of the agarose gel electrophoresis. As shown in FIG. 5, two new bands (indicated by arrows), which were not observed in control Nihonbare, were found in Lanes 2 and 6. These two bands show that the transposon 40 gene was inserted in these seedlings and then disrupted.

On the basis of the present example, it was clarified that the transposon gene was inserted to new genetic loci. Furthermore, an example of morphological mutation (the relevant gene is not determined) was found in regenerated 45 gene could be obtained from a single seed. rice as shown in FIG. 6 and the example may suggest that genes related to morphology was disrupted by the insertion of the transposon gene.

EXAMPLE 5

Seeds of Nihonbare were sterilized in 3% sodium hypochlorite solution for 15~30 min, washed with sterilized water, inoculated on a 90×20 mm of Petri dish (Iwaki Co.) containing 20~30 ml of media at the rate of 9 seeds per dish 55 and subjected to induction culture under light for 24 h at 30° C. We used a solid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 2 mg of 2,4dichloro-phenoxyacetic acid (Sigma Co.), 0.3 g of casamino 60 acids (DIFCO), 0.1 g of myo-inositol (Sigma Co.), 2.878 g proline (Wako), 30 g of sucrose (Wako), 2 g of GELRITE® (Wako) in 1 L of medium.

After several days, calli were started forming from scutellum inside rice seeds and changed to cream-colored ones 65 with 5 mm length on the 10^{th} day of culture. The creamycolored calli with 5 mm length were transplanted to growth

14

media supplemented with 5-azacytidine (Sigma Co.) at either 0 mM, 0.01 mM, 0.03 mM, 0.05 mM, 0.1 mM or 0.3 mM, respectively, and subjected to growth culture under light for 24 h at 30° C. We used a solid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 2 mg of 2,4-dichloro-phenoxyacetic acid (Sigma Co.), 0.3 g of casamino acids (DIFCO), 0.1 g of myo-inositol (Sigma Co.), 2.878 g proline (Wako), 30 g of sucrose (Wako), 2 g of GELRITE® (Wako) in 1 L of medium.

DNA was extracted by DNEASY PLANT MINI KIT® (QIAGEN) from calli derived from seeds in growth culture for 2 weeks. To amplify the DNA region containing the transposon DNA by PCR, and oligonucleotides comprising the sequences of SEQ. ID NOS.: 12 and 13 as PCR primers were used.

As PCR reaction mixture, HOTSTARTAQ MASTER MIX KIT® (QIAGEN) was used.

Each cycle of the polymerase reaction consisted of a denaturation step at 96° C. for 30 sec, an annealing step at 55° C. for 1 min and an extension step at 72° C. for 1 min. This cycle was repeated 45 times. After the reaction, DNA was separated on 2% LO3 AGAROSE® (Takara Co.).

Two DNA bands of approximately 730 bp and 300 bp were observed for calli cultured supplemented with 0.03 mM-0.3 mM of 5-azacytidine (FIG. 7). The DNA band of approximately 730 bp indicates the DNA band including a transposon gene. While, the DNA band of approximately 300 bp indicates the DNA bands not including the transposon gene (430 bp).

These DNA fragments (300 bp) were recovered from the gel and subcloned into plasmid PCRII-TOPO USING TA CLONING KIT® (InVitrogen) The nucleotide sequence of 4 clones thus obtained was determined by 310 DNA SEQUENCER® (ABI Co.). The nucleotide sequences of 4 clones were subjected to a multiple alignment as shown in FIG. 8. No transposon gene sequence was found in these 4

This example showed that the transposition of the transposon gene of this invention could be induced even for seed-derived calli by means of 5-azacytidine, a demethylating agent. Based on this result, it can be expected that several hundreds of clones transposed by this transposon

EXAMPLE 6

Spikes of Nihonbare were harvested at pre-emergence, 50 kept in cold treatment for 10 days at 10° C., sterilized in 1% sodium hypochlorite solution for 1 min and washed with sterilized water. Then, anthers were picked out from the floret, seeded in a 35×10 mm Petri dish (CORNING Co.) containing 3 ml of liquid medium at the rate of 50 anthers per dish and subjected to induction culture under light for 24 h at 30° C. A liquid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 2 mg of 2,4dichloro-phenoxyacetic acid (Sigma Co.), 30 g of sucrose (Wako) in 1 L of medium was used. After 3~4 weeks of inductive culture, the calli derived from induced anthers were transplanted to a 90×20 mm of Petri dish (Iwaki Co.) containing 20~30 ml of medium and subjected to growth culture under light for 24 h at 30° C. We used a solid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 2 ml of α-naphthalene acetic acid solution (Sigma

Co.), 2 ml of kinetin solution (Sigma Co.), 3 g of casamino acids (DIFCO), 30 g of sucrose (Wako), 2 g of GELRITE® (Wako) in 1 L of medium.

DNA was extracted from calli derived from anthers in growth culture for 2 weeks (Kikuchi et al. (1998) Plant 5 Biotechnology 15: 45–48). To amplify the DNA region containing the transposon DNA by PCR, we used the oligonucleotides comprising the sequences of SEQ. ID NO.: 14 (88933rd–88962nd bases of AP004236) and SEQ. ID NO.: 15 (95545th–95574th bases of AP004236) as PCR primers. 10 Each reaction mixture (100 μl) contained 200 ng of DNA, 2.5 units of TAKARA LA TAQ® (Takara Co.), 10 μl of 10×LA PCR BUFFER II®, 6 μl of 25 mM MgCl₂, 8 μl of dNTP mixture (2.5 mM each dNTP) and 100 pmol of primers.

Each cycle of the polymerase reaction consisted of a denaturation step at 94° C. for 30 sec and an extension step at 68° C. for 12 min. This cycle was repeated 35 times. After the reaction, DNA was separated on 0.8% LO3 AGAR-OSE® (Takara Co.) gel electrophoresis. The DNA band of 20 approximately 6.6 kbp indicates the DNA band including the transposon gene (5341 bp) of this invention. Since the size of the transposon of this invention is approximately 5.4 kbp, the DNA band of approximately 1.2 kbp could be expected when this transposon gene is deleted. A DNA band of 25 approximately 1.2 kbp was obtained in this example (FIG. 13). These results show that the transposon gene is mobile in anther-derived calli. The probability, that the DNA band of approximately 1.2 kbp was observed in calli, was three calli per 64 calli (4.7%). This example proved that the MITE 30 of rice with the nucleotide sequence of SEQ. ID NO.: 2 was mobile in anther-derived calli.

COMPARATIVE EXAMPLE 2

Seeds of Nihonbare, a rice cultivar, were sterilized in 3% sodium hypochlorite solution for 15~30 min, washed with sterilized water, inoculated on a 90×20 mm of Petri dish (Iwaki Co.) containing 20~30 ml of media at the rate of 9 seeds per dish and subjected to induction culture under light 40 for 24 h at 30° C. Used was a solid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 2 mg of 2,4-dichloro-phenoxyacetic acid (Sigma Co.), 0.3 g of casamino acids (DIFCO), 0.1 g of myo-inositol (Sigma Co.), 45 2.878 g proline (Wako), 30 g of sucrose (Wako), 2 g of GELRITE® (Wako) in 1 L of medium. On the 10th day of inductive culture, the calli derived from induced seeds were transplanted to a 90×20 mm of Petri dish (Iwaki Co.) containing 20~30 ml of medium and subjected to growth 50 culture under light for 24 h at 30° C. Used was a solid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLU-TION® (Sigma Co.), 2 mg of 2,4-dichloro-phenoxyacetic acid (Sigma Co.), 0.3 g of casamino acids (DIFCO), 0.1 g of 55 myo-inositol (Sigma Co.), 2.878 g proline (Wako), 30 g of sucrose (Wako), 2 g of GELRITE® (Wako) in 1 L of medium. DNA was extracted from calli derived from seeds in growth culture for two weeks (Kikuchi et al. (1998) Plant Biotechnology 15: 45-48). To amplify the DNA region 60 containing the transposon DNA by PCR, we used the oligonucleotides comprising the sequences of SEQ. ID NOS.: 14 and 15 as PCR primers. Each reaction mixture (100 µl) contained 200 ng of DNA, 2.5 units of TAKARA LA TAQ® (Takara Co.), 10 µl of 10×LA PCR BUFFER II®, 65 6 μl of 25 mM MgCl₂, 8 μl of dNTP mixture (2.5 mM each dNTP) and 100 pmol of primers. Each cycle of the poly16

merase reaction consisted of a denaturation step at 94° C. for 30 sec and an extension step at 68° C. for 12 min. This cycle was repeated 35 times. After the reaction, DNA was separated on 0.8% LO3 AGAROSE® (Takara Co.) gel electrophoresis. A single DNA band of approximately 6.6 kbp, but not a band of approximately 1.2 kbp, was observed for all calli samples from seeds (FIG. 13). The result implied that transposon genes were not mobile in seed derived-calli. The probability that the DNA band of approximately 1.2 kbp was observed in seed-derived callus is 0 callus per 64 calli (0%).

EXAMPLE 7

In this example, to look for a cultivar, wherein the autonomous transposon gene (SEQ. ID NO.: 2) is not included and to clarify whether there is a difference in the efficiency of the transposition of a nonautonomous transposon gene (SEQ. ID NO.: 2) and those without the gene, we induced anther-derived callus from cultivars not including autonomous transposon gene (SEQ. ID NO.: 2) and checked the efficiency of the transposition of a nonautonomous transposon gene.

DNA was isolated by CTAB method from leaves of 4 kinds of rice cultivars, Nihonbare, Koshihikari, Taichung No. 65 and Kasarasu. The isolated DNA was digested by a restriction enzyme, HindIII, separated by 1.0% LO3 AGA-ROSE® gel electrophoresis, transferred to a Nylon membrane (HybondN+, Amersham Co.) by an alkaline blotting and detected by DIG LUMINESCENCE DNA DETEC-TION KIT® (Roche Co.) using Southern hybridization. The PCR DIG PROBE SYNTHESIS KIT® (Roche Co.) was used for preparation of probes. To amplify the DNA region specific to the autonomous transposon gene by PCR, we 35 used the oligonucleotides comprising the sequences of SEQ. ID NOS.: 16 and 17 as PCR primers. The result of Southern hybridization shows that one copy of autonomous transposon gene exists in both Nihonbare and Koshihikari, but not in Taichung No. 65 and Kasarasu (FIG. 14).

Then, we induced callus derived from anthers of Taichung No. 65 and examined whether nonautonomous transposon gene (SEQ. ID NO.: 1) was transposed.

Spikes of Taichung No. 65 were harvested from the head spout before forming the spikes, kept in cold treatment for 10 days at 10° C., sterilized in 1% sodium hypochlorite solution for 1 min and washed with sterilized water. Then, anthers were picked out from the caryopsis, seeded in a 35×10 mm Petri dish (CORNING Co.) containing 3 ml of liquid medium at the rate of 50 anthers per dish and subjected to induction culture under light for 24 h at 30° C. Used was a liquid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 2 mg of 2,4dichloro-phenoxyacetic acid (Sigma Co.), 30 g of sucrose (Wako) in 1 L of medium. After 3~4 weeks of inductive culture, the calli derived from induced anthers were transplanted to a 90×20 mm of Petri dish (Iwaki Co.) containing 20~30 ml of medium and subjected to growth culture under light for 24 h at 30° C. Used was a solid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURES (Sigma Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 2 ml of α -naphthalene acetic acid solution (Sigma Co.), 2 ml of kinetin solution (Sigma Co.), 3 g of casamino acids (DIFCO), 30 g of sucrose (Wako), 2 g of GELRITE® (Wako) in 1 L of medium.

DNA was extracted from calli derived from anthers in growth culture for 2 weeks according to the method

described (Kikuchi et al. (1998) Plant Biotechnology 15: 45-48). To amplify the DNA region specific to the autonomous transposon gene by PCR, we used the oligonucleotides comprising the sequences of SEQ. ID NOS.: 18 and 19 (L02), SEQ. ID NOS.: 20 and 21 (L06) and SEQ. ID NOS.: 5 22 and 23 (L07) as PCR primers. Each reaction mixture (100 µl) contained 200 ng of DNA, 2.5 units of AMPLITAQ GOLD® (ABI Co.), 10 µl of GeneAmp10×PCR buffer (contains 15 mM MgCl₂), 10 µl of GENE AMP MIX-TURE® (2 mM each dNTP) and 200 pmol of primers. Each cycle of the polymerase reaction consisted of a denaturation step at 96° C. for 30 sec, an annealing step at 55° C. for 1 min and an extension step at 72° C. for 1 min. This cycle was repeated 35 times. After the reaction, DNA was separated on 2% LO3 AGAROSE® (Takara Co.). The results show that 15 there are no transpositions of the nonaoutonomous transposon gene, located in L02, L06 and L07 loci, in Taichung N. 65, not carrying the autonomous transposon gene (SEQ. ID NO.: 1) (Table 2, the first line). However the nonautonomous transposon gene transposed in high frequency at 20 10.9-31.3% in anther-derived callus of Nihonbare, which carries the autonomous transposon gene (SEQ. ID NO.: 2), as shown in the following comparative Example 3.

TABLE 2

	L02	L06	L07
Anther-derived callus	0/64	0/64	0/64
Gene-transduced	2/38	1/38	0/38
anther-derived callus	5.3%	2.6%	0%

COMPARATIVE EXAMPLE 3

Spikes of Nihonbare were harvested at pre-emergence, kept in cold treatment for 10 days at 10° C., sterilized in 1% sodium hypochlorite solution for 1 min and washed with sterilized water. Then, anthers were picked out from the 40 floret, seeded in a 35×10 mm Petri dish (CORNING Co.) containing 3 ml of liquid medium at the rate of 50 anthers per dish and subjected to induction culture under light for 24 h at 30° C. A liquid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS 45 VITAMIN SOLUTION® (Sigma Co.), 2 mg of 2,4dichloro-phenoxyacetic acid (Sigma Co.), 30 g of sucrose (Wako) in 1 L of medium was used. After 3~4 weeks of inductive culture, the calli derived from induced anthers were transplanted to a 90×20 mm of Petri dish (Iwaki Co.) 50 containing 20~30 ml of medium and subjected to growth culture under light for 24 h at 30° C. Used was a solid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLU-TION® (Sigma Co.), 2 ml of α-naphthalene acetic acid 55 solution (Sigma Co.), 2 ml of kinetin solution (Sigma Co.), 3 g of casamino acids (DIFCO), 30 g of sucrose (Wako), 2 g of GELRITE® (Wako) in 1 L of medium. DNA was extracted from calli derived from anthers in growth culture for 2 weeks. To amplify the DNA region containing the 60 transposon DNA by PCR, we used the oligonucleotides comprising the sequences of SEQ. ID NOS.: 5 and 1 as PCR primers as described in example 7. Each reaction mixture (100 µl) contained 200 ng of DNA, 2.5 units of AMPLITAQ GOLD® (ABI Co.), 10 µl of GeneAmp10xPCR buffer 65 (contains 15 mM MgCl₂), 10 µl of GENE AMP MIX-TURE® (2 mM each dNTP) and 200 pmol of primers. Each

18

cycle of the polymerase reaction consisted of a denaturation step at 96° C. for 30 sec, an annealing step at 55° C. for 1 min and an extension step at 72° C. for 1 min. This cycle was repeated 35 times. After the reaction, DNA was separated using 2% LO3 AGAROSE® (Takara Co.). We obtained the result that there are two DNA bands of approximately 850 bp and 420 bp. The DNA band of approximately 850 bp indicates the DNA band including a transposon gene. While, the band of approximately 420 bp indicates that transposon genes were deleted. The probability, that the DNA band of approximately 420 bp is observed, was 11 calli per 64 calli (17.2%).

EXAMPLE 8

In this example, the DNA region including the autonomous transposon gene (SEQ. ID NO.: 2) was isolated, transduced to a cultivar (Taichung No. 65), which does not include the autonomous transposon gene (SEQ. ID NO.: 2), and examined the possibility of transposition of nonautonomous transposon gene (SEQ. ID NO.: 1) in this cultivar.

To amplify the DNA region including the autonomous transposon gene (SEQ. ID NO.: 2) from Nihonbare, a cultivar of rice, we designed two primer nucleotide sequences, SEQ. ID NOS.: 24 and 25, whose sequences are located at the adjacent upstream and downstream, respectively, of the target DNA region (SEQ. ID NO.: 2) for the PCR reaction. We synthesized the origonucleotides of the sequences of SEQ. ID NOS.: 24 and 25 and used them as 30 primers. DNA was isolated from leaves of Nihonbare by CTAB method. Each reaction mixture (100 µl) contained 200 ng of DNA, 2.5 units of TAKARA LA TAQ® (Takara Co.), 10 µl of 10×LA PCR BUFFER II®, 6 µl of 25 mM MgCl₂, 8 µl of dNTP mixture (2.5 mM each dNTP) and 100 35 pmol of primers. Each cycle of the polymerase reaction consisted of a denaturation step at 94° C. for 30 sec and an extension step at 68° C. for 12 min. This cycle was repeated 35 times. After the reaction, DNA was separated on 0.8% LO3 AGAROSE® (Takara Co.) gel electrophoresis. We obtained the DNA band of approximately 6.6 kbp, including the autonomous transposon gene. The DNA fragment (approximately 6.6 kbp) was recovered from gel slices, subcloned into plasmid PCRII-TOPO USING TA CLONING KIT® (In Vitrogen), cut out using the multicloning sites (ApaI and KpnI) in pCRII-TOPO using TA CLONING KIT®, subcloned to a binary vector, which contains a selectable marker gene, hygromycin resistant gene, and could be used for plant infection, and transduced to Agrobacteria EHA101 by electroporation. On three days before the infection of the Agrobacteria to anther-derived callus, the Agrobacteria were streaked onto AB medium containing kanamycin (Wako) and hygromycin (Wako).

Then, mediated by the *Agrobacterium*, the DNA fragments (approximately 6.6 kbp), wherein the autonomous tranposon gene (SEQ. ID NO.: 2) was included, were transduced to the anther-derived calli of Taichung No. 65, a rice cultivar.

Spikes of Taichung No. 65 were harvested at pre-emergence, kept in cold treatment for 10 days at 10° C., sterilized in 1% sodium hypochlorite solution for 1 min and washed with sterilized water. Then, anthers were picked out from the floret, seeded in a 35×10 mm Petri dish (CORNING Co.) containing 3 ml of liquid medium at the rate of 50 anthers per dish and subjected to induction culture under light for 24 h at 30° C. A liquid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 2 mg of 2,4-

dichloro-phenoxyacetic acid (Sigma Co.), 30 g of sucrose (Wako) in 1 L of medium was used. After 3~4 weeks of inductive culture, the calli derived from induced anthers were transplanted to a 90×20 mm of Petri dish (Iwaki Co.) containing 20~30 ml of medium and subjected to growth 5 culture under light for 24 h at 30° C. A solid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 2 ml of α-naphthalene acetic acid solution (Sigma Co.), 2 ml of kinetin solution (Sigma Co.), 3 g of casamino 10 acids (DIFCO), 30 g of sucrose (Wako), 2 g of GELRITE® (Wako) in 1 L of medium was used.

The Agrobacteria were infected to anther-derived calli originated from Taichung No. 65, at 2 weeks of growth culture in growth medium. The Agrobacteria, streaked onto 15 the surface of AB medium and kept for three days, were scraped by a spatula, mixed with AAM medium (25 ml) supplemented with 10 mg/L acetosyringone. The mixed medium with the Agrobacterium for infection was kept in a Petri dish (IWAKI). The calli, in wire cage, derived from 20 anther in growth culture for 2 weeks was immersed into the mixed medium for infection for 2 min. After the immersion, the mesh cage was put on a sterilized paper towel and removed the excess medium. The callus was put on a filter paper on a symbiotic medium by a forceps and cultured at 25 28° C. for 3 days under dark, sealed by a surgical tape. The symbiotic medium used was a solid medium containing 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 30 g of Sucrose (Wako), 10 g of Glucose (Wako), 2 mg of 2,4-30 dichloro-phenoxyacetic acid (Sigma Co.), 2 g of GEL-RITE® (Wako) and 10 mg of acetosyringone in 1 L of medium. After symbiotic culture for 3 days, the callus was added to an Erlenmeyer flask with 100 ml of sterilized water, shaken well and the water was discarded. After washing with 35 sterilized water several times and with washing solution supplemented with 500 mg/ml of carbenisillin, the callus was transplanted on Petri dish at the rate of 9 calli/dish, sealed by a surgical tape and was cultured under light at 25° C. for a month. As a selection medium, used was a solid 40 transposes autonomously in anther-derived calli but also medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS Vitamine Solution (Sigma Co.), 30 g of sucrose (Wako), 0.3 g of casamino acids (DIFCO), 2.878 g of proline (ICN), 0.1 g of mioinositol (Sigma Co.), 2 mg of 2,4-dichloro-phenoxyacetic 45 acid (Sigma Co.), 500 mg of hygromycin (Wako), 50 mg of carbenicillin (Wako), 2 g of GELRITE® (Wako) in 1 L of medium.

Then, we examined the possible transduction of the autonomous transposon gene of Nihonbare and the possible 50 transposition of the nonautonomous transposon gene (SEQ. ID NO.: 1) in hygromycin-resistant calli, grown in a selection medium for 3~4 weeks after seeded on the medium.

DNA was isolated from the resistant calli according to the method described (Kikuchi et al. (1998) Plant Biotechnol- 55 ogy 15: 45-48). To amplify the DNA region including the autonomous transposon gene (SEQ. ID NO.: 2), we used the oligonucleotides comprising the sequences of SEQ. ID NOS.: 24 and 25, located at the adjacent upstream and down stream, respectively, of the target DNA region (SEQ. ID 60 NO.: 2), as primers.

Each reaction mixture (100 μl) contained 200 ng of DNA, 2.5 units of TAKARA LA TAQ® (Takara Co.), 10 µl of 10×LA PCR BUFFER II®, 6 μl of 25 mM MgCl₂, 8 μl of dNTP mixture (2.5 mM each dNTP) and 100 pmol of 65 primers. Each cycle of the polymerase reaction consisted of a denaturation step at 94° C. for 30 sec and an extension step

20

at 68° C. for 12 min. This cycle was repeated 35 times. After the reaction the PCR products were separated on 0.8% LO3 AGAROSE® (Takara Co.) gel electrophoresis. As shown the results in FIG. 15, we confirmed the transduction of the autonomous transposon gene of Nihonbare in hygromycinresistant calli from Taichung No. 65.

Then to amplify the DNA region including the nonautonomous transposon gene by PCR, we used the oligonucleotides comprising the sequences of SEQ. ID NOS.: 18 and 19 (L02), SEQ. ID NO.: 20 and 21 (L06) and SEQ. ID NOS.: 22 and 23 (L07) as primers. As PCR reaction mixture, we used HOTSTARTAQ MASTER MIX KIT® (QIAGEN). Each cycle of the polymerase reaction consisted of a denaturation step at 96° C. for 30 sec, an annealing step at 55° C. for 1 min and an extension step at 72° C. for 2 min. This cycle was repeated 45 times. After the reaction, DNA was separated on 2% LO3 AGAROSE® (Takara Co.). We examined the possibility of deletion of the nonautonomous tranposon gene for 38 calli, wherein the autonomous transposon gene was transduced, and obtained a DNA band (shown by an arrow), suggestive of deletion of the nonautonomous transposon gene in L06 gene locus (FIG. 16). The frequency of deletion of the nonautonomous transposon gene in L02, L06 and L07 gene loci was around 0~5.3% (Table 2, the 2nd line).

The DNA fragments suggestive of the deletion of nonautonomous transposon gene in L02 and L06 gene loci were recovered from the gel and subcloned into plasmids pCRII-TOPO using TA CLONING KIT® using a TA cloning kit (In Vitrogen). The nucleotide sequences of the clones obtained were determined by 310 DNA SEQUENCER® (ABI Co.). There was no nonautonomous transposon gene in these clones (FIGS. 17 and 18).

These result show that transposition of the nonautonomous transposon gene was induced in anther-derived calli originated from Taichung No. 65, wherein the autonomous transposon gene of Nihonbare was transduced.

On the basis of these results, we can conclude that the transposon gene expressed by SEQ. ID NO.: 2 not only regulates the transposition of the nonautonomous transposon gene.

EXAMPLE 9

In this example, we examined the transposition activity of the nucleotide sequence of SEQ. ID NO.: 3 in anther-derived calli and in scutellum-derived calli treated with 5-azacyti-

Spikes of Nihonbare were harvested at pre-emergence, kept in cold treatment for 10 days at 10° C., sterilized in 1% sodium hypochlorite solution for 1 min and washed with sterilized water. Then, anthers were picked out from the floret, seeded in a 35×10 mm Petri dish (CORNING Co.) containing 3 ml of liquid medium at the rate of 50 anthers per dish and subjected to induction culture under light for 24 h at 30° C. Used was a liquid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 2 mg of 2,4-dichloro-phenoxyacetic acid (Sigma Co.), 30 g of sucrose (Wako) in 1 L of medium. After 3~4 weeks of inductive culture, the calli derived from induced anthers were transplanted to a 90×20 mm of Petri dish (Iwaki Co.) containing 20~30 ml of medium and subjected to growth culture under light for 24 h at 30° C. Used was a solid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLU-

22

TION® (Sigma Co.), 2 ml of α -naphthalene acetic acid solution (Sigma Co.), 2 ml of kinetin solution (Sigma Co.), 3 g of casamino acids (DIFCO), 30 g of sucrose (Wako), 2 g of GELRITE® (Wako) in 1 L of medium. DNA was extracted from calli derived from anthers in growth culture 5 for 2 weeks according to the method described (Kikuchi et al. (1998) Plant Biotechnology 15: 45–48).

Seeds of Nihonbare, a rice cultivar, were sterilized in 3% sodium hypochlorite solution for 15~30 min, washed with sterilized water, inoculated on a 90×20 mm of Petri dish 10 (Iwaki Co.) with 20~30 ml of media at the rate of 9 seeds per dish and subjected to induction culture under light for 24 h at 30° C. Used was a solid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLUTION® (Sigma Co.), 2 mg of 2,4- 15 dichloro-phenoxyacetic acid (Sigma Co.), 0.3 g of casamino acids (DIFCO), 0.1 g of myo-inositol (Sigma Co.), 2.878 g proline (Wako), 30 g of sucrose (Wako), 2 g of GELRITE® (Wako) in 1 L of medium. On the 10^{th} day of inductive culture, the calli derived from induced seeds were trans- 20 ferred to a growth medium supplemented with 5-azacytidine (Sigma) at 0 mM, 0.1 mM or 0.5 mM and were subjected to growth culture under light for 24 h at 30° C. Used was a solid medium consisting of 4 g of CHU (N6) BASAL SALT MIXTURE® (Sigma Co.), 1 ml of MS VITAMIN SOLU- 25 TION® (Sigma Co.), 2 mg of 2,4-dichloro-phenoxyacetic acid (Sigma Co.), 0.3 g of casamino acids (DIFCO), 0.1 g of myo-inositol (Sigma Co.), 2.878 g proline (Wako), 30 g of sucrose (Wako), 2 g of GELRITE® (Wako) in 1 L of medium. DNA was extracted from calli derived from seeds 30 in growth culture for two weeks by DNEASY PLANT MINI KIT® (Qiagen).

To amplify the DNA region containing the transposon DNA by PCR, we used the oligonucleotides comprising the sequences of SEQ. ID NOS.: 26 and 27 as PCR primers. 35 Each reaction mixture (100 μ l) contained 200 ng of DNA, 2.5 units of TAKARA LA TAQ® (Takara Co.), 10 μ l of 10×LA PCR bufferII, 6 \square l of 25 mM MgCl₂, 8 μ l of dNTP Mixture (2.5 mM each dNTP) and 100 pmol of primers. Each cycle of the polymerase reaction consisted of a denaturation step at 94° C. for 30 sec and an extension step at 68° C. for 12 min. This cycle was repeated 35 times. After the reaction, PCR products were separated on 0.8% LO3 AGAROSE® (Takara Co.) gel electrophoresis.

It was found that the transposon gene with the nucleotide 45 sequence of SEQ. ID NO.: 3 was not transposed in anther-

derived calli and in scutellum-derived calli, but high frequency of transposition was taken place in scutellum-derived calli treated with 5-azacytidine (Table 3).

TABLE 3

	The frequency of deletion
Anther-derived callus (Nihonbare)	0/64 (0%)
Scutellum-derived callus (Nihonbare)	0/64 (0%)
0 mM 5-azacytidine	0/8 (0%)
0.1 mM 5-azacytidine	2/8 (25%)
0.5 mM 5-azacytidine	7/8 (87.5%)

The transposon gene with the nucleotide sequence of SEQ. ID NO.: 3 has the structure of an autonomous transposon gene with a coding sequence of a transposase, can be activated by the treatment with 5-azacytidine and may control the transposition of nonautonomous transposon gene (SEQ. ID NO.: 1).

EXAMPLE 10

DNA was extracted from mature leaves of Kasarasu, a cultivar of rice, by DNEASY PLANT MINI KIT® (QIAGEN). To amplify the DNA region adjacent to the inserted transposon gene by PCR, we used an inverse PCR method. We used the oligonucleotide comprising the sequence (5'-CCATTGTGACTGGCC-3') (SEQ. ID NO.: 29) of 15 bases from the 5'-end of SEQ. ID NO.: 1 as a primer for inverse PCR. GENEAMP9600 SYSTEM® (ABI Co.) was used for PCR. HOTSTARTAQ MASTER MIX KIT® (QIAGEN) was used for PCR reaction solution. Each cycle of the polymerase reaction consisted of a denaturation step at 96° C. for 30 sec, an annealing step at 44~58° C. for 1 min and an extension step at 72° C. for 1 min. This cycle was repeated 45 times. After the reaction, PCR products were separated on 2% LO3 AGAROSE® (Takara Co.) gel electrophoresis. The amplified DNA fragments were subcloned into a plasmid PCRII-TOPO USING TA CLONING KIT® (In Vitrogen). The nucleotide sequence of the obtained clone was determined by 310 DNA SEQUENCER® (ABI Co.).

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 27

<210> SEQ ID NO 1
<211> LENGTH: 430
<212> TYPE: DNA
<213> ORGANISM: Oryza sativa

<400> SEQUENCE: 1

ggccagtcac aatgggggtt tcactggtgt gtcatgcaca tttaataggg gtaagactga 60
ataaaaaatg attatttgca tgaaatgggg atgagagaga aggaaagagt ttcatcctgg 120

tgaaactcgt cagcgtcgtt tccaagtcct cggtaacaga gtgaaacccc cgttgaggcc 180
gattcgtttc attcaccgga tctcttgcgt ccgcctccgc cgtgcgacct ccgcattctc 240
```

			-contin	nuea		
ccgcgccgcg ccggattttg	ggtacaaatg	atcccagcaa	cttgtatcaa	ttaaatgctt	300	
tgcttagtct tggaaacgtc	aaagtgaaac	ccctccactg	tggggattgt	ttcataaaag	360	
atttcatttg agagaagatg	gtataatatt	ttgggtagcc	gtgcaatgac	actagccatt	420	
gtgactggcc					430	
<210> SEQ ID NO 2 <211> LENGTH: 5341 <212> TYPE: DNA <213> ORGANISM: Oryza	sativa					
<400> SEQUENCE: 2						
ggccagtcac aatggaggtt	tcactggtgt	gtcatgcaca	tttaataggg	gtaagactga	60	
ataaaaaatg attatttgca	tgaaatgggg	atgagagaga	aggaaagagt	ttcatcctgg	120	
tgaaactcgt cagcgtcgtt	tccaagtcct	cggtaacaga	gtgaaacccc	cgttgaggcc	180	
gattcgtttc attcaccgga	tctcttgcgt	ccgcctccgc	cgtgcgacct	ccgcattctc	240	
ccgcgccgcg ccgcgccacg	cctccttccc	gcgtgaacat	tactacttac	cgcgcgagcg	300	
attccaccat ctcccccgtc	cggcgcctac	ggagtacacc	gcaaccggtc	gccccaatcc	360	
ggcgcctaga ccgtgaccca	cccgccatct	tccgcaagac	cgaatcccca	acccacccac	420	
catcttccgc cgcccccgtc	cccgtccccg	gccatggatc	cgtcgccggc	cgtggatccg	480	
tegeeggeeg tggateegte	gccggctgct	gaaacccggc	ggcgtgcaac	cgggaaagga	540	
ggcaaacagc gcgggggcaa	gcaactagga	ttgaagaggc	cgccgccgat	ttctgtcccg	600	
gccaccccgc ctcctgctgc	gacgtcttca	tcccctgctg	cgccgacggc	catcccacca	660	
cgaccaccgc aatcttcgcc	gattttcgtc	cccgattcgc	cgaatccgtc	accggctgcg	720	
ccgacctcct ctcttgcttc	ggggacatcg	acggcaaggc	caccgcaacc	acaaggagga	780	
ggatggggac caacatcgac	catttcccca	aactttgcat	ctttctttgg	aaaccaacaa	840	
gacccaaatt catggtacat	gtattttctt	ctttttctgt	tactttcaac	ctacggtaac	900	
tctaattcat ggatgagact	actgccattg	tgcagttcaa	tgctttttct	tcatgttata	960	
tttcgtccag ctgtgagtta	tggtttgaag	attgctgtgg	ttgtttcatt	gctgagtatg	1020	
tgaaagatag atggatgaaa	gagagaatta	tattttagtc	tgtaatcttg	ctcatccagt	1080	
tgctcatgta tgaccttggt	tctagaatgt	tgccctgact	gtatgcttaa	tgttcagaga	1140	
agtgatgcct aaagcagtga	gatcagtggg	atcagattag	ctatcgacat	ataatattag	1200	
ctatctcagt tgtgaaagag	agatgggtga	aaaggcaccc	cttggattaa	ttctgtagta	1260	
tcaaattctg caccttgtct	gtccatatgt	tctgcttggt	tggtgggtgc	agtgcatttg	1320	
taaaaaatag tttgcttctg	atccttaata	tatgtaacag	ggaatgaatt	ttcacccatc	1380	
tcagttgtaa aggtactgtc	ttgctatgca	atatgtgtaa	attgacaaac	ctgaaaatag	1440	
tctgtttgga atttgcaaaa	gcaattcgat	agtttggaat	ttccaaacct	cagtcagcag	1500	
taggcaatcc attttagttc	ttgctatgca	caaaaacagt	acacctgata	tgctcatttt	1560	
aatacaactt ttttgtctct	gttacagttt	ggtcaggggt	tatcctccag	gagggtttgt	1620	
caattttatt caacaaaatt	gtccgccgca	gccacaacag	caaggtgaaa	attttcattt	1680	
cgttggtcac aatatgggat	tcaacccaat	atctccacag	ccaccaagtg	cctacggaac	1740	
accaacaccc caagctacga	accaaggcac	ttcaacaaac	attatgattg	atgaagagga	1800	
caacaatgat gacagtaggg	cagcaaagaa	aagatggact	catgaagagg	aagagagact	1860	
ggtattcatc ggatactttt	acatttccat	atgtctttgt	tttgactaat	acttgacagg	1920	

tcattaactg	attcttgtag	gccagtgctt	ggttgaatgc	ttctaaagac	tcaattcatg	1980
ggaatgataa	gaaaggtgat	acattttgga	aggaagtcac	tgatgaattt	aacaagaaag	2040
ggaatggaaa	acgtaggagg	gaaattaacc	aactgaaggt	tcactggtca	aggttgaagt	2100
cagcgatctc	tgagttcaat	gactattgga	gtacggttac	tcaaatgcat	acaagcggat	2160
actccgacga	catgcttgag	aaagaggcac	agaggctgta	tgcaaacagg	tttggaaaac	2220
cttttgcgtt	ggtccattgg	tggaagatac	tcaaagatga	gcccaaatgg	tgtgctcagt	2280
ttgaatcaga	gaaagacaag	agcgaaatgg	atgctgttcc	agaacagcag	tcacgtccta	2340
ttggtagaga	agcagcaaag	tctgagcgca	atggaaagcg	caagaaagaa	aatgttatgg	2400
aaggcattgt	cctcctaggg	gacaatgtcc	agaaaattat	aaaggtccac	gaagaccgga	2460
gggtggatcg	tgaaaaggcc	accgaagcac	agattcagat	atcaaatgca	acattgttgg	2520
ccgctaagga	gcagaaggaa	gcaaagatgt	tcgatgtgta	caatactcta	ttaagtaagg	2580
atacaagcaa	catgtctgaa	gatcaaatgg	ctagccacca	gagggcaata	cggaaattag	2640
aggagaagct	atttgcggat	taaggtgagt	tttataaact	gaccactatt	ttctgaaatg	2700
tatgaattct	gaaatttata	tacaattgtg	taaacatgga	aaattagata	atgtatgcat	2760
gatgcacaac	atgtgcgtgc	agcactattt	aatggcagtt	tcacaagtgt	gaaaactgac	2820
cactatagta	ctattgtggt	gtgaaaactg	accactacta	ttgtggtgtg	aatgctactg	2880
tggtgtgaaa	actgaccact	atagtttcac	attcctggat	gcagccctcc	tctatatata	2940
tagatacagt	cctcatctct	tcctggcata	cacacagccc	tcttctctaa	ttcctggacg	3000
cagtcctcat	ctcttcctgg	catagacgca	gcccttctct	cttcctgttt	agttcaacaa	3060
cattgaggtg	atctgccttt	ctttgaagtt	tctatctttt	ttcactgctg	tgaatgatta	3120
tttctctgct	gtgaatgatt	atttctccaa	tcttcctttg	ttcaccttct	ctctttctct	3180
gctgtgaaga	tgtctggaaa	tgaaaatcag	attcctgtgt	ccttgttgga	cgagtttctc	3240
gctgaggatg	agatcatgga	tgagataatg	gatgatgttc	tccatgaaat	gatggtgtta	3300
ttgcagtcct	ccatcggaga	tcttgaaaga	gaggctgctg	accatcgttt	gcatccaagg	3360
aagcacatca	agaggccacg	agaggaagca	catcaaaatt	tggtgaatga	ttatttctct	3420
gaaaatcctc	tatatccttc	caatatttt	cgccgaagat	ttcgtatgta	caggccgctg	3480
tttttacgta	ttgtggacgc	attaggccag	tggtcagatt	actttactca	gagggtagat	3540
gccgctggta	ggcaagggct	tagtccatta	caaaagtgta	ctgcagcaat	tcgccaattg	3600
gctactggta	gtggtgctga	tgaactagat	gagtatttga	agattggaga	gactactgct	3660
atggatgcta	tgaaaaattt	tgtgaaagga	attagagaag	tatttggtga	aagatatctc	3720
aggcgtccca	ctgtagaaga	tactgaacga	ctactcgagc	ttggtgagag	acgcggtttt	3780
cctggtatgt	teggtageat	tgactgtatg	cattggcaat	gggaaaggtg	cccaactgcg	3840
tggaagggtc	agttcactcg	tggtgatcaa	aaagtgccaa	cgctgattct	tgaggcagtg	3900
gcatcacatg	atctttggat	ttggcatgcg	ttctttggag	tagcaggttc	taacaatgat	3960
atcaatgttt	tgagccgatc	tactgtgttt	atcaatgagc	tgaaaggaca	agctcctaga	4020
gtgcagtaca	tggtaaatgg	gaatcaatac	aacgaaggtt	attttcttgc	tgatggaatt	4080
taccctgaat	ggaaggtatt	tgctaagtca	tatcgactcc	ctatcactga	gaaggagaag	4140
ttgtatgcac	aacatcaaga	aggggcaaga	aaggatatcg	agagagcatt	tggtgttcta	4200
caacgtcgat	tctgcatctt	aaaacgacca	gcccgtctat	atgaccgagg	tgtactccgt	4260
gatgttgtcc	taggttgcat	catacttcac	aatatgatag	ttgaagatga	gaaggaagcg	4320

-continued

-continued	
cgacttattg aagaaaatct agatttaaat gagcctgcta gttcatcaac ggttcaggca	4380
ccagaattct ctcctgacca gcatgttcca ttagaaagaa ttttagaaaa ggatactagt	4440
atgagagatc gtttggctca tcgccgactc aagaatgatt tggtggaaca tatatggaat	4500
aagtttggtg gtggtgcaca ttcatctggt aattatgttt ttattttgca ttattagtta	4560
tctatggtac taagatatgt acaagtttct ctaaattgca ctaaatctgt ggttcatatt	4620
ggatatgtgt aaactatgaa tgtagcctga ctaaaaccat cattcatgct gaactggttt	4680
ttgttttgta tatgcaggat gaaacaagga actaggtttc tgaacgcatt acggactgaa	4740
ggttgagggg cagaatgatc cacccagttg cttctatcag atcactaaag tttcatttca	4800
ctgttttatt ttggacactt gatgcttgtg tgcatccgat gaatgtttaa tttggtcacc	4860
tgatgcttgt gtgcatccga tgaatgttta atttggtcac ctgatgcttg tatgcagtta	4920
tctatcttat ttgttaatgt tgctggtact gaggattttt agaagtgaaa tgcacaagtt	4980
gctgtgtttt ttgactgatc cttgtgtgca cttgacgttg tatgtgacaa atgatggttc	5040
ccagttgtgc acctgattca tgattcagtt attcagttta aattgacgtt gtttgtgtgc	5100
accttttgtc agttagccag ttacggctgg aagttgtgta agtttgtgtg acgcctggct	5160
acaggatttt gggtacaaat gatcccagca acttgtatca attaaatgct ttgcttagtc	5220
ttggaaacgt caaagtgaaa cccctccact gtggggattg tttcataaaa gatttcattt	5280
gagagaagat ggtataatat tttgggtagc cgtgcaatga cactagccat tgtgactggc	5340
С	5341
<210> SEQ ID NO 3 <211> LENGTH: 5166 <212> TYPE: DNA <213> ORGANISM: Oryza sativa	
<400> SEQUENCE: 3	
ggccagtcac aatgggtgtt tcatttgagt gtcatgcgca tttaatacag tgacaagtca	60
gcaaaagagc aatatttgca tgaaatgggt aggagagag gtaaactcgt ttcaccatgg	120
tgacacgaga tagcgccgtt tcccaggtcg ctgaaacggg gtgaaacagc attgagagtt	180
catcgtttca cctccgggat cccgtgcgag cgctgctctt cgccatcttc gcgcgcatcg	240
coggattett cocgogogag teccecatet teccgogoag cacetecatg tteccgoece	300
caaagcactg gctcgaagct tttttcccca atctcacctg caaccctagc gccagactca	360
gtccccatcg ccccgtccgt cccataccct agcgcaagaa ccacgagcgg agattgcgga	420
gctggatcca caagtaggtg gtgaatcctg tccatctgcc gccgtccgcc gtccagcagc	480
catggatcca caaggaggtg gtggatcccg tctgagcgcc gccggcagag gagggaataa	540
gcgtgggggc aagcagctgg gcctgaagag gtcgtcggcg cctgctccat caccggcaac	600
ageteageea cegetgeetg caagtteece teetgaaget ceategeegg caacagttea	660
gccgcctact ccatcgtcaa gtcctgctgt tgctgccccc agttcatccc ctgctgtacc	720
gatgtcaacc atgcccccat ggccaccgca aggagcagga tggggctctg taccccccaa	780
ttttgctttt ctgcaaggaa accaacaagg cccaagttca tggtattttc tccttgtcac	840
agattattca ctgtacacta tgatacatga tatgactctc ttcttcatgc attagtaatt	900
agttcctgtt tatgctcaat gaaatttgtt agaatcagta tgtcagtaca ttggtaattt	960

gatatatgcc tgagtaatga atagaaaaaa tgtagtattc agtatggatt gcagtaatac 1020 tttgttagtg aaaattcagt attcagtatg cagtatggat tgcggcttgt ataacagaaa 1080

ttgaaagcaa	aagattcagt	ttgcaatctg	gacagtgtac	tgtacaacat	gtaattcaca	1140
tacgtaaagc	ttgttaaata	tctccttgtc	agtacattgg	taacaaatgc	tttgagtgta	1200
aatgccaagg	gtatcatcct	aacattggta	tatatttta	gccttctgta	tggaatgcag	1260
acatggtctt	ctttgcaacc	acagcaacag	cttgccctac	actctgtgct	gtcgtcatag	1320
ctaaccaaat	aacctgttag	tactgatata	tatggtcttc	tttgcaacca	cagcaacagc	1380
ttgccctaca	tggtcttctg	tatgcttgac	taaacttgtt	acttgacata	tatgcttgac	1440
tgaacttgtt	gcttgactga	attattcctt	acacatactg	tagtacttgc	ttgactgaac	1500
tatgtcagga	tcttattaaa	aaaaatctat	gtcagcactg	ctactatgtc	aggatcatca	1560
gtatgatgct	taagtaacct	gttagtatgt	cagtacttac	tatgtcagga	tcatcttctg	1620
gaacttacta	tgtttgattt	tcttatgctg	ccatcggttt	caattggatt	tgcttcttat	1680
gttttcaggt	tgtatcctac	agaaggcttc	gtaaattttc	tccaacagaa	ctgtctgccg	1740
cagccacaag	aaggtgaaaa	ttttcacctt	gttggtcaga	ctaccaacac	aatgtctact	1800
ccaccaccaa	caccccaagc	tgcagctaac	aatacagtcc	aaattgatat	tcatgaagat	1860
gcaatcaatg	atgcaagtgc	taaaaagaga	agtttgagat	attggactca	tgatgaggaa	1920
gagagattgg	ctagtgcttg	gttgaatgct	tctaaagatc	ccattcatgg	gaatgaaaag	1980
aaaggtgata	cgttttggaa	agaggttact	gatgagttca	acagaaaagg	gaatgggaag	2040
cgtacaaggg	aaataaatca	attgaaggtt	cattggtcac	gcctcaaatc	atcgattgga	2100
gaattcaatg	attactggac	taaggtaact	caaatgaata	caagcggata	tgacgatgac	2160
atgctggaga	aggaggcaca	acagatgtat	gcaaatacat	ttggaaagcc	ttttgcactt	2220
gtgcattggt	ggaagatact	gagaaaagag	cccaagtggt	gtgcaatgat	tgagaaggac	2280
aaaaacaagg	ctgaagtggt	tgatattcca	gatgaacaaa	agcgtcccat	tggtagagaa	2340
gcagcacaag	ccgagcgcaa	tggaaaacgc	aagaaggaca	gtatgtcaga	aggaattgtc	2400
atcctagggg	acaatattga	aaaaattatc	aaagtgacgc	aagatcggaa	gctggagcgt	2460
gagaaggtca	ctgaagcaca	gattcacatt	tcaaacgtaa	atttgaaggc	agcagaacag	2520
caaaaagaag	caaagatgtt	tgaggtatac	aattccctgc	tcactcaaga	tacaagtaac	2580
atgtctgaag	aacagaaggc	tegeegagae	aaggcattac	aaaagctgga	ggaaaagtta	2640
tttgctgact	aaggttagat	atctaatcta	atctgagctg	cactattatt	tataataatt	2700
aaagaatgct	gcaatattta	gttatattgt	ctgtatatct	gtgctgcact	atgcagtcag	2760
ctgcatatca	cgaatttgtc	aaatctgagc	tgcatatctg	tgaatggtgc	aatatttagt	2820
tatattaatt	acccagtgtg	aatgatgtat	tgctgtcagt	ttcacatata	gtatgaatgc	2880
tgcactatgc	agtcagtttc	acatgcagtg	tgaatgctgc	actaggcagt	cagtttcaca	2940
tgcagtgggc	gcctatttat	gcagagttta	gccatctctc	tactcctctc	agaaactcat	3000
tecetetttt	ctcatacgaa	gacctcctcc	cttttatctt	tactgtttct	ctcttcttca	3060
aagatgtctg	agcaaaatac	tgatggaagt	caagttccag	tgaacttgtt	ggatgagttc	3120
ctggctgagg	atgagatcat	agatgatctt	ctcactgaag	ccacggtggt	agtacagtcc	3180
actatagaag	gtcttcaaaa	cgaggcttct	gaccatcgac	atcatccgag	gaagcacatc	3240
aagaggccac	gagaggaagc	acatcagcaa	ctagtgaatg	attacttttc	agaaaatcct	3300
ctttaccctt	ccaaaatttt	tcgtcgaaga	tttcgtatgt	ctaggccact	ttttcttcgc	3360
atcgttgagg	cattaggcca	gtggtcagtg	tatttcacac	aaagggtgga	tgctgttaat	3420
cggaaaggac	tcagtccact	gcaaaagtgt	actgcagcta	ttcgccagtt	ggctactggt	3480

-continued

agtggcg	ag at	gaactaga	tgaatatctg	aagataggag	agactacagc	aatggaggca	3540
atgaagaa	tt tt	gtcaaagg	tcttcaagat	gtgtttggtg	agaggtatct	taggcgcccc	3600
accatgga	ag ata	accgaacg	gcttctccaa	cttggtgaga	aacgtggttt	tcctggaatg	3660
ttcggcag	ca tt	gactgcat	gcactggcat	tgggaaagat	gcccagtagc	atggaagggt	3720
cagttcac	tc gt	ggagatca	gaaagtgcca	accctgattc	ttgaggctgt	ggcatcgcat	3780
gatctttq	ga tt	tggcatgc	attttttgga	gcagcgggtt	ccaacaatga	tatcaatgta	3840
ttgaacca	at cta	actgtatt	tatcaaggag	ctcaaaggac	aagctcctag	agtccagtac	3900
atggtaaa	tg gg	aatcaata	caatactggg	tattttcttg	ctgatggaat	ctaccctgaa	3960
tgggcagt	gt tt	gttaagtc	aatacgactc	ccaaacactg	aaaaggagaa	attgtatgca	4020
gatatgca	ag aa	ggggcaag	aaaagatatc	gagagagcct	ttggtgtatt	gcagcgaaga	4080
ttttgcat	ct ta	aaacgacc	agctcgtcta	tatgatcgag	gtgtactgcg	agatgttgtt	4140
ctagctto	jca tca	atacttca	caatatgata	gttgaagatg	agaaggaaac	cagaattatt	4200
gaagaaga	itt ta	gatctaaa	tgtgcctcct	agttcatcaa	ccgttcagga	acctgagttc	4260
tctcctga	ac aga	aacacacc	atttgataga	gttttagaaa	aagatatttc	tatccgagat	4320
cgagcggd	tc ata	aaccgact	taagaaagat	ttggtggaac	acatttggaa	taagtttggt	4380
ggtgctgd	ac ata	agaactgg	aaattgagaa	tcagtaaatg	taattatttt	atttttcttg	4440
taatttat	at at	ctatggtc	cacttgtaaa	tttctgaatg	ctcatcgcca	tattttttaa	4500
tctctgca	igg tto	ccaatcta	tttacaggtt	ccctaaaaaa	aaatctattt	gcaggttcca	4560
gtctgttg	jtc tto	cacaatgt	aagttctgag	aatcaaatca	ctatgttttt	ctcttttttg	4620
gtagctad	ag gg	tgttagaa	catgtgttat	tttctttact	atgcaattgt	gatcctccaa	4680
tatttato	ta ct	gcatgtgt	aaacctgttt	gtcatgtctg	aactactttc	atttgtacag	4740
ggtgaaag	jaa te	aatgaaat	ctatgggtgc	atcgtcaatt	tgcctccagt	tacctgcttg	4800
tcatcgto	at tt	gtagctta	gttctgtcat	atttcacctc	gagttaacat	ctattcagtt	4860
atctaaac	tt tg	ctatgtag	tgaacttggt	tgaatggtca	tttaaattta	tcaagtgaac	4920
aatcgtad	ct at	ctgtgctg	aatgcatgta	ttttgttttg	tgttcaagtg	gctacacacg	4980
tttgtgtt	ac ata	acgatccc	actatgtggc	tggaattaaa	tgccttgaat	ttgcattgga	5040
aacgctag	gag tga	aaacacag	cattgagaag	gtctgtttca	ttgtacgttt	caacttgttt	5100
catcttc	jtt tca	agctgatg	tggcgtctgg	gaaacagtgt	aatgaaacac	tgcattgtga	5160
atggcc							5166

```
<210> SEQ ID NO 4 <211> LENGTH: 455
```

<400> SEQUENCE: 4

Met Ser Gly Asn Glu Asn Gln Ile Pro Val Ser Leu Leu Asp Glu Phe 1 $$ 10 $$ 15

Leu Ala Glu Asp Glu Ile Met Asp Glu Ile Met Asp Asp Val Leu His $20 \hspace{1cm} 25 \hspace{1cm} 30 \hspace{1cm}$

Glu Met Met Val Leu Leu Gln Ser Ser Ile Gly Asp Leu Glu Arg Glu 35 40 45

Ala Ala Asp His Arg Leu His Pro Arg Lys His Ile Lys Arg Pro Arg 50

<212> TYPE: PRT

<213> ORGANISM: Oryza sativa

Glu 65	Glu	Ala	His	Gln	Asn 70	Leu	Val	Asn	Asp	Ty r 75	Phe	Ser	Glu	Asn	Pro 80
Leu	Tyr	Pro	Ser	Asn 85	Ile	Phe	Arg	Arg	Arg 90	Phe	Arg	Met	Tyr	Arg 95	Pro
Leu	Phe	Leu	Arg 100	Ile	Val	Asp	Ala	Leu 105	Gly	Gln	Trp	Ser	Asp	Tyr	Phe
Thr	Gln	A rg 115	Val	Asp	Ala	Ala	Gly 120	Arg	Gln	Gly	Leu	Ser 125	Pro	Leu	Gln
Lys	Cys 130	Thr	Ala	Ala	Ile	Arg 135	Gln	Leu	Ala	Thr	Gly 140	Ser	Gly	Ala	Asp
Glu 145	Leu	Asp	Glu	Tyr	Leu 150	Lys	Ile	Gly	Glu	Thr 155	Thr	Ala	Met	Asp	Ala 160
Met	Lys	Asn	Phe	Val 165	Lys	Gly	Ile	Arg	Glu 170	Val	Phe	Gly	Glu	A rg 175	Tyr
Leu	Arg	Arg	Pro 180	Thr	Val	Glu	Asp	Thr 185	Glu	Arg	Leu	Leu	Glu 190	Leu	Gly
Glu	Arg	Arg 195	Gly	Phe	Pro	Gly	Met 200	Phe	Gly	Ser	Ile	Asp 205	Cys	Met	His
Trp	Gln 210	Trp	Glu	Arg	Сув	Pro 215	Thr	Ala	Trp	Lys	Gly 220	Gln	Phe	Thr	Arg
Gly 225	Asp	Gln	Lys	Val	Pro 230	Thr	Leu	Ile	Leu	Glu 235	Ala	Val	Ala	Ser	His 240
Asp	Leu	Trp	Ile	Trp 245	His	Ala	Phe	Phe	Gly 250	Val	Ala	Gly	Ser	Asn 255	Asn
Asp	Ile	Asn	Val 260	Leu	Ser	Arg	Ser	Thr 265	Val	Phe	Ile	Asn	Glu 270	Leu	Lys
Gly	Gln	Ala 275	Pro	Arg	Val	Gln	Ty r 280	Met	Val	Asn	Gly	Asn 285	Gln	Tyr	Asn
Glu	Gly 290	Tyr	Phe	Leu	Ala	Asp 295	Gly	Ile	Tyr	Pro	Glu 300	Trp	Lys	Val	Phe
Ala 305	Lys	Ser	Tyr	Arg	Leu 310	Pro	Ile	Thr	Glu	L y s 315	Glu	Lys	Leu	Tyr	Ala 320
Gln	His	Gln	Glu	Gly 325	Ala	Arg	Lys	Asp	Ile 330	Glu	Arg	Ala	Phe	Gly 335	Val
Leu	Gln	Arg	Arg 340	Phe	Сув	Ile	Leu	Lys 345	Arg	Pro	Ala	Arg	Leu 350	Tyr	Asp
Arg	Gly	Val 355	Leu	Arg	Asp	Val	Val 360	Leu	Gly	Cys	Ile	Ile 365	Leu	His	Asn
Met	Ile 370	Val	Glu	Asp	Glu	L y s 375	Glu	Ala	Arg	Leu	Ile 380	Glu	Glu	Asn	Leu
Asp 385	Leu	Asn	Glu	Pro	Ala 390	Ser	Ser	Ser	Thr	Val 395	Gln	Ala	Pro	Glu	Phe 400
Ser	Pro	Asp	Gln	His 405	Val	Pro	Leu	Glu	Arg 410	Ile	Leu	Glu	Lys	Asp 415	Thr
Ser	Met	Arg	Asp 420	Arg	Leu	Ala	His	Arg 425	Arg	Leu	Lys	Asn	Asp 430	Leu	Val
Glu	His	Ile 435	Trp	Asn	Lys	Phe	Gly 440	Gly	Gly	Ala	His	Ser 445	Ser	Gly	Asn
Tyr	Val 450	Phe	Ile	Leu	His	Ty r 455									

<pre><210> SEQ ID NO 5 <211> LENGTH: 482 <212> TYPE: PRT</pre>															
<213	> OF	RGANI	SM:	_	za sa	ativa	1								
<400)> 5E	QUEN	ICE:	5											
Met 1	Gln	Ser	Leu	Ala 5	Ile	Ser	Leu	Leu	Leu 10	Ser	Glu	Thr	His	Ser 15	Leu
Phe	Ser	His	Thr 20	Lys	Thr	Ser	Ser	Leu 25	Leu	Ser	Leu	Leu	Phe 30	Leu	Ser
Ser	Ser	Lys 35	Met	Ser	Glu	Gln	Asn 40	Thr	Asp	Gly	Ser	Gln 45	Val	Pro	Val
Asn	Leu 50	Leu	Asp	Glu	Phe	Leu 55	Ala	Glu	Asp	Glu	Ile 60	Ile	Asp	Asp	Leu
Leu 65	Thr	Glu	Ala	Thr	Val 70	Val	Val	Gln	Ser	Thr 75	Ile	Glu	Gly	Leu	Gln 80
Asn	Glu	Ala	Ser	Asp 85	His	Arg	His	His	Pro 90	Arg	Lys	His	Ile	Lys 95	Arg
Pro	Arg	Glu	Glu 100	Ala	His	Gln	Gln	Leu 105	Val	Asn	Asp	Tyr	Phe 110	Ser	Glu
Asn	Pro	Leu 115	Tyr	Pro	Ser	Lys	Ile 120	Phe	Arg	Arg	Arg	Phe 125	Arg	Met	Ser
Arg	Pro 130	Leu	Phe	Leu	Arg	Ile 135	Val	Glu	Ala	Leu	Gly 140	Gln	Trp	Ser	Val
Ty r 145	Phe	Thr	Gln	Arg	Val 150	Asp	Ala	Val	Asn	Arg 155	Lys	Gly	Leu	Ser	Pro 160
Leu	Gln	Lys	Cys	Thr 165	Ala	Ala	Ile	Arg	Gln 170	Leu	Ala	Thr	Gly	Ser 175	Gly
Ala	Asp	Glu	Leu 180	Asp	Glu	Tyr	Leu	L y s 185	Ile	Gly	Glu	Thr	Thr 190	Ala	Met
Glu	Ala	Met 195	Lys	Asn	Phe	Val	L y s 200	Gly	Leu	Gln	Asp	Val 205	Phe	Gly	Glu
Arg	Ty r 210	Leu	Arg	Arg	Pro	Thr 215	Met	Glu	Asp	Thr	Glu 220	Arg	Leu	Leu	Gln
Leu 225	Gly	Glu	Lys	Arg	Gl y 230	Phe	Pro	Gly	Met	Phe 235	Gly	Ser	Ile	Asp	Cys 240
Met	His	Trp	His	Trp 245	Glu	Arg	Суѕ	Pro	Val 250	Ala	Trp	Lys	Gly	Gln 255	Phe
Thr	Arg	Gly	Asp 260	Gln	Lys	Val	Pro	Thr 265	Leu	Ile	Leu	Glu	Ala 270	Val	Ala
Ser	His	A sp 275	Leu	Trp	Ile	Trp	His 280	Ala	Phe	Phe	Gly	Ala 285	Ala	Gly	Ser
Asn	Asn 290	Asp	Ile	Asn	Val	Leu 295	Asn	Gln	Ser	Thr	Val 300	Phe	Ile	Lys	Glu
Leu 305	Lys	Gly	Gln	Ala	Pro 310	Arg	Val	Gln	Tyr	Met 315	Val	Asn	Gly	Asn	Gln 320
Tyr	Asn	Thr	Gly	Ty r 325	Phe	Leu	Ala	Asp	Gly 330	Ile	Tyr	Pro	Glu	Trp 335	Ala
Val	Phe	Val	Lys 340	Ser	Ile	Arg	Leu	Pro 345	Asn	Thr	Glu	Lys	Glu 350	Lys	Leu
Tyr	Ala	Asp 355	Met	Gln	Glu	Gly	Ala 360	Arg	Lys	Asp	Ile	Glu 365	Arg	Ala	Phe
Gly	Val 370	Leu	Gln	Arg	Arg	Phe 375	Cys	Ile	Leu	Lys	Arg 380	Pro	Ala	Arg	Leu

-continued

```
Tyr Asp Arg Gly Val Leu Arg Asp Val Val Leu Ala Cys Ile Ile Leu
                                      395
His Asn Met Ile Val Glu Asp Glu Lys Glu Thr Arg Ile Ile Glu Glu
               405
                                  410
Asp Leu Asp Leu Asn Val Pro Pro Ser Ser Ser Thr Val Gln Glu Pro
                              425
Glu Phe Ser Pro Glu Gln Asn Thr Pro Phe Asp Arg Val Leu Glu Lys
                          440
Asp Ile Ser Ile Arg Asp Arg Ala Ala His Asn Arg Leu Lys Lys Asp
Leu Val Glu His Ile Trp Asn Lys Phe Gly Gly Ala Ala His Arg Thr
                   470
Gly Asn
<210> SEQ ID NO 6
<211> LENGTH: 900
<212> TYPE: DNA
<213> ORGANISM: Oryza sativa
<400> SEQUENCE: 6
tttcaagtac aatctcaact tagggaaagt tgtgattgag ggaggatgtt agataatgtt
agttagtttg ttatagagat agattagttc tgttaccgca tgtactttct tgtatctatc
tctatatcca ggattgtctc aggttgttga gattaatcct atcctttgta cacgccacgg
tagaggetet ttetgeetat ateaacaaag gtgeggeece gtaaaggggt teaaegette
tcattccgtt ttacaatcct ccttcttcct cctggtgttg gaaattcgtt gatcgagttg
aaactctcat ccttcatcat gtgctgcaga aactaacgcg tgcacagatg atggatgggt
                                                                   360
420
                                                                   480
ttgacttctt catgcaaaag tataccaacc ctgtataagg ccagtcacaa tggctagtgt
cattqcacqq ctacccaaaa tattatacca tcttctctca aatqaaatct tttatqaaac
                                                                   540
aatccccaca gtggaggggt ttcactttga cgtttccaag actaagcaaa gcatttaatt
                                                                   600
gatacaagtt gctgggatca tttgtaccca aaatccggcg cggcgcggga gaatgcggag
                                                                   660
gtcgcacggc ggaggcggac gcaagagatc cggtgaatga aacgaatcgg cctcaacggg
                                                                   720
ggtttcactc tgttaccgag gacttggaaa cgacgctgac gagtttcacc aggatgaaac
totttoctto tototoatco coatttoatg caaataatca ttttttatto agtottacco
                                                                   840
ctattaaatg tgcatgacac accagtgaaa cccccattgt gactggccta agcatctttg
                                                                   900
<210> SEQ ID NO 7
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR primer
<400> SEQUENCE: 7
ttaggccagt cacaatgg
                                                                    18
<210> SEQ ID NO 8
<211> LENGTH: 24
```

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: PCR primer

<400>	SEQUENCE: 8	
gtgcgʻ	eggtt ggtctcggct ttat	24
<211>	SEQ ID NO 9 LENGTH: 24 TYPE: DNA	
<213> <220>	ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: PCR primer	
	SEQUENCE: 9	
cctcc	tett ceteetggtg ttgg	24
<210>	SEQ ID NO 10	
	LENGTH: 28	
<212>	TYPE: DNA	
	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: PCR primer	
<400>	SEQUENCE: 10	
gtaaga	actga ataaaaaatg attatttg	28
~21 0 ~	SEQ ID NO 11	
	LENGTH: 26	
	TYPE: DNA	
	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: PCR primer	
<400>	SEQUENCE: 11	
catcti	cctct caaatgaaat ctttta	26
	SEQ ID NO 12	
	LENGTH: 23 TYPE: DNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: PCR primer	
<400>	SEQUENCE: 12	
atgtag	ytttg toggtaagtt tga	23
	SEQ ID NO 13 LENGTH: 23	
	TYPE: DNA	
<213>	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: PCR primer	
<400>	SEQUENCE: 13	
atgtg		
	tgtg attgatggga taa	23
	SEQ ID NO 14	23
<211>		23
<211> <212>	SEQ ID NO 14 LENGTH: 30	23
<211> <212> <213> <220>	SEQ ID NO 14 LENGTH: 30 TYPE: DNA ORGANISM: Artificial Sequence FEATURE:	23
<211><212><213><220><223>	SEQ ID NO 14 LENGTH: 30 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: PCR primer	23
<211><212><213><220><223>	SEQ ID NO 14 LENGTH: 30 TYPE: DNA ORGANISM: Artificial Sequence FEATURE:	23

	SEQ ID NO 15 LENGTH: 30	
<212>	TYPE: DNA	
	ORGANISM: Artificial Sequence FEATURE:	
<223>	OTHER INFORMATION: PCR primer	
<400>	SEQUENCE: 15	
agttag	gggga ggagagttgg gcataggaat	30
	SEQ ID NO 16	
	LENGTH: 23 TYPE: DNA	
<213>	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: PCR primer	
<400>	SEQUENCE: 16	
gcctc	ctgct gcgacgtctt cat	23
<210>	SEQ ID NO 17	
	LENGTH: 30	
	TYPE: DNA ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: PCR primer	
<400>	SEQUENCE: 17	
caact	ggatg agcaagatta cagactaaaa	30
	SEQ ID NO 18	
	LENGTH: 24 TYPE: DNA	
<213>	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: PCR primer	
<400>	SEQUENCE: 18	
cagta	cgcca ccaatcacca tcat	24
<210>	SEQ ID NO 19	
	LENGTH: 24	
	TYPE: DNA ORGANISM: Artificial Sequence	
	FEATURE:	
	OTHER INFORMATION: PCR primer	
	SEQUENCE: 19	
ctcato	ctcga acgcaaccta aata	24
	SEQ ID NO 20	
	LENGTH: 25 TYPE: DNA	
<213>	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: PCR primer	
<400>	SEQUENCE: 20	
tgtgat	tgaac agaacaccac cgaga	25
<210>	SEQ ID NO 21	
<211>	LENGTH: 25	
	TYPE: DNA ORGANISM: Artificial Sequence	
<220>	FEATURE:	
NALDO	OTHER INFORMATION: PCR primer	

<400>	SEQUENCE: 21	
cccaa	agata cagagcacct acaca	25
<211> <212> <213> <220>	SEQ ID NO 22 LENGTH: 21 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: PCR primer	
<400>	SEQUENCE: 22	
tgatc	cagat acaacctcca t	21
<211> <212> <213> <220>	SEQ ID NO 23 LENGTH: 21 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: PCR primer	
<400>	SEQUENCE: 23	
gaaaa	gaaaa acaaacaaga a	21
<211> <212> <213> <220>	SEQ ID NO 24 LENGTH: 30 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: PCR primer	
<400>	SEQUENCE: 24	
gggtg	agtga agtgagtgag tgagcagcat	30
<211><212><213><223>	SEQ ID NO 25 LENGTH: 30 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: PCR primer SEQUENCE: 25	
	gggga ggagagttgg gcataggaat	30
<211><212><213><223>	SEQ ID NO 26 LENGTH: 21 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: PCR primer	
<400>	SEQUENCE: 26	
cctca	caacc aatccctacc a	21
<211><212><213><223>	SEQ ID NO 27 LENGTH: 21 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: PCR primer	
<400>	SEQUENCE: 27	
agcca	ccaca ataaccaaag t	21

The invention claimed is:

1. A method for transposing the transposon gene of rice comprising a nucleotide sequence at least 95% identical to SEQ ID NO: 1 comprising, culturing anthers of rice, or

- treating seeds, leaves, roots, or stems of axillary buds of rice, or a callus derived from them of with 5 azacytidine or 5-azadeoxycytidine.
- 2. A method for determining the integration site of a transposon comprising a nucleotide sequence at least 95% 10 identical to SEQ ID NO:1, said method comprising the steps

46

of a) amplifying a segment of genomic DNA utilizing a primer comprising at least 15 contiguous nucleotides of SEQ ID NO:1 for inverse PCR, b) isolating the amplified DNA, and c) determining the sequence of the genomic plant DNA flanking said transposon, thereby determining the integra-

tion site of said transposon.

3. The method of claim 2, wherein the plant species is selected from the group consisting of rice, barley, wheat and maize.

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

PATENT NO. : 7,132,587 B2 Page 1 of 1

APPLICATION NO. : 10/494944

DATED : November 7, 2006 INVENTOR(S) : Kazuhiro Kikuchi et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Title Page, item (73) Assignee should read: -- Japan Science and Technology Agency--

Signed and Sealed this

Twenty-ninth Day of May, 2007

JON W. DUDAS
Director of the United States Patent and Trademark Office