a2 United States Patent

Yamasaki

US008020169B2

US 8,020,169 B2
Sep. 13,2011

(10) Patent No.:
(45) Date of Patent:

(54) CONTEXT SWITCHING SYSTEM HAVING
CONTEXT CACHE AND A REGISTER FILE
FOR THE SAVE AND RESTORE CONTEXT

OPERATION
(75) Inventor: Nobuyuki Yamasaki, Kanagawa (JP)
(73) Assignee: Japan Science and Technology Agency,
Saitama (IP)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1361 days.
(21) Appl. No.: 10/541,187
(22) PCT Filed: Dec. 11,2003
(86) PCT No.: PCT/JP03/15838
§371 (D),
(2), (4) Date:  Aug. 21, 2006
(87) PCT Pub. No.: 'WO02004/063925
PCT Pub. Date: Jul. 29, 2004
(65) Prior Publication Data
US 2007/0022428 Al Jan. 25, 2007
(30) Foreign Application Priority Data
Jan. 9,2003  (JP) .ecovvcereeecinecrrencnnen 2003-003038
(51) Imt.ClL
GOSF 9/46 (2006.01)
GO6F 7/38 (2006.01)
(52) US.CL ..ovvverns 718/108; 718/102; 712/228
(58) Field of Classification Search ....................... None

See application file for complete search history.

START OF
CONTEXT SWITCHING
> v s101

ISSUE STORE INSTRUCTION,
READ DATA FROM REGISTER FILE,
AND SEND DATA
TO MEMORY ACCESS UNIT.
MEMORY ACCESS UNIT
ACCESSES DATA CACHE.

HAS DATA CACHE
ERROR OCCURRED?

ACCESS MEMORY AND
READ CACHE LINE
VIA BUS INTERFACE UNIT

STORE DATA GIVEN FROM
MEMORY ACCESS UNIT
IN DATA CACHE

No

HAVE CONTENTS
OF ALL REGISTERS
BEEN SAVED?

(56) References Cited

U.S. PATENT DOCUMENTS
5,892,944 A *  4/1999 Fukumoto etal. ............ 718/100
6,018,759 A * 1/2000 Doingetal. ................. 718/108
(Continued)

FOREIGN PATENT DOCUMENTS
EP 0942365 9/1999
(Continued)

OTHER PUBLICATIONS

Guangzuo, C. et. al, Parallel Replacement Mechanism for
MultiThread, Advances in Parallel and Distrubuted Computing 1997
Proceedings, 1997, pp. 338 to 334.

(Continued)

Primary Examiner — Meng A An

Assistant Examiner — Tammy Lee

(74) Attorney, Agent, or Firm — Lowe Hauptman Ham &
Berner, LLP

(57) ABSTRACT

In an application in which context switching often occurs
such as in a real time OS, it is possible to significantly reduce
the overhead caused by the context switching. The OS issues
a Swap instruction and a context switch starts. The Swap
instruction is issued together with a thread (i.e., context) ID to
be replaced, to a thread control unit (9). The thread ID is used
to uniquely identify threads stored in a context cache (8). The
thread control unit (9) saves data from a register file (1) to the
context cache (8) via a context-dedicated bus (12) and trans-
mits data of a new thread from the context cache (8) to the
register file (1). According to the thread ID received, the
thread control unit (9) automatically interchanges the neces-
sary number of data in the register file (1) and the data in the
context cache (8).

13 Claims, 8 Drawing Sheets

S
e

ISSUE LOAD INSTRUCTION.
MEMORY ACCESS UNIT
ACCESSES DATA CACHE.

HAS DATA CACHE
ERROR OCCURRED?

ACCESS MEMORY AND
READ CACHE LINE
VIA BUS INTERFACE UNIT

RETURN DATA FROM
DATA CACHE TO
MEMORY ACCESS UNIT

~<

sn7

HAVE CONTENTS OF
ALL REGISTERS
BEEN READ?,

END OF
CONTEXT SWITCHING

s18




US 8,020,169 B2

EP
JP
JP
JP
JP
JP
JP
JP
JP
JP
JP
JP

Page 2
U.S. PATENT DOCUMENTS JP 2000-242505 9/2000
Jp 2000-242505 A 9/2000

6,076,157 A ¥ 6/2000 Borkenhagen etal. ... 712/228 JP 2002-513182 A 5/2002
6,205,467 B1* 3/2001 Lambrechtet al. ... . 718/108 P 2002-513182 8/2002
6,233,599 B1* 5/2001 Nationetal. ... 718/102 1P 2002-533807 10/2002
6,351,808 B1* 2/2002 Joyetal. ...ccooeevnrnne 712/228 WO WO 02/069150 9/2002
6,401,155 Bl 6/2002 Saville et al.
6408325 B1*  6/2002 Shaylor ..o 718/108 OTHER PUBLICATIONS
6,526,491 B2* 2/2003 Suzuokietal. ............. 711/164

FOREIGN PATENT DOCUMENTS

1233340
03-009431
3-9431 A
06-083639
07-141208
09-212371
10-011301
10-063517
11-039171
10-11301 A
2000-076079
2000-76079 A

8/2002
1/1991
1/1991
3/1994
6/1995
8/1997
1/1998
3/1998
2/1999
3/2000
3/2000
3/2000

Wills, D.S. etal., Pica: An Ultra-Light Processor for High-Troughput
Application, Computer Design: VLSI in Computers and Processors,
1993. ICCD ’93. Proceedings, 1993, pp. 410 to 114.

Kwak, H. et al., Effects of multithreading on cache performance,
computers, IEEE Transactions on, 1999, pp. 176 to 184.

Guangzuo, C. et. al, Parallel Replacement Mechanism for
MultiThread, Advances in Parallel and Distrubuted Computing 1997
Proceedings, 1997, pp. 338 to 334, particularly, pp. 340.

Wills, D.S. etal., Pica: An Ultra-Light Processor for High-Troughput
Application, Computer Design: VLSI in Computers and Processors,
1993. ICCD ’93. Proceedings, 1993, pp. 410 to 414; particularly, pp.
411 to 412.

* cited by examiner



U.S. Patent Sep. 13, 2011 Sheet 1 of 8

US 8,020,169 B2
10
P
CPU
Vo :
_ /
Data Pata
REGISTER 5 ——— ALU —
FILE
Reg. ID T ‘ ! NS
eg.
=1 MEMORY |p...
INSTRUCTION > ACCESS }|—>
FETCH UNIT UNIT
Address/ ¢ 3 Address/¢ 6
Instruction Py Data ,
INSTRUCTION
CACHE DATA CACHE
// ’
Address/ Address/
Instruction BUS Data
INTERFACE UNIT
Y 40
20 ¢ 30
¢ e . o
MEMORY 1/0

FIG.1



U.S. Patent Sep. 13, 2011

START OF
CONTEXT SWITCHING
S $101

7
Y
ISSUE STORE INSTRUCTION,
READ DATA FROM REGISTER FILE,
AND SEND DATA
TO MEMORY ACCESS UNIT.
MEMORY ACCESS UNIT
ACCESSES DATA CACHE.

S103

HAS DATA CACHE
ERROR OCCURRED?

S105

ACCESS MEMORY AND
READ CACHE LINE
VIA BUS INTERFACE UNIT

<

Sheet 2 of 8 US 8,020,169 B2

S

Y

ISSUE LOAD INSTRUCTION.
MEMORY ACCESS UNIT
ACCESSES DATA CACHE.

S113

HAS DATA CACHE
ERROR OCCURRED?

S115

ACCESS MEMORY AND
READ CACHE LINE
VIA BUS INTERFACE UNIT

A 4

Y

STORE DATA GIVEN FROM
MEMORY ACCESS UNIT
IN DATA CACHE

AON

S$107

No

HAVE CONTENTS
OF ALLREGISTERS
BEEN SAVED?

S109

RETURN DATA FROM
DATACACHE TO
MEMORY ACCESS UNIT

=<

S117

HAVE CONTENTS OF
ALL REGISTERS
BEEN READ?
S$119

END OF
CONTEXT SWITCHING




U.S. Patent Sep. 13, 2011 Sheet 3 of 8 US 8,020,169 B2

100
/__/
CPU
Control
THREAD
| CONTROL
UNIT | pdaress
8 N9
Y
J{ 1 0 4
| ~ » |/
CONTEXT | pata Data

Dat
CACHE T REGISTER | T —>| AW —

5
Reg. ID ? 2
- MEMORY =/,
INSTRUCTION ——>| ACCESS |—>
FETCH UNIT UNIT
Address/ ¢ 3 Address/¢
Instruction —~ Data
6
INSTRUCTION »
CACHE DATA CACHE
youd [
Address/ Address/
Instruction BUS Data
INTERFACE UNIT
K —
¢ 20 30
f_/ [‘/
MEMORY I/0

FIG.3



U.S. Patent Sep. 13, 2011 Sheet 4 of 8 US 8,020,169 B2

START OF
CONTEXT SWITCHING

l

ISSUE SWAP INSTRUCTION AND S201
SEND ID OF THREAD M~/
TO BE INTERCHANGED
NEXT TO THREAD CONTROL UNIT

l

THREAD CONTROL UNIT
INTERCHANGES DATA BETWEEN S203
REGISTER AND CONTEXT CACHE [/ \_/
IN ACCORDANCE WITH SENT
THREAD IDENTIFIER.

l

END OF
CONTEXT SWITCHING

FIG.4



U.S. Patent

Sep. 13, 2011 Sheet 5 of 8 US 8,020,169 B2
9
S
THREAD CONTROL UNIT
Swap THREAD ID TABLE
> THREAD ID0O
THREAD D1
91 |
Thread 1D
—_—
Address Reg. ID
8 1
CONTEXT CACHE REGISTER FILE
JB-I 12-1 RO Fo
CONTEXT 0 | Rl M
(RO, R1.., FO, F1, .., PC, Status)| | Data _
CONTEXT 1 11 i
(RO, R1.., FO, F1,..,PC, Status){ |- 8-2 ~N A_JHZ
Data
} F31
1222 R1
r PC ] L Status ]
\ 1137 CONTEXT M 14
8-N

FIG.5



U.S. Patent Sep. 13, 2011 Sheet 6 of 8

START OF
SWAP INSTRUCTION

US 8,020,169 B2

i, S300

SEND THREAD ID TO 4
SPECIAL HARDWARE

y

SPECIAL HARDWARE SEARCHES
THROUGH THREAD ID TABLE

AND CALCULATES ADDRESS WHERE
CONTEXT CACHE ISACCESSED,
FROM OBTAINED ENTRY.

S301

IN ACCORDANCE WITH THREAD ID, /\/

FORALL DATA S302

(GENERAL-PURPOSE REGISTERS,
STATUS REGISTER, AND OTHERS)

SPECIAL HARDWARE ACCESSES CONTEXT CACHE,
READS DATA OF NEW THREAD
TO BE INTERCHANGED, AND SENDS DATA
TO REGISTER FILE. CONCURRENTLY SPECIAL
HARDWARE ACCESSES REGISTER FILE
AND SENDS DATA OF CURRENT THREAD
FROM REGISTER FILE TO CONTEXT CACHE.

S303

FORALL DATA
(GENERAL-PURPOSE REGISTERS,
STATUS REGISTER, AND OTHERS)

Y

END OF
SWAP INSTRUCTION

FIG.6

S304



US 8,020,169 B2

Sheet 7 of 8

Sep. 13,2011

U.S. Patent

£9M4 sNg JILINHLIFY
gl 9l
M 140d 3LIMM
140d Qv ¢ 7 <D |4Od ILINM H3LSIOIM ¢
s1ig 952 ONIHOLIMS-LX3LNOD 431S193Y
ILRIM
ﬁ N L
1¥0d avay
180d FLIEMA —9 1304 avay ¥315193Y {
slig omm W ONIHOLIMS-LXILNOD waLsIoy
avad
Ll Gl
NdD NI 3714 ¥3.1S193d
_‘ IVYNDIS
[ 6 TOYLNOD
dnXova 1LX31INOD HO4
ITNAOW AHOWIIN JdIHO-NO = YNSIS al avadHl
1H0d-OML TO4.LNOD NOILONYLSNI dYMS
P— \
g 6



US 8,020,169 B2

Sheet 8 of 8

Sep. 13,2011

U.S. Patent

(v Jo11q)
8Oid
JNIL
~
HOLIMS LX31INOD
S Jlllllllllllllll:l ¥ QV3YHL

HOLIMS 1X31NOD Y

e e = = QVIHHL

—— i o | - - — — === Z2Aav3dHL
HOLIMS 1LX31NOD
Y | QvaNHL
HOLIMS LX31NOD



US 8,020,169 B2

1
CONTEXT SWITCHING SYSTEM HAVING
CONTEXT CACHE AND A REGISTER FILE
FOR THE SAVE AND RESTORE CONTEXT
OPERATION

CROSS REFERENCE TO RELATED
APPLICATIONS

The present Application is based on International Applica-
tion No. PCT/JP2003/015838, filed on Dec. 11, 2003, which
in turn corresponds to JP 2003-3038 filed on Sep. 1, 2003, and
priority is hereby claimed under 35 USC §119 based on these
applications. Each of these applications are hereby incorpo-
rated by reference in their entirety into the present applica-
tion.

TECHNICAL FIELD

The present invention relates to context switching meth-
ods, context switching units, central processing units, context
switching programs, and computer-readable storage media
having stored the programs, and more specifically, to a con-
text switching method, a context switching unit, a central
processing unit, a context switching program, and a com-
puter-readable storage medium having stored the program
that allow overhead caused by context switching in an oper-
ating system (OS) such as a real-time operating system (RT-
OS) to be reduced. Context here means current execution
statuses or information for executing each thread stored in a
storage portion (such as a register file), including a general-
purpose register, a floating-point register, a program counter,
a status register, and others.

BACKGROUND ART

FIG. 8 is a diagram showing a context switch operation.

This figure shows an example in which a plurality of con-
texts (threads) are switched and executed by a single central
processing unit. When a context is switched, the statuses of
the current context (a general-purpose register, a floating-
point register, a program counter, a status register, and others,
and hereafter simply referred to as a context) must be saved,
and the statuses of a new context must be read out. The time
required for the switch operation is referred to as overhead,
and the overhead occurs each time a context is switched.

Some of the conventional techniques for reducing the con-
text switching time are described in the following documents.

Patent Document 1 (Japanese Unexamined Patent Appli-
cation Publication No. Hei-07-141208) describes a technique
for reducing a dispatch time in a multitasking apparatus using
a real-time operating system, by providing a plurality of reg-
ister banks occupied by tasks and by switching the register
bank to save and restore the context and others.

Patent Document 2 (Japanese Unexamined Patent Appli-
cation Publication No. Hei-09-212371) describes a register
save and restore system for reducing the overhead ofan OS by
providing a bit indicating whether the contents of each cor-
responding register have changed or not in a multitasking
microprocessor and, when a task switch occurs, executing a
save instruction if the contents of the register have been
changed or not executing a save instruction if the contents of
the register have not changed, in accordance with the bit.

DISCLOSURE OF INVENTION

In the conventional methods, when a context is switched,
each context status held in the central processing unit is stored

15

20

25

35

40

45

60

65

2

in a storage unit outside the central processing unit by means
of a store instruction of software such as an OS. Then, the
software, such as an OS, reads a new context from the storage
unit by means of a load instruction. Each time a context is
switched, large overhead occurs because several hundreds to
one thousand and several hundreds of memory access cycles
occur to store the context and read another context. The
conventional methods read and store context by means of a
load instruction and a store instruction of software, so that just
one data item can be handled each time. Therefore, as the
number of statuses to be stored increases, the context switch-
ing time increases.

An object of the present invention is to reduce overhead
caused by context switching significantly, especially in an
application, such as a real-time OS, involving frequent con-
text switching. Another object of the present invention is to
provide such a context switching method and a context
switching unit, a central processing unit, a context switching
program, and a computer-readable storage medium having
stored the program that enable a context to be stored and
another context to be read by one or several memory access
cycles each time a context switch occurs.

A further object of the present invention is to keep the
context switching time constant and to minimize the time
quantum of the real-time operation, especially in a system
involving frequent context switching such as a real-time pro-
cessing system.

The present invention reduces overhead resulting from
context switching by

1. Providing a special storage unit (context cache) for hold-
ing a context, and

2. Connecting the special storage unit (context cache) and
the central processing unit (CPU) by a special bus wider in bit
width than a register.

According to a first solving means of the present invention,
there is provided a context switching unit for switching a
plurality of contexts, the context switching unit comprising:

a register file having stored a context related to a thread to
be executed by an arithmetic logic unit or a memory access
unit;

a context cache for caching a context, the context cache
being connected to the register file;

a context switching bus for connecting the register file and
the context cache; and

a thread control unit for controlling data transmission
between the context cache and the register file, the thread
control unit comprising a thread identifier table for storing a
thread identifier for identifying a thread context stored in the
context cache and being connected in parallel with the arith-
metic logic unit and the memory access unit,

wherein, when a context switch occurs, the thread control
unit searches through the thread identifier table in accordance
with an input switch instruction and a new thread identifier to
be interchanged;

obtains the address where a new context to be interchanged
is stored in the context cache and the register identifier indi-
cating the location where the current context is stored in the
register file; and

accesses the context cache in accordance with the obtained
address and accesses the register file in accordance with the
obtained register identifier, and interchanges or saves or
restores the context in the register file and/or the context cache
through the context switching bus.

According to a second solving means of the present inven-
tion, there is provided a central processing unit, the central



US 8,020,169 B2

3

processing unit including the above-described context
switching unit,

an instruction cache for caching an instruction and a data
cache for caching data;

an instruction fetch unit for fetching an instruction from the
instruction cache and decoding the instruction;

an arithmetic logic unit for performing an operation in
accordance with an instruction stored in the register file and
writing the result of the operation back in the register file;

a memory access unit for receiving an operand and an
instruction from the register file, accessing the data cache, and
executing a load or store operation; and

an arithmetic bus for connecting the register file, the arith-
metic logic unit, the memory access unit, and the thread
control unit in parallel.

According to a third solving means of the present inven-
tion, there is provided a context switching method for switch-
ing a plurality of contexts by using a context switching unit
comprising:

a register file having stored a context related to a thread to
be executed by an arithmetic logic unit or a memory access
unit;

a context cache for caching a context, the context cache
being connected to the register file; and

a context switching bus for connecting the register file and
the context cache,

the context switching method comprising:

searching through a thread identifier table for storing a
thread identifier for identifying the context of a thread stored
in the context cache, in accordance with an input switch
instruction and the identifier of a new thread to be inter-
changed, when a context switch occurs;

obtaining the address where a new context to be inter-
changed is stored in the context cache and a register identifier
indicating the location where the current context is stored in
the register file;

accessing the context cache in accordance with the
obtained address and accessing the register file in accordance
with the obtained register identifier, and interchanging or
saving or restoring the context of the register file and/or the
context cache through the context switching bus.

According to a fourth solving means of the present inven-
tion, there is provided a context switching program for
switching a plurality of contexts on a computer by using a
context switching unit, and a computer-readable recording
medium having recorded the program comprising:

a register file having stored a context related to a thread to
be executed by an arithmetic logic unit or a memory access
unit;

a context cache for caching a context, the context cache
being connected to the register file; and

a context switching bus for connecting the register file and
the context cache,

the context switching program for letting the computer
execute:

a step of searching through a thread identifier table for
storing a thread identifier for identifying the context of a
thread stored in the context cache, in accordance with an input
switch instruction and the identifier of a new thread to be
interchanged, when a context switch occurs;

a step of obtaining the address where a new context to be
interchanged is stored in the context cache and a register
identifier indicating the location where the current context is
stored in the register file;

astep of accessing the context cache in accordance with the
obtained address and accessing the register file in accordance
with the obtained register identifier, and interchanging or

10

15

20

25

30

35

40

45

50

55

60

65

4

saving or restoring the context of the register file and/or the
context cache through the context switching bus.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a view showing the configuration of a computer
including a general CPU.

FIG. 2 is a flow chart of context switching by the general
CPU.

FIG. 3 is a view showing the configuration of a computer
including a CPU which uses a context cache.

FIG. 4 is a flow chart of context switching by the CPU
which uses the context cache.

FIG. 5 is a view showing a detailed configuration of a
context switching unit.

FIG. 6 is a flow chart of the processing of a swap instruc-
tion.

FIG. 7 is a view showing the implementation of the context
switching unit.

FIG. 8 is a diagram showing a context switch operation.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

1. Related Art

The present embodiment is used, for instance, as a context
cache on the central processing unit of a responsive multi-
threaded (RMT) processor for distributed real-time parallel
control. A computer including the CPU related to the present
embodiment will be described first.

FIG. 1 is a view showing the configuration of a computer
including a general CPU.

This computer includes a CPU 10, a memory 20, an input/
output unit (I/O) 30, and a bus 40. The CPU 10 is connected
to the memory 20, the I/O 30, and others, via the bus 40. The
CPU 10 includes a register file 1, an instruction fetch unit 2,
an instruction cache 3, an arithmetic logic unit (ALU) 4, a
memory access unit 5, a data cache 6, a bus interface unit 7,
and an arithmetic bus 11.

The register file 1 includes a general-purpose register
(GPR), a floating-point register (FPR), a program counter
(PC), a status register (SR), and other registers. The register
file 1 stores a current context. The instruction cache 3 and the
data cache 6 uses an SRAM, a flip-flop (FF), and other ele-
ments, and can process an access, a read, a write, and others
at a high speed although the storage capacity is small. The
memory 20 outside the CPU 10 uses an SDRAM, a DRAM,
and other elements, and can process an access, a read, a write,
and others at a lower speed than the cache, although the
storage capacity is large.

The ALU 4 uses necessary data and a necessary instruction
from the instruction cache 3, the data cache 6, or the memory
20, in accordance with the principle of locality. If the instruc-
tion cache 3 or the data cache 6 has an instruction and data
needed for processing, the ALU 4 uses the instruction and the
data. If not, the AL U 4 accesses the memory 20 to obtain a
necessary instruction or data. The bus interface unit 7 is a unit
for connecting the instruction cache 3, the memory access
unit 5, and the data cache 6 with the memory 20, the I/O 30,
and others outside the CPU via the bus 40 and performing
data input and output between the inside and the outside of the
CPU. The arithmetic bus 11 is a bus, such as an arithmetic
pipeline, for connecting the register file 1, the ALU 4, and the
memory access unit 5 in parallel.

The instruction fetch unit 2 outputs an address to the
instruction cache 3, fetches an instruction from the instruction
cache 3, and decodes the instruction. The ALU 4 reads a



US 8,020,169 B2

S

necessary operand from the register file 1 in accordance with
the decoded instruction. The ALU 4 performs an arithmetic
operation accordingly and writes the result of the arithmetic
operation back into the register file 1. If a memory access
instruction such as load and store is given, the memory access
unit 5 reads an operand in accordance with the decoded
instruction.

The memory access unit 5 accesses the data cache 6 and
performs a load operation or a store operation. When a store
instruction is given, the memory access unit 5 sends an
address and data to the data cache 6 and stores the data in the
data cache 6. When a load instruction is given, the memory
access unit 5 sends an address to the data cache 6 and reads
data from the data cache 6. The read data is written back into
the register file 1. If necessary data cannot be found in the data
cache 6, the data is read from the memory 20.

In this general configuration, a context stored in the register
file 1 is saved by means of a store instruction.

FIG. 2 is a flow chart of context switching by the general
CPU.

Software, such as an OS, issues a store instruction and
starts context switching. When the store instruction is issued,
data is read from the register file 1 and sent to the memory
access unit 5. The memory access unit 5 calculates a data
storage address and accesses the data cache 6 (S101). Ifa data
cache error occurs (S103), the data cache 6 reads a cache line
from the memory 20 (S105). If no data cache error occurs
(8103), the processing proceeds to step S107. The data cache
6 stores the data sent from the memory access unit 5 at an
appropriate address in it (S107). The software, such as an OS,
repeats the processing of the store instruction as many times
as the number of registers to be saved. Until the contents of all
the registers are saved, the processing is repeated back from
step S101. When the contents of all the registers are saved, the
processing proceeds to step S111 (S109).

Then, the software, such as an OS, uses a load instruction
to restore a new context to be executed. After the current
context is saved, the software, such as an OS, issues a load
instruction. When the load instruction is issued, the memory
access unit 5 calculates a data read address and accesses the
data cache 6 (S111). If a data cache error occurs (S113), the
data cache 6 reads a cache line from the memory 20 (S115). If
no data cache error occurs (S113), the processing proceeds to
step S117. When data is returned from the data cache 6
(S8117), the memory access unit 5 writes the data back into the
register file 1. The load instruction is processed as many times
as the number of registers to be restored. When the contents of
all the registers are not read, the processing is repeated back
from step S111. When the contents of all the registers are
read, context switching ends (S119).

2. CPU Provided with Context Switching Unit

FIG. 3 is a view showing the configuration of a computer
including a CPU which uses a context cache.

The CPU 100 includes a register file 1, an instruction fetch
unit 2, aninstruction cache 3, an AL U 4, a memory access unit
5, a data cache 6, a bus interface unit 7, a context cache 8, a
thread control unit 9, an arithmetic bus 11, and a context bus
12. The arithmetic bus 11 is a bus, such as an arithmetic
pipeline, for connecting the register file 1, the ALU 4, the
memory access unit 5, and the thread control unit 9 in parallel.
The configuration and operation of each block denoted by the
same reference numeral as in the CPU 10 shown in FIG. 1 are
as described earlier.

The context cache 8 uses a SRAM, a FF, and other ele-
ments, and can process an access, a read, a write, and others
at a high processing speed. The context cache 8 is connected
to the register file 1 via the context switching bus 12, and is

20

25

35

40

45

50

60

65

6

used to cache a context. The thread control unit 9 is a unit for
controlling the context cache 8 and is connected in parallel
with the ALU 4 and the memory access unit 5. A thread
generally means a processing unit or the smallest unit into
which a process or a task is divided when the OS performs
parallel processing of processes or tasks. Some processes or
tasks may not be divided, and one process or one task may
become one thread. When a context switch occurs, the context
(a general-purpose register, a floating-point register, a pro-
gram counter, a status register, and others) of the current
thread must be saved, and the context of a new thread to be
executed must be restored. When the context cache 8 of the
present embodiment is used for context switching, contexts
are saved and restored by means of a swap instruction for
interchanging the data of the register file 1 and the context
cache 8 via the context switching bus 12.

FIG. 4 is a flow chart of context switching by the CPU
which uses the context cache.

Software, such as an OS, issues a swap instruction and
starts context switching. The swap instruction is given to the
thread control unit 9, together with the identifier (ID) of the
thread to be interchanged (S201). The thread ID is used to
identify a thread stored in the context cache 8. The thread
control unit 9 saves data from the register file 1 to the context
cache 8 via the context switching bus 12 while sending the
data of the new thread from the context cache 8 to the register
file 1 concurrently. The thread control unit 9 automatically
interchanges the data of the register file 1 and the data of the
context cache 8 as much as needed in accordance with the sent
thread ID (S203). Once the software, such as an OS, issues a
swap instruction, the special hardware performs and finishes
the context switching.

3. Details of Context Switching Unit

FIG. 5 is a view showing a detailed configuration of a
context switching unit.

The register file 1 includes general-purpose registers 111,
floating-point registers 112, a program counter 113, and a
status register 114. The context cache 8 includes a given
number of context storage areas 8-1, 8-2, . . . 8-» for storing a
given number of contexts. The thread control unit 9 is a
controller for controlling the context cache 8 and the register
file 1 formed on an identical chip. The thread control unit 9
contains a thread ID table 91 for holding a given number of
thread IDs for identifying the contexts stored in a on-chip
memory. A multi-thread processor has a plurality of register
files 1 arranged in parallel.

FIG. 6 is a flow chart of the processing of a swap instruc-
tion.

Context switching can be performed by using a special
context switch instruction in a context switch handler, for
instance. When software, such as an OS, issues a swap
instruction, the thread control unit 9, which is special hard-
ware, receives the swap instruction and a thread 1D (S300).
The thread control unit 9 searches through the thread ID table
91 in accordance with the thread 1D, calculates an address
where the data (context) of the thread to be interchanged is
stored, as an access location of the context cache, and calcu-
lates a register ID as an access location of the register file 1
(S301). A loop of steps S302 to S304 is repeated for the data
of all contexts (the general-purpose registers, the status reg-
ister, and the others). The thread control unit 9 accesses the
context cache 8 in accordance with the calculated address,
reads the data (context) of the thread to be interchanged, and
writes the data in the register file 1 (S303). At the same time
orin parallel, the thread control unit 9 accesses the register file
1, reads the data (context) of the current thread, and writes the
data in the context cache 8 (S303). The data is now inter-



US 8,020,169 B2

7

changed between the register file 1 and the context cache 8.
Until all the data is interchanged (S304), the thread control
unit 9 increments the address of the context cache 8 to be
accessed and the register ID of the register file 1 to be
accessed by one and repeats the processing back from the step
S303 (loop of steps S302 to S304). When all the data is
interchanged (S304), the processing of the swap instruction
ends.

The thread control unit 9 interchanges as much data as
needed by incrementing the addresses of the context cache 8
and the register file 1 successively. The context switch opera-
tion, which requires several hundreds to one thousand and
several hundreds of clock cycles if a load instruction and a
store instruction are used, can be completed just in one to
several clock cycles according to the present embodiment
because the context switching bus 12 between the register file
1 and the context cache 8 has a data transfer width much
greater than the bit width of the register. To be more specific,
a group of registers is handled as a single large register, and
each large register is given a register ID. If all registers are
handled as one large register, a context switch operation can
be completed in a single clock cycle.

The thread control unit 9 processes a backup instruction for
saving a context and a restore instruction for restoring a
context, as well as a swap instruction for interchanging con-
texts. When a backup instruction is given, the context data is
not transferred from the context cache 8 to the register file 1,
and the context data is transferred just from the register file 1
to the context cache 8. When a restore instruction is given, the
context data is not transferred from the register file 1 to the
context cache 8, and the context data is transferred just from
the context cache 8 to the register file 1.

FIG. 7 is a view showing the implementation of the context
switching unit.

The context cache 8 is an on-chip memory provided for
context backup, and the context cache 8 of the shown embodi-
ment has two ports and is contained in the CPU. The shown
context cache 8 has a write port 82 and a read port 83. The
context cache 8 can contain storage areas for a given number
of contexts (such as 32 contexts).

The register file 1 has a normal read port, a normal write
port, and also special ports for context switching, which are a
context-switching read port 17 and a context-switching write
port 18, and a storage unit for holding a context is connected
to these ports. In the shown embodiment, the register file 1 has
a register read port 15, a register write port 16, the context-
switching read port 17, and the context-switching write port
18. The register read port 15 is a port for reading a register
from the register file 1 to a unit in the CPU; the register write
port 16 is a port for writing a register from a unit in the CPU
to the register file 1; the context-switching read port 17 is a
port for reading a register from the register file 1 to the context
cache 8; and the context-switching write port 18 is a port for
writing a register from the context cache 8 to the register file
1.

When a context switch occurs, the software, such as an OS,
issues a swap instruction, and the thread control unit saves
data from the context cache 8 in the CPU to the register file 1
and fetches a new context from the register file 1, through the
context-switching read port 17 and the context-switching
write port 18. Context buses 12-1 and 12-2 connecting the
register file 1 and the context cache 8 have a greater width than
the bit width of the register file 1, so that a greater amount of
data can be interchanged at one time. In the shown embodi-
ment, the register file 1 and the on-chip context cache 8 are
connected by the context switching buses 12-1 and 12-2 with
a width of 256 bits each. A two-port on-chip memory can be

20

25

40

45

55

60

65

8

used as the context cache 8, so that a read and a write can be
carried out simultaneously. The context of 32 general-pur-
pose registers each having 32 bits can be interchanged in four
clock cycles.

The number of bits, the storage capacity, the number of
ports, and other parameters given above are just a few
examples, and can be specified appropriately.

4. Others

The context switching method or the context switching unit
or system of the present invention can be implemented by a
context switching program for executing each step by a com-
puter, a computer-readable recording medium having
recorded the context switching program, a program product
which includes the context switching program and can be
loaded into an internal memory of a computer, a computer,
such as a server, including the program, and others.

INDUSTRIAL APPLICABILITY

According to the present invention, overhead caused by
context switching can be substantially reduced, especially in
an application involving frequent context switching, such as a
real-time OS. The present invention can also provide a con-
text switching method, a context switching unit, a central
processing unit, and a computer-readable recording medium
having recorded a context switching program which allow a
memory access operation for storing a context and reading
another context to be completed in one to several cycles at
each context switch, for instance.

According to the present invention, the context switching
time can be kept constant, and the time quantum of areal-time
operation can be minimized, especially in a system involving
frequent context switching, such as a real-time processing
system.

The invention claimed is:

1. A context switching unit for switching a plurality of

contexts, the context switching unit comprising:

a register file having stored a context related to a thread to
be executed by an arithmetic logic unit or a memory
access unit, the register file comprising a register read
port, a register write port, a context-switching read port,
and a context-switching write port;

a context cache used exclusively for saving and restoring
contexts, the context cache comprising a read port and a
write port, being connected directly to the register file
and integrated in a central processing unit on a chip, the
context cache being not connected to a memory through
a bus, which connects the memory, an instruction cache
and a data cache to each other, and being independent
from a memory system including the memory, the
instruction cache and the data cache, to realize context
switching at a high processing speed without interfer-
ence from the bus;

a context switching bus for connecting the register file and
the context cache, the context switching bus comprising
arestore bus and a save bus for connecting the read port
and the write port of the context cache to the context-
switching write port and the context-switching read port
of the register file respectively; and

a thread control unit for controlling data transfer between
the context cache and the register file, the thread control
unit comprising a thread identifier table for storing a
thread identifier for identifying the context of a thread
stored in the context cache and being connected in par-
allel with the arithmetic logic unit and the memory
access unit,



US 8,020,169 B2

9

wherein, in case of a context switch operation which
executes both a save operation for saving a context from
the register file to the context cache and a restore opera-
tion for restoring a context from the context cache to the
register file in parallel at the same time, the thread con-
trol unit receives a context switch instruction for execut-
ing the context switch operation with the identifier of a
new thread to be interchanged;

the thread control unit obtains a restore address where a

new context to be interchanged is stored in the context
cache and a save register identifier indicating a location
where a current context is stored in the register file, by
searching through the thread identifier table in accor-
dance with the thread identifier;

the thread control unit sends the obtained address to the

context cache and the register identifier to the register
file;

in parallel at the same time;

the register file, in accordance with the register identifier

given by the thread control unit, outputs the data of the
context to be saved from the context-switching read port
to the save bus for the save operation and holds the data
of'the context to be in parallel at the same time, sent from
the read port of the context cache to the context-switch-
ing write port through the restore for the restore opera-
tion;

the context cache, in accordance with the address given by

the thread control unit, outputs the data ofa context to be
restored from the read port to the restore bus for the
restore operation and holds the data of the context to be
saved in parallel at the same time, sent from the context-
switching read port of the register file to the write port
via the save bus for the save operation; and

whereby the context switching unit switches contexts the

context switch operation which executes both the restore
operation and the save operation in parallel at the same
time.

2. The context switching unit according to claim 1, wherein
the context switching bus has a bus width greater than a bit
width of the register file.

3. The context switching unit according to claim 1, wherein
the thread control unit comprises as many thread identifier
tables as required to identify contexts cached in the context
cache.

4. The context switching unit according to claim 1, wherein
the thread control unit saves the context of the current thread
from the register file to the context cache and sends the
context of a new thread from the context cache to the register
file in parallel at the same time to automatically interchange a
required number of data items between the register file and
the context cache, when software, such as an operating sys-
tem, issues a swap instruction for interchanging contexts,
including a thread identifier as an operand, if the swap
instruction is executed.

5. The context switching unit according to claim 1, wherein
the thread control unit transfers the data of a context from the
register file to the context cache and does not transfer the data
of a context from the context cache to the register file, when
software, such as an operating system, issues a backup
instruction for saving a context, including a thread identifier
as an operand, if the backup instruction is executed.

6. The context switching unit according to claim 1, wherein
the thread control unit transfers the data of a context from the
context cache to the register file and does not transfer the data
of a context from the register file to the context cache, when
software, such as an operating system, issues a restore

10

20

25

30

35

40

45

50

55

60

65

10

instruction for restoring a context, including a thread identi-
fier as an operand, if the restore instruction is executed.

7. A central processing unit comprising:

a context switching unit according claim 1;

the instruction cache for caching an instruction and the data

cache for caching data;

an instruction fetch unit for fetching the instruction from

the instruction cache and decoding the instruction;
the memory access unit for accessing the data cache and
memory, and executing a load or store operation; and

an arithmetic bus for connecting the register file, the arith-
metic logic unit, the memory access unit, and the thread
control unit in parallel.
8. The central processing unit according to claim 7,
wherein the memory access unit sends an address and data to
the data cache and stores the data in the data cache when a
store instruction is given, and the memory access unit sends
an address to the data cache, reads data from the data cache,
and writes the read data back into the register file when a load
instruction is given.
9. A context switching method for switching a plurality of
contexts by using a context switching unit comprising:
storing a context related to a thread in a register file to be
executed by an arithmetic logic unit or a memory access
unit, the register file comprising a register read port, a
register write port, a context-switching read port, and a
context-switching write port;
saving and restoring contexts exclusively in a context
cache, the context cache comprising a read port and a
write port, being connected directly to the register file
and integrated in a central processing unit; on a chip, the
context cache being not connected to a memory through
a bus, which connects the memory, an instruction cache
and a data cache to each other, and being independent
from a memory system including the memory, the
instruction cache and the data cache, to realize context
switching at a high processing speed without interfer-
ence from the bus;
connecting the register file and the context cache with a
context switching bus, the context switching bus com-
prising a restore bus and a save bus for connecting the
read port and the write port of the context cache to the
context-switching write port and the context-switching
read port of the register file respectively; and

controlling data transfer between the context cache and the
register file using a thread control unit, the thread control
unit comprising a thread identifier table for storing a
thread identifier for identifying the context of a thread
stored in the context cache and being connected in par-
allel with the arithmetic logic unit and the memory
access unit,

wherein, in case of a context switch operation which

executes both a save operation for saving a context from
the register file to the context cache and a restore opera-
tion for restoring a context from the context cache to the
register file in parallel at the same time, the thread con-
trol unit receives a context switch instruction for execut-
ing the context switch operation with the identifier of a
new thread to be interchanged;

the thread control unit obtains a restore address where a

new context to be interchanged is stored in the context
cache and a save register identifier indicating a location
where a current context is stored in the register file, by
searching through the thread identifier table in accor-
dance with the thread identifier;



US 8,020,169 B2

11

the thread control unit sends the obtained address to the
context cache and the register identifier to the register
file in parallel at the same time;

the register file, in accordance with the register identifier
given by the thread control unit, outputs the data of the
context to be saved from the context-switching read port
to the save bus for the save operation and holds the data
of'the context to be restored in parallel at the same time,
sent from the read port of the context cache to the con-
text-switching write port through the restore bus for the
restore operation;

the context cache, in accordance with the address given by
the thread control unit, outputs the data of the context to
be restored from the read port to the restore bus for the
restore operation and holds the data of the context to be
saved in parallel at the same time, sent from the context-
switching read port of the register file to the write port
via the save bus; for the save operation; and

whereby the context switching unit switches contexts by
the context switch operation which executes both the
restore operation and the save operation in parallel at the
same time.

10. The context switching method according to claim 9,
saving the context of the current thread from the register file
to the context cache and sending the context of a new thread
from the context cache to the register file concurrently to
automatically interchange a required number of data items
between the register file and the context cache, when soft-
ware, such as an operating system, issuing a swap instruction
for interchanging contexts, including a thread identifier as an
operand, if the swap instruction is executed.

11. The context switching method according to claim 9,
transferring the data of a context from the register file to the
context cache and not transferring the data of a context from
the context cache to the register file, when software, such as
an operating system, issuing a backup instruction for saving a
context, including a thread identifier as an operand, if the
backup instruction is executed.

12. The context switching method according to claim 9,
transferring the data of a context from the context cache to the
register file and not transferring the data of a context from the
register file to the context cache, when software, such as an
operating system, issuing a restore instruction for restoring a
context, including a thread identifier as an operand, if the
restore instruction is executed.

13. A computer comprising a context switching program
for switching a plurality of contexts by using a context
switching unit the context switching unit comprising:

a register file having stored a context related to a thread to
be executed by an arithmetic logic unit or a memory
access unit, the register file comprising a register read
port, a register write port, a context-switching read port,
and a context-switching write port;

a context cache used exclusively for saving and restoring
contexts, the context cache comprising a read port and a
write port, connected directly to the register file and
integrated in a central processing unit on a chip, the
context cache being not connected to a memory through
a bus, which connects the memory, an instruction cache
and a data cache to each other, and being independent

10

15

20

25

30

35

40

45

50

12

from a memory system including the memory, the
instruction cache and the data cache, to realize context
switching at a high processing speed without interfer-
ence from the bus;

a context switching bus for connecting the register file and
the context cache, the context switching bus comprising
arestore bus and a save bus for connecting the read port
and the write port of the context cache to the context-
switching write port and the context-switching read port
of the register file respectively; and

a thread control unit for controlling data transfer between
the context cache and the register file, the thread control
unit comprising a thread identifier table for storing a
thread identifier for identifying the context of a thread
stored in the context cache and being connected in par-
allel with the arithmetic logic unit and the memory
access unit,

the context switching program causing the computer to
execute:

a step wherein, in case of a context switch operation which
executes both a save operation for saving a context from
the register file to the context cache and a restore opera-
tion for restoring a context from the context cache to the
register file in parallel at the same time, the thread con-
trol unit receives a context switch instruction for execut-
ing the context switch operation with the identifier of a
new thread to be executes both a context save operation
and a context restore operation in interchanged;

a step in which the thread control unit obtains a restore
address where a new context to be interchanged is stored
in the context cache and the save register identifier indi-
cating the location where the current context is stored in
the register file, by searching through the thread identi-
fier table in accordance with the thread identifier;

a step in which the thread control unit sends the obtained
address to the context cache and the register identifier to
the register file in parallel at the same time;

a step in which the register file, in accordance with the
register identifier given by the thread control unit, out-
puts the data of the context to be saved from the context-
switching read port to the save bus for the save operation
and holds the data of the context to be restored in parallel
at the same time, sent from the read port of the context
cache to the context-switching write port through the
restore bus for the restore operation in the register cor-
responding to the register identifier;

a step in which the context cache, in accordance with the
address given by the thread control unit, outputs the data
of the context to be restored from the read port to the
restore bus for the restore operation and holds the data of
the context to be saved in parallel at the same time, sent
from the context-switching read port of the register file
to the write port via the save bus for the save operation;
and

whereby the context switching unit switches contexts by
the context switch operation which executes both the
restore operation and the save operation in parallel at the
same time.



	E:\UNIVENTIO_PDF_US\OUTPUT\US\110913_201137\TEMP\2011-37\08\020\169\00000001.tif
	E:\UNIVENTIO_PDF_US\OUTPUT\US\110913_201137\TEMP\2011-37\08\020\169\00000002.tif
	E:\UNIVENTIO_PDF_US\OUTPUT\US\110913_201137\TEMP\2011-37\08\020\169\00000003.tif
	E:\UNIVENTIO_PDF_US\OUTPUT\US\110913_201137\TEMP\2011-37\08\020\169\00000004.tif
	E:\UNIVENTIO_PDF_US\OUTPUT\US\110913_201137\TEMP\2011-37\08\020\169\00000005.tif
	E:\UNIVENTIO_PDF_US\OUTPUT\US\110913_201137\TEMP\2011-37\08\020\169\00000006.tif
	E:\UNIVENTIO_PDF_US\OUTPUT\US\110913_201137\TEMP\2011-37\08\020\169\00000007.tif
	E:\UNIVENTIO_PDF_US\OUTPUT\US\110913_201137\TEMP\2011-37\08\020\169\00000008.tif
	E:\UNIVENTIO_PDF_US\OUTPUT\US\110913_201137\TEMP\2011-37\08\020\169\00000009.tif
	E:\UNIVENTIO_PDF_US\OUTPUT\US\110913_201137\TEMP\2011-37\08\020\169\00000010.tif
	E:\UNIVENTIO_PDF_US\OUTPUT\US\110913_201137\TEMP\2011-37\08\020\169\00000011.tif
	E:\UNIVENTIO_PDF_US\OUTPUT\US\110913_201137\TEMP\2011-37\08\020\169\00000012.tif
	E:\UNIVENTIO_PDF_US\OUTPUT\US\110913_201137\TEMP\2011-37\08\020\169\00000013.tif
	E:\UNIVENTIO_PDF_US\OUTPUT\US\110913_201137\TEMP\2011-37\08\020\169\00000014.tif
	E:\UNIVENTIO_PDF_US\OUTPUT\US\110913_201137\TEMP\2011-37\08\020\169\00000015.tif
	E:\UNIVENTIO_PDF_US\OUTPUT\US\110913_201137\TEMP\2011-37\08\020\169\00000016.tif

