TOP > 国内特許検索 > 作物可変施肥のための生育量計測装置 > 明細書

明細書 :作物可変施肥のための生育量計測装置

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第3731056号 (P3731056)
公開番号 特開2004-350623 (P2004-350623A)
登録日 平成17年10月21日(2005.10.21)
発行日 平成18年1月5日(2006.1.5)
公開日 平成16年12月16日(2004.12.16)
発明の名称または考案の名称 作物可変施肥のための生育量計測装置
国際特許分類 A01C  21/00        (2006.01)
A01B  69/00        (2006.01)
FI A01C 21/00 Z
A01B 69/00 303M
請求項の数または発明の数 6
全頁数 9
出願番号 特願2003-154427 (P2003-154427)
出願日 平成15年5月30日(2003.5.30)
審査請求日 平成15年5月30日(2003.5.30)
特許権者または実用新案権者 【識別番号】501203344
【氏名又は名称】独立行政法人農業・生物系特定産業技術研究機構
発明者または考案者 【氏名】八谷 満
【氏名】山縣 真人
【氏名】小島 誠
個別代理人の代理人 【識別番号】100063565、【弁理士】、【氏名又は名称】小橋 信淳
【識別番号】100118898、【弁理士】、【氏名又は名称】小橋 立昌
審査官 【審査官】郡山 順
調査した分野 A01C 21/00
A01B 69/00 303
特許請求の範囲 【請求項1】
作物可変施肥のために作物の生育指標を判定する生育量を計測するための装置であって、
前記計測装置は、垂直方向に自由懸垂状態で取付けたフォーク状センサ、または垂直方向に固定した板バネ状の圧覚センサを備え、
前記フォーク状センサ、または圧覚センサを立毛状態の作物に当てて進行させ、作物の生育量に応じてフォーク状センサの回動、または圧覚センサの応力による変位を計測することによって、圃場の中の局所的な作物生育量を非破壊で計測可能とし、作物の生育指標を判定することを特徴とする作物可変施肥のための生育量計測装置。
【請求項2】
前記フォーク状センサ、または圧覚センサは、移動機体から作物側に張り出すようにして装着され、それぞれのセンサを作物体に接触させて独立したセンサデータを取得し、圃場内における作物群を細分化した生育量を検知することを特徴とする請求項記載の作物可変施肥のための生育量計測装置。
【請求項3】
前記フォーク状センサ、または圧覚センサを装着した移動機体に、GPSやエンコーダなどの位置センサを設け、作物生育量センサによる情報とリンクさせることにより、圃場の局所的な作物生育のバラツキデータを収集することを特徴とする請求項1記載の作物可変施肥のための生育量計測装置。
【請求項4】
前記移動機体に作物の生育量に応じた追肥作業が行える施肥装置を設け、この施肥装置を制御する情報を、前記フォーク状センサ、または圧覚センサによる計測値から判定して得ることを特徴とする請求項1記載の作物可変施肥のための生育量計測装置。
【請求項5】
前記フォーク状センサは、立毛状態の作物体に接するバーを一定間隔に取付け、その回動支点軸に回動変位量を測定する計測装置を設けたことを特徴とする請求項1~4のいずれかに記載の作物可変施肥のための生育量計測装置。
【請求項6】
前記圧覚センサは、板バネに歪みゲージを貼付し、板バネに作物体を水平方向に接触させて進行することによって、板バネ面の応力を検知して生育量を計測することを特徴とする請求項1~4のいずれかに記載の作物可変施肥のための生育量計測装置。
発明の詳細な説明 【0001】
【発明の属する技術分野】
本発明は、フォーク状センサ、または圧覚センサによる計測値から圃場の局所的な作物生育指標を判定し、作物の生育量に応じた追肥作業が行えるようにした作物可変施肥のための生育量計測装置に関する。
【0002】
【従来の技術】
高品質小麦の生産を目的とした収量の向上と、子実タンパク質含有率制御を目的とした合理的な肥培管理技術策定に向けて、収量を予測してこれに応じた窒素追肥の情報源の取得が求められている。すなわち、収量性の指標である生育量(繁茂量)の進行した作物群に対して、局所的に窒素葉面施用を行うことにより、収量とタンパク含有率の向上を図るセンシング手法を開発する必要がある。
【0003】
近年、精密圃場管理(Precision Farming;PF)のセンサとして衛星画像、マシンビジョン、マルチスペクトルセンサ等のリモートセンシング技術が注目され、作物の生育状態や、雑草の認識法など日欧米で研究が加速している。しかし、これらセンシングデータの取得には高コストの装置と複雑な物理信号に基づく処理を要する。
【0004】
このような先行技術として、次のようなものが発表されている。
▲1▼「産業用無人ヘリコプタを用いた農地情報のリモートセンシングシステム-ほ場空間データのGISマッピング-」
無人ヘリコプタに搭載されたマシンビジョンやレーザー側距器などのセンサから収集・抽出された作物情報を地理情報システム(GIS)を用いてマッピングできるシステムを開発する。ヘリコプタには慣性航法センサ及び地磁気方位センサ(GDS)が搭載されており、機体のロール角、ピッチ角及び絶対方位が計測できる。ポジショニングセンサとしてRTK-GPSを採用し、絶対座標の計測が可能である。ヘリコプタにイメージングセンサを装備したが、センサによって画像を取得する場合、機体姿勢によって画像に外部歪が生じる。その歪を取り除くために画像座標系を絶対座標系へ変換する必要があり、精度の高いマッピングにはヘリコプタの姿勢角センサの精度向上が不可欠である。GDSと姿勢角センサのバイアス同定法を考案し座標変換精度の向上を目指した。高度30mから70mの範囲で撮影した画像を最大誤差で41cmの精度で絶対座標系に変換できた(非特許文献1参照)。
【0005】
▲2▼「ライトスクリーンシステムによる作物高さの測定」
精密圃場管理(Precision Farming)において、生育過程における作物状態を知ることは、適期適量の追肥、防除作業を行う上で極めて重要な事項である。作物状態を知ることによって、従来のような全面施用ではなく、局所的に必要量を施用することができる。これによって、肥料、農薬などの投資節約からの経済的な利益、さらには、農地周囲環境に対する保全効果などが期待される。生育過程における作物の高さをリアルタイムでセンシングするシステムを開発し、ここでは、トウモロコシを対象にライトスクリーンシステムの適用性を検討する。ライトスクリーンシステムは発光部と受光部、制御ユニットから構成されている。発光部、受光部にそれぞれ40個のビーム素子が19.05mm間隔に並んで取付け螺れ、その全長は742.95mmであった。そして。作物(トウモロコシ)列の高さをリアルタイムで測定した。DGPSを用いて、同時に位置情報も取得した。その結果、作物の高さの測定と同時に、個体数の測定も行えることが確認された(非特許文献2参照)。
【0006】
▲3▼「マシンビジョンを用いたとうもろこしの成長診断」
精密農法用のセンシングデバイスとしてマシンビジョンが現在注目されている。マシンビジョンは、非接触・非破壊で植物の生育状態が取得できるので、従来の測定法と比べてより多くの情報を同時に取得できる。そのため、施肥や防除時の散布量がリアルタイム制御に利用できる。また、取得した画像情報を元にマップベースでの作業ができるなど応用範囲も広い。マシンビジョンで得られた葉面積率を用いて、とうもろこしの成長診断を行った。また、収量も推定可能であった。このシステムは構成がシンプルなので実用化に向けてコスト面などでも大きなメリットがある(非特許文献3参照)。
【0007】
【非特許文献1】
農業機械学会誌 65(1):53~61,2003
【非特許文献2】
農業機械学会北海道支部第51回研究会 講演要旨(2000.11):32~33
【非特許文献3】
農業機械学会北海道支部第51回研究会 講演要旨(2000.11):34~35
【0008】
【発明が解決しようとする課題】
また、現在商品化されている土壌マップと収量マップだけでは、具体的な管理作業の処方箋を作成することは不可能である。この技術レベルをブレークスルーするためには、作物生育期間中の内部システムの同定と制御、すなわち、圃場空間のセンシングとその結果をもとに、適切に状況判断して意志決定(Decision making )をして農作業を行うことに尽きる。こうした観点から、可能な限りセンシング装置の低コスト化とリアルタイム、かつ無駄のない管理作業決定のための簡易な信号処理が求められる。上記画像データなどの取得に際しては、光環境の変化に対する補正等自然光環境下の画像処理の困難さを避けるための種々の対策が求められ、また、複雑な処理ゆえにセンシングと同時の可変管理作業が困難な場面が多い。
【0009】
本発明は、農作物の生育状態をニュートンの第3法則「作用=反作用」に基づいて計測・推定するものである。フォーク状(振り子状)センサ、または圧覚センサ面に作用した作物体の抵抗力を計測することにより、その物理信号から、どれくらいの生育量なのかを判断する。作物生育期問中の状態量を計測し、作物群の生育バラツキに応じて追肥作業など具体的な管理作業の処方箋を作成することが可能となる。
【0010】
【課題を解決するための手段】
上記の目的を達成するために本発明は、地上を走行するトラクタ(移動機体)ヘの搭載を前提としており、立毛状態の作物生育量をセンシングして得られるデータはロータリエンコーダあるいはポテンショメータからのパルス、または圧力値であり、信号形態としては簡易なデータである。このデータを用いて作物可変施肥を行う。
【0011】
さらに、具体的には、請求項に記載された下記の構成を特徴としている。
A.作物可変施肥のために作物の生育指標を判定する生育量を計測するための装置であって、前記計測装置は、垂直方向に自由懸垂状態で取付けたフォーク状センサ、または垂直方向に固定した板バネ状の圧覚センサを備え、前記フォーク状センサ、または圧覚センサを立毛状態の作物に当てて進行させ、作物の生育量に応じてフォーク状センサの回動、または圧覚センサの応力による変位を計測することによって、圃場の中の局所的な作物生育量を非破壊で計測可能とし、作物の生育指標を判定する。
【0012】
B.前記フォーク状センサは、立毛状態の作物体に接するバーを一定間隔に取付け、その回動支点軸に回動変位量を測定する計測装置を設けた。
C.前記圧覚センサは、板バネに歪みゲージを貼付し、板バネに作物体を水平方向に接触させて進行することによって、板バネ面の応力を検知して生育量を計測する。
D.前記フォーク状センサ、または圧覚センサは、移動機体から作物側に張り出すようにして装着され、それぞれのセンサを作物体に接触させて独立したセンサデータを取得し、圃場内における作物群を細分化した生育量を検知する。
【0013】
E.前記フォーク状センサ、または圧覚センサを装着した移動機体に、GPSやエンコーダなどの位置センサを設け、作物生育量センサによる情報とリンクさせることにより、圃場の局所的な作物生育のバラツキデータを収集する。
F.前記移動機体に作物の生育量に応じた追肥作業が行える施肥装置を設け、この施肥装置を制御する情報を、前記フォーク状センサ、または圧覚センサによる計測値から判定して得る。
【0014】
【作用】
上記の構成により本発明の作物可変施肥のための生育量計測装置は、以下の作用をする。
フォーク状センサ、または圧覚センサにより立毛状態の作物生育量をセンシングして得られたデータは、ロータリエンコーダあるいはポテンショメータからのパルス、または圧力値に変換されたものであり、信号形態としては簡易なデータである。このデータにより施肥装置を制御してリアルタイム性に優れた作物可変施肥を行う。また、トラクタ(移動機体)には車輸の回転パルスを取得するエンコーダまたはGPSなど自己位置情報を取得するセンサを装備していることで、センサデータとリンクさせて計算機に取り込むことによって、圃場内の生育バラツキのマップデータが得られる。
【0015】
【発明の実施の形態】
以下、本発明の実施の一形態を添付の図面を参照して具体的に説明する。
図1ないし図4において、符号1は図示省略したトラクタ(移動機体)に移動方向側方の作物16(この実施例では小麦)側に張り出すようにして装着され、作物可変施肥のために、作物16の生育指標を判定する生育量を計測するための装置である。この計測装置1は、フォーク状(振り子型)センサ2と板バネ状の圧覚センサ3とを備えている。
【0016】
前記フォーク状センサ2は、トラクタに支持される支持フレーム4の下端部に回動支持部材5を取付け、この回動支持部材5に対して回動部材6を支軸7を介して前後方向に回動自在に軸支している。回動部材6の下端部には、前後一対の挟持部材8,8を介して、立毛状態の作物体(小麦)に接する複数(この実施例では6本)のバー9の上端部を一定間隔に、左右方向に回動可能に挟持している。従って、バー9は垂直方向に自由懸垂状態で取付けられていることになり、作物体(小麦)との接触抵抗に応じて支軸7を回動させる振り子型(ペンデュラム)のセンサを構成している。前記支軸7の軸端部に、支持フレーム4に支持部材13を介して支持されたロータリエンコーダ、またはポテンショメータ12を連結している。このロータリエンコーダ、またはポテンショメータ12は、支軸7の回動変位量(回動角)を測定する計測装置である。
【0017】
図4に示すように、フォーク状センサ2は、バー9を立毛状態の作物体(小麦)16に接触させて進行する間に、その接触抵抗に応じて支軸7が回動し、その回動角をロータリエンコーダ、またはポテンショメータ12によりパルス信号に変換して出力する。このパルス信号は、トラクタに搭載された計算機(パソコン)14により演算され、作物16の生育量が求められる。従って、圃場の中の局所的な作物16の生育量を非破壊で計測可能であり、作物の生育指標を判定し、この判定データに基づいて、トラクタに装備された可変散布機(可変施肥装置)15を制御し、作物の生育量に応じた追肥作業が行われる。なお、フォーク状センサ2は、全長L=400mm、バーの長さT=300mm、バーの間隔S=72mmである。
【0018】
前記圧覚センサ3は、トラクタに支持される支持フレーム4の前面に、支持アーム10,取付けネジ11、スペーサを介して横長長方形をした板バネ3aの長さ方向上端部を固着し、垂直方向に垂下させている。この板バネ3aの背面にはストレインゲージ3bを貼り付け、板バネ3aを立毛状態の作物16に当てて進行させ、板バネ3aの応力による変位(歪)を計測する。このストレインゲージ3bにより計測された歪値は、トラクタに搭載された計算機(パソコン)14により演算され、作物16の生育量が求められる。
【0019】
従って、圧覚センサ3は、圃場の中の局所的な作物16の生育量を非破壊で計測可能であり、作物の生育指標を判定し、この判定データに基づいて、トラクタに装備された可変散布機(可変施肥装置)15を制御し、作物の生育量に応じた追肥作業が行われる。また、板バネ3aの下端縁は、板バネ3aが作物体(小麦)16に接触して移動する際に、作物体(小麦)16を傷めないように円環部3cを形成している。なお、圧覚センサ3は、全長L=400mm、全幅R=130mmである。
【0020】
前記フォーク状センサ2及び圧覚センサ3は、移動機体から作物16側に張り出すようにして装着され、それぞれのセンサ2,3を作物体16に接触させて独立したセンサデータを取得し、圃場内における作物群を細分化した生育量を検知し、そのデータを元に可変散布機(可変施肥装置)15を制御するが、フォーク状センサ2及び圧覚センサ3は必ずしも並設する必要はなく、いずれか1つを設けるようにしても良い。
【0021】
また、トラクタ(移動機体)には車輸の回転パルスを取得するエンコーダまたはGPSなど自己位置情報を取得する位置センサを装備している。そして、トラクタ(移動機体)の自己位置情報と、フォーク状センサ2及び圧覚センサ3から得られたセンサデータとをリンクさせて計算機14に取り込むことによって、圃場内の局所的な作物生育のバラツキのマップデータを得ることができる。
【0022】
図6は、センサ計測値とその計測した局所的な位置における作物群の重量をプロットした結果、相関係数0.8(決定係数0.65)以上の高い相関が見られる。よって、本発明によるセンシング機構(フォーク状センサ2、または圧覚センサ3)を用いることにより、作物群の生育量を推定することが可能であると判断できる。
【0023】
図7は、センシング機構(フォーク状センサ2、または圧覚センサ3)を搭載した試験車両(車輸にロータリエンコーダを装備)を走行させて、その位置情報とセンサ結果を同時に取り込んでグラフ化した。これによって、圃場内の局所的な位置における作物群の生育量が明確に判断でき、これを用いて圃場内生育マップを作成することができる。また、センサ情報に基づいて肥料の可変散布をすることが可能となる。
【0024】
【発明の効果】
以上説明したように本発明の作物可変施肥のための生育量計測装置によれば、請求項に記載した構成を有することにより、以下の作用効果を奏することができる。
【0025】
フォーク状センサ、または圧覚センサにより立毛状態の作物生育量をセンシングして得られたデータは、ロータリエンコーダあるいはポテンショメータからのパルス、または歪計により圧力値に変換されたものであり、信号形態としては簡易なデータであり、このデータにより施肥装置を制御してリアルタイム性に優れた作物可変施肥を行うことができる。また、移動機体には車輸の回転パルスを取得するエンコーダまたはGPSなど自己位置情報を取得するセンサを装備していることで、フォーク状センサ、または圧覚センサによるセンサデータと自己位置情報をリンクさせて計算機に取り込むことによって、圃場内の生育バラツキのマップデータを得ることができ、適切な作物可変施肥を行うことができる。
【図面の簡単な説明】
【図1】本発明によるフォーク状センサ及び圧覚センサの正面図である。
【図2】同側面図である。
【図3】同平面図である。
【図4】本発明のフォーク状センサによる計測状況を示す概略斜視図である。
【図5】小麦の収量と子実タンパク質含有率を示すグラフである。
【図6】センサ計測量と作物生育量との関係を示すグラフである。
【図7】圃場(畑)の位置に伴う作物情報とペンジュラムセンサ計測値を示すグラフである。
【符号の説明】
1 計測装置
2 フォーク状(振り子状)センサ
3 板バネ状の圧覚センサ 3a 板バネ 3b ストレインゲージ 3c 円環部
4 支持フレーム
5 回動支持部材
6 回動部材
7 支軸
8 挟持部材
9 バー
10 支持アーム
11 取付けネジ
12 ロータリエンコーダ、またはポテンショメータ
13 支持部材
14 パソコン
15 可変散布機
16 作物(小麦)
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6