TOP > 国内特許検索 > 固体撮像素子、及び該素子を用いた撮像装置 > 明細書

明細書 :固体撮像素子、及び該素子を用いた撮像装置

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第4271917号 (P4271917)
公開番号 特開2004-103964 (P2004-103964A)
登録日 平成21年3月6日(2009.3.6)
発行日 平成21年6月3日(2009.6.3)
公開日 平成16年4月2日(2004.4.2)
発明の名称または考案の名称 固体撮像素子、及び該素子を用いた撮像装置
国際特許分類 H01L  27/146       (2006.01)
H01L  27/14        (2006.01)
H04N   5/33        (2006.01)
H04N   5/335       (2006.01)
FI H01L 27/14 A
H01L 27/14 K
H04N 5/33
H04N 5/335 U
請求項の数または発明の数 5
全頁数 13
出願番号 特願2002-266171 (P2002-266171)
出願日 平成14年9月12日(2002.9.12)
審査請求日 平成17年8月2日(2005.8.2)
特許権者または実用新案権者 【識別番号】504143441
【氏名又は名称】国立大学法人 奈良先端科学技術大学院大学
発明者または考案者 【氏名】徳田 崇
【氏名】太田 淳
【氏名】香川 景一郎
個別代理人の代理人 【識別番号】100095670、【弁理士】、【氏名又は名称】小林 良平
審査官 【審査官】恩田 春香
参考文献・文献 特開平04-343482(JP,A)
特開平05-326999(JP,A)
特開平06-120554(JP,A)
特開平09-223786(JP,A)
特開平11-289492(JP,A)
特開昭59-004183(JP,A)
特開平04-051576(JP,A)
特開2001-326378(JP,A)
調査した分野 H01L 27/14 -27/148
特許請求の範囲 【請求項1】
a)シリコン基板上の光照射面に形成され、少なくとも可視帯域の光を受けてキャリアを生成する又はキャリアを生成した後に蓄積するキャリア収集領域を有する可視受光手段と、
b)前記基板を挟んで前記可視受光手段の裏側の面又は該可視受光手段と同一面であってその近傍に設けられ、赤外帯域の光を受けてキャリアを生成する赤外受光手段と、
c)前記赤外受光手段と前記キャリア収集領域との間に与える電位差を変化させることにより、前記赤外受光手段で生成されたキャリア前記キャリア収集領域への移動の度合を制御するキャリア移動制御手段と、
を備え、前記キャリア収集領域から赤外光と可視光の両方による信号を取り出すとともに、その赤外光の相対的な感度を調整できるようにしたことを特徴とする固体撮像素子。
【請求項2】
a)シリコン基板上の光照射面に形成され、少なくとも可視帯域の光を受けてキャリアを生成する又はキャリアを生成した後に蓄積するキャリア収集領域を有する可視受光手段と、
b)前記基板を挟んで前記可視受光手段の裏側の面又は該可視受光手段と同一面であってその近傍に設けられ、赤外帯域の光を受けてキャリアを生成する赤外受光手段と、
c)前記赤外受光手段と前記キャリア収集領域との間に該赤外受光手段で生成されるキャリアの極性に応じた極性の電位差を与えた状態と、前記赤外受光手段と前記キャリア収集領域の外側の基板との間を実質的に短絡して該赤外受光手段と該基板とが同電位である状態とを切り替えることにより、前記赤外受光手段で生成されたキャリアの前記キャリア収集領域への移動を制御するキャリア移動制御手段と、
を備えることを特徴とする固体撮像素子。
【請求項3】
前記赤外受光手段は前記基板の裏側の面に設けられ、該基板内部を通過してきた赤外光を受けてキャリアを生成することを特徴とする請求項1又は2に記載の固体撮像素子。
【請求項4】
前記キャリア移動制御手段は、前記可視受光手段の周囲に形成されたP型及び/又はN型の拡散領域と、該拡散領域に所定電圧を印加する電圧印加手段と、を含むことを特徴とする請求項1~のいずれかに記載の固体撮像素子。
【請求項5】
請求項1~のいずれかに記載の固体撮像素子と、可視帯域の光を遮断する光学フィルタと、該光学フィルタを前記固体撮像素子の光照射面の手前に挿入する又は該光照射面の手前から取り除くフィルタ駆動手段と、を備え、前記光学フィルタを固体撮像素子の光照射面の手前に挿入した状態で、前記キャリア移動制御手段により、赤外受光手段で生成されたキャリアキャリア収集領域への移動促進させることによって、可視帯域の光を除去した、赤外帯域の光による画像信号を取得するようにしたことを特徴とする撮像装置。
発明の詳細な説明 【0001】
【発明の属する技術分野】
本発明は固体撮像素子(一般にはイメージセンサと呼ばれる)及び該素子を用いた撮像装置に関し、更に詳しくは、可視光領域のみならず赤外光領域にも感度を有する可視光/赤外光両用の固体撮像素子、及び該素子を用いた撮像装置に関する。
【0002】
【従来の技術】
近年、固体撮像素子は、デジタルカメラ、カメラ一体型VTR、ファクシミリ、カメラ機能付き携帯電話などの様々な電子機器に利用されており、その性能の進歩には著しいものがある。最も一般的であるシリコン(Si)系の固体撮像素子は、多数の画素が2次元的に配列された構成となっており、各画素は主として受光素子(光電変換部)と電荷読出し回路とで構成されている。受光素子の構造として現在主流であるのは、PN接合フォトダイオード又はフォトゲート構造であり、いずれも入射光によって生成される電子正孔対であるキャリア(フォトキャリア)を検出することで撮像機能を実現している。
【0003】
図9は従来知られている素子構造の例であり、(A)はPN接合フォトダイオード構造の概略縦断面図、(B)はMOSフォトゲート構造の概略断面図である(例えば、非特許文献1など参照)。
【0004】
図9(A)の例では、光電変換部に光が入射すると、主として、N型領域であるソース領域51の接合境界付近に形成される空乏層52内部でキャリアが発生する。発生したキャリアのうち、正孔は基板50を通して排出され、他方、電子は空乏層52内部に蓄積される。その後、ゲート電極53に所定電圧を印加すると、ゲート電極53直下にチャネル54が形成され、このチャネル54を通してN型領域であるドレイン領域55に電子が流れ、ドレイン領域55に接続された信号線56から信号として取り出される。
【0005】
図9(B)の例では、光電変換部に光が入射すると、主として、直流電圧が印加されるフォトゲート電極61の直下に形成されるMOSキャパシタ領域62内部でキャリアが発生する。発生したキャリアのうち、正孔は基板60を通して排出され、他方、電子はMOSキャパシタ領域62内部に蓄積される。その後、ゲート電極63に所定電圧を印加すると、ゲート電極63直下の転送領域64で電位障壁が下がり、この電位障壁を乗り越えてN型領域65に電子が流れ、N型領域65に接続された信号線66から信号として取り出される。
【0006】
こうした固体撮像素子を用いた撮像装置では、上記のように、画素毎に光電変換部で蓄積された電子の量に応じた信号をそれぞれ検出し、その画素信号を画像処理回路で処理することにより、2次元画像を構成することができる。
【0007】
【非特許文献1】
安藤隆男、菰淵寛仁著、「固体撮像素子の基礎-電子の目のしくみ」、映像情報メディア学会、1999年
【0008】
【発明が解決しようとする課題】
ところで、こうした固体撮像素子の応用分野の1つである監視カメラ、暗視カメラ、或いは監視管理システムなどでは、赤外光や近赤外光による撮像の強い要求がある。Si固体撮像素子では、Siの禁制帯域が1.11[eV]程度であるという制約から、上記のような構造のいかんに拘わらず、概ね1.1[μm]以上の波長の赤外光に対しては殆ど感度を持たない。そのため、波長1.1[μm]以上の光を用いた撮像には、従来一般にInGaAs固体撮像素子や赤外ビジコン管などが利用されている。
【0009】
しかしながら、InGaAs固体撮像素子はSi固体撮像素子に比べて格段に高価であるため、撮像装置のコスト低減を阻む大きな要因となっている。また、赤外ビジコン管は固体撮像素子に比べて装置が大形で消費電力も大きく、コスト的にも多くの場合高価になる。
【0010】
本発明はかかる課題に鑑みて成されたものであり、その主たる目的は、赤外光を用いた撮像が行える固体撮像素子を従来に比べて安価なコストで提供するとともに、そのサイズも小さくすることである。また、本発明の別の目的は、可視光を用いた撮像機能を有したまま赤外光撮像機能を追加することができ、必要に応じて、可視光、赤外光両方の撮像や一方のみの選択的な撮像を行うことができる固体撮像素子及び撮像装置を提供することである。
【0011】
【課題を解決するための手段、及び効果】
上記課題を解決するために成された第1発明に係る固体撮像素子は、
a)シリコン基板上の光照射面に形成され、少なくとも可視帯域の光を受けてキャリアを生成する又はキャリアを生成した後に蓄積するキャリア収集領域を有する可視受光手段と、
b)前記基板を挟んで前記可視受光手段の裏側の面又は該可視受光手段と同一面であってその近傍に設けられ、赤外帯域の光を受けてキャリアを生成する赤外受光手段と、
c)前記赤外受光手段と前記キャリア収集領域との間に与える電位差を変化させることにより、前記赤外受光手段で生成されたキャリア前記キャリア収集領域への移動の度合を制御するキャリア移動制御手段と、
を備え、前記キャリア収集領域から赤外光と可視光の両方による信号を取り出すとともに、その赤外光の相対的な感度を調整できるようにしたことを特徴としている。
また第2発明に係る固体撮像素子は、
a)シリコン基板上の光照射面に形成され、少なくとも可視帯域の光を受けてキャリアを生成する又はキャリアを生成した後に蓄積するキャリア収集領域を有する可視受光手段と、
b)前記基板を挟んで前記可視受光手段の裏側の面又は該可視受光手段と同一面であってその近傍に設けられ、赤外帯域の光を受けてキャリアを生成する赤外受光手段と、
c)前記赤外受光手段と前記キャリア収集領域との間に該赤外受光手段で生成されるキャリアの極性に応じた極性の電位差を与えた状態と、前記赤外受光手段と前記キャリア収集領域の外側の基板との間を実質的に短絡して該赤外受光手段と該基板とが同電位である状態とを切り替えることにより、前記赤外受光手段で生成されたキャリアの前記キャリア収集領域への移動を制御するキャリア移動制御手段と、
を備えることを特徴としている。
【0012】
ここでいう「赤外帯域」とは近赤外を含む波長帯域であって、可視光の長波長端である0.76~0.83[μm]以上であるが、実用的には、おおよそ1.1[μm]以上の波長を指す。こうした波長帯域の光に感度を有する赤外受光手段としては、例えばGe、III-V族化合物半導体であるInAs、InGaAs等、禁制帯幅がSiよりも小さな半導体材料の薄膜層を、P型、N型、P型/N型、又はN型/P型のいずれかの構造で設けたものとすることができるが、有機材料などそれ以外の材料も考え得る。
【0013】
第1及び第2発明に係る固体撮像素子では、可視光に対する検出信号を取得したい場合に、キャリア移動制御手段は、赤外受光手段で生成されたキャリアがキャリア収集領域にできるだけ到達しないように該キャリアの移動を制御する。そのため、入射光に赤外帯域の光が含まれていて、その赤外光により赤外受光手段でキャリアが発生しても、該キャリアはキャリア収集領域には殆ど入り込まず、検出信号としては利用されない。一方、入射光に含まれる可視帯域の光によってキャリア収集領域にはキャリアが発生するから、該キャリア収集領域で発生した又は発生した後に蓄積されたキャリアに応じた信号電流や信号電圧を取り出すことにより、赤外光の影響が少ない、可視光による画像信号を得ることができる。
【0014】
赤外光に対する検出信号を取得したい場合には、キャリア移動制御手段は、赤外受光手段で生成されたキャリアがキャリア収集領域まで移動するように該キャリアの移動を制御する。具体的には、例えば可視受光手段がPN接合フォトダイオードである場合、赤外受光手段とキャリア収集領域との間に所定の電位差を与える又は既に電位差がある場合でもその電位差を増大させることにより、キャリア収集領域である空乏層を拡大し、しかも該空乏層内に適宜の電界を形成することができる。空乏層が赤外受光手段の間近まで広がることによって、赤外受光手段で発生したキャリアは空乏層に捉えられ易くなり、また空乏層内ではキャリアの移動性は非常に高いから、赤外光により発生したキャリアを効率よく収集することができる。なお、その際の電位差の極性はキャリアとして電子又は正孔のいずれを利用するのかに依存する。それにより、赤外光により赤外受光手段で発生したキャリアはキャリア収集領域に移動し、あたかも該領域内部で発生したかのように取り扱われる。入射光に可視帯域の光が含まれている場合には、可視光によりキャリア収集領域で発生したキャリアと上記赤外受光手段から移動して来たキャリアとが混じり合うから、該キャリア収集領域に存在するキャリアに応じた信号電流や信号電圧を取り出すことにより、赤外光と可視光の両方による画像信号を得ることができる。また、入射光に可視帯域の光が含まれていない場合には、キャリア収集領域には赤外受光手段から移動して来たキャリアのみが存在するから、赤外光による画像信号を得ることができる。
【0015】
第1発明に係る固体撮像素子では、キャリア移動制御手段により、赤外受光手段で生成されたキャリアのうちキャリア収集領域まで移動する量(又はキャリア収集領域まで移動する割合)の制御が行える構成であるから、可視光に対する受光感度と赤外光に対する受光感度とを適宜に調整することができ、相対的に赤外光による信号強度を高めたり逆に低めたりすることができる。
【0016】
なお、上記可視受光手段は従来知られている各種の形態とすることができるが、具体的には、例えばPN接合フォトダイオードやMOSフォトゲート等とすることができる。PN接合フォトダイオードの場合には、キャリア収集領域は接合境界付近に形成される空乏層(空乏領域と呼ばれることもある)であり、MOSフォトゲートの場合には、キャリア収集領域はMOSキャパシタ領域である。可視光に対してキャリアは必ずしもキャリア収集領域内部のみで発生するのではないが、その大部分がキャリア収集領域で発生することから、実質的に可視光によるキャリアはキャリア収集領域で発生するとみることができる。
【0017】
上述したように、本発明に係る固体撮像素子によれば、従来一般的であるシリコン基板を用いたSi固体撮像素子の構造を基本とし、これに赤外受光手段とキャリア移動制御手段を設けることにより、1.1[μm]以上の赤外帯域までの撮像を可能とすることができる。基板としては標準的なシリコン基板を用いることができ、製造工程としては従来のSi固体撮像素子の製造工程に若干の追加を行えばよいので、従来のInGaAs固体撮像素子やビジコン管等の赤外撮像素子に比べて大幅なコストの削減が達成できる。また、ビジコン管と比べて大幅な小型化ができるのはもちろんのこと、MOS型とすることにより光電変換部以外では非常な微細化が可能で、しかも周辺回路を同一基板上に搭載するのも容易である。それによって、この素子自体の小型化はもちろん、該素子を用いた撮像装置の小型化が達成できる。
【0018】
また、特に1.4[μm]以上の赤外帯域の光はアイセーフ光と呼ばれ、人間の目のの被爆許容量が大きいことが知られている。本発明に係る固体撮像素子では、こうした赤外帯域の光を容易に利用することができるため、強い光を用いた能動的暗視システムの構築が可能となる。また、太陽光は1.1[μm]以上の成分を多く含むが、目に安全な1.4[μm]以上の明るい光源を利用することにより、太陽光の影響を受けにくい撮像が行える能動的撮像システムを構築することもできる。こうした撮像技術は従来のSi固体撮像素子では実現できないものである。
【0019】
更にまた、本発明に係る固体撮像素子によれば、単に赤外撮像が可能となるだけでなく、必要に応じて、赤外光を用いない可視光のみによる撮像や、赤外光と可視光との両方による撮像、可視光を用いない赤外光のみによる撮像を、1個の素子で選択的に行うことができる。従って、こうした各種の撮像を切り替えて行うような撮像装置を低コストで具現化でき、そのサイズも小型化することができる。
【0020】
本発明に係る固体撮像素子の好ましい態様としては、赤外受光手段は基板の裏側の面に設けられ、該基板内部を通過してきた赤外光を受けてキャリアを生成する構成とすることができる。
【0021】
このように、基板の裏面に赤外受光手段として赤外受光層を設ける方法としては、貼付けや蒸着などが一般的であるが、有機材料等、液体が利用できる場合には、塗布などによって薄膜層を形成するようにしてもよい。
【0022】
この好ましい態様の構成によれば、赤外受光手段を基板の裏面に設けているため、基板表面に可視受光手段を形成する面積を広く確保することができ、精細度等の性能を向上させるのに有利である。また、可視受光手段やそのほかの回路(例えば信号読み出し回路など)には影響なく赤外受光手段を形成することができるため、従来のSi固体撮像素子の製造工程に簡単な工程を追加しさえすればよく、コスト的にも有利である。更にまた、基板の表裏で可視受光手段及び赤外受光手段を一対とすることにより、いずれの受光手段でもほぼ同一範囲に照射された光を利用することができるので、例えば赤外撮像と可視撮像とを切り替える際に両者の画像の対応関係が良好になり、また、赤外光と可視光の両方を利用する場合には、画像のにじみやぼけを少なくすることができる。
【0023】
なお、赤外受光手段を基板の裏面に設ける場合、研磨等により基板を薄くした上で赤外受光手段を形成するとよい。これにより、赤外受光手段からキャリア収集領域までの距離が短くなるとともに、表側の光照射面から入射した光が赤外受光手段に到達する際の光の拡がりが抑制される。それによって、赤外受光手段で発生したキャリアをキャリア収集領域で一層効率よく収集することができる。従って、赤外光の受光感度を向上させることができるとともに、隣接する画素のキャリア収集領域への漏れ込みを軽減することができ、画像のにじみやぼけの改善にも有効である。
【0029】
また、本発明に係る固体撮像素子において、キャリア移動制御手段は、可視受光手段の周囲に形成されたP型及び/又はN型の拡散領域と、該拡散領域に所定電圧を印加する電圧印加手段と、を含む構成とすることができる。
【0030】
この構成では、拡散領域に印加する電圧を調整することにより、基板内部や基板表面に形成される電界の電位分布を適宜に定め、それによって、赤外受光手段で発生したキャリアを効果的にキャリア収集領域まで移動させたり、或いは、赤外受光手段で発生したキャリアのうち、隣接画素に対して妨害や干渉となる可能性の高いキャリアを引き抜くことができる。従って、画像のにじみやぼけなどを改善し、画質を向上させることができる。
【0031】
また、本発明に係る固体撮像素子を用いた撮像装置は、上記本発明に係る固体撮像素子と、可視帯域の光を遮断する光学フィルタと、該光学フィルタを前記固体撮像素子の光照射面の手前に挿入する又は該光照射面の手前から取り除くフィルタ駆動手段と、を備え、その光学フィルタを固体撮像素子の光照射面の手前に挿入した状態で、キャリア移動制御手段により、赤外受光手段で生成されたキャリアがキャリア収集領域まで移動することを促進することによって、可視帯域の光を除去した、赤外帯域の光による画像信号を取得するようにしたことを特徴としている。
【0032】
すなわち、この撮像装置によれば、上記のような固体撮像素子と光学フィルタとを組み合わせることにより、比較的簡単な制御で、可視光の影響を受けない、赤外撮像を実現することができ、上述したような赤外撮像を利用した各種のシステムの構築に有利である。
【0033】
【発明の実施の形態】
以下、本発明に係る固体撮像素子について、具体的な例を挙げ、図面を参照して説明する。
【0034】
図1は、本発明の一実施例である第1実施例の固体撮像素子における1画素の光電変換部の縦断面構造を示す概略図である。この第1実施例は、可視受光手段として図9(A)に示したものと同様のPN接合フォトダイオードを利用したものである。図1(及び以降の説明で用いる図2~図7)では、光電変換部のみを記載しているが、これは、本発明に特徴的な構成が光電変換部にあるからである。
【0035】
すなわち、一般に、固体撮像素子では、その構造に応じて、光電変換部の後段に、電圧/電流変換部、信号読み出し部等を備えているが、これら構成要素はどのようなものでもよい。例えば信号の読み出しはCMOS型でもCCD型でもよい。また、多くの場合、光電変換部のキャリア収集領域ではキャリアを蓄積するが、こうしたキャリアの蓄積は必須ではなく、生成されたキャリアを即座に読み出すものであっても本発明は適用可能である。
【0036】
図1に従って説明すると、P型のシリコン基板(以下、単に「基板」と称す)10の表面には、従来と同様にN型領域11を設けることでPN接合フォトダイオードが形成されており、その接合境界付近に形成される空乏層12内で主として可視光に対するキャリアを生成する。また、基板10の裏面には、III-V族化合物半導体であるInGaAs、InAs等の薄膜層から成る赤外受光層13が赤外受光手段として形成されている。赤外受光層13は、基板10の表面に照射された光のうち、基板10内部を通過して来た光を受けてキャリアを生成する機能を有する。
【0037】
但し、赤外受光層13の材料はこれに限るものではなく、赤外光(ここでは1.1[μm]以上の波長帯域)に対して充分な感度を有する材料であれば他のものでもよい。また、赤外受光層13の形成方法も特に問わないが、例えば、予め形成した赤外受光層を基板10の裏面に貼り合わせる方法、スパッタリングなどの蒸着による方法などが利用できる。また、材料が液体である場合には、塗布法や吹付法などによることもできる。
【0038】
また、通常、基板10の厚さは数百[μm]であることが多いが、後述するような空乏層12の拡大によるキャリアの収集効率を高めるには、基板10を研磨し30~百[μm]程度まで薄くすることが好ましい。なお、そのとき赤外受光層13の膜厚は数百[nm]~数[μm]程度とすることができる。
【0039】
N型領域11から適宜離れた位置には基板10に対する接触を確保するための第1電極14が設けられ、一方、赤外受光層13の下面には該赤外受光層13に対する接触を確保するための第2電極15が設けられている。第1電極14と第2電極15との間には図示しない制御信号により切り替わるスイッチ16が設けられ、該スイッチ16の他端子には直流電源17が接続される。スイッチ16は後述するように、本固体撮像素子の撮像モードを切り替える機能を有する。なお、図1において、スイッチ16は基板10とは別に描いているが、その機能を基板10上に形成できることは当然である。
【0040】
図3は上記第1実施例による固体撮像素子の受光動作を説明するための概念図である。ここでは、従来のSi固体撮像素子本来の受光モードを可視光(通常)撮像モードと呼び、本素子に特有の赤外光撮像状態を赤外光撮像モードと呼ぶ。
【0041】
1.可視光撮像モード(図3(A)参照)
スイッチ16を左側に倒すことによって、基板10表面の第1電極14と赤外受光層13下面の第2電極15とを短絡する(又はごく小さな負荷を介して接続してもよい)。上方から光電変換部に照射された光のうち、可視光によって空乏層12内にはキャリアが生成されて蓄積される。一方、PN接合フォトダイオードは赤外光に対しては殆ど感度を有さないため、赤外光は途中でエネルギを失うことなく基板10内部に深く入り込み、基板10を突き抜けて裏面の赤外受光層13にまで到達する。赤外受光層13は赤外光に対して高い感度を有しているから、赤外受光層13でキャリアが生成される。しかしながら、上述したように第1電極14と第2電極15とは短絡されているため、基板10内部では第1電極14と第2電極との間でキャリア(ここでは電子)が通過し易くなっている。そのため、赤外受光層13で発生したキャリアは上記経路を通ってすぐに散逸してしまい、空乏層12には殆ど入り込まない。従って、赤外受光層13で発生したキャリアは利用されないから、従来のSi固体撮像素子と同じように動作するものと捉えることができる。
【0042】
2.赤外光撮像モード(図3(B)参照)
スイッチ16を右側に倒すことにより、赤外受光層13に接触する第2電極15に負電圧を印加する。これによって、図示したようにPN接合境界の空乏層12は赤外受光層13の間近まで拡大し、またそれに伴い空乏層12内部に形成される電界によってキャリアの移動性が大きく向上する。このような状態で、赤外受光層13でキャリアが生成されると、キャリアのうちの電子は空乏層12へと容易に入り込み、上記電界の作用によって空乏層12内部をN型領域11近くまで迅速に移動しつつ蓄積される。入射光に可視光が含まれている場合には、可視光によって空乏層12内でキャリアが生成される。従って、空乏層12内部には可視光によるキャリアと赤外光によるキャリアとが混在し、可視光と赤外光の両方に対する検出出力が得られる。
【0043】
本固体撮像素子を用いて、赤外光のみによる撮像と可視光のみによる撮像とを切り替えて行いたい場合には、例えば図8に示すような撮像装置の構成をとることができる。
【0044】
すなわち、本固体撮像素子100と集光レンズ系106との間に所望の赤外光のみを通過させるような波長特性を有する光学フィルタ104を挿脱自在に設置する。赤外撮像を行う場合には、制御部103はフィルタ駆動部105により光学フィルタ104を集光レンズ系106と固体撮像素子100の間に挿入する。撮像対象物107による投影光が光学フィルタ104を通過する際に可視帯域の光は除去され、赤外光のみが固体撮像素子100に入射する。固体撮像素子100は制御部103により上記赤外光撮像モードで動作するように制御される。それにより、固体撮像素子100からは上述したように赤外受光層13で生成されたキャリアのみに基づいた検出信号を取り出され、画像処理部101を介して画像モニタ102には赤外画像が映し出される。
【0045】
また、上述したように第2電極15に負電圧を印加することにより空乏層12を裏面方向に拡大することができ、その空乏層12の広がり度合によって、赤外受光層13で発生したキャリアが空乏層12に入り込む度合が変化する。従って、第2電極15に印加する電圧(厳密には基板10表面の電圧と赤外受光層13の電圧との電圧差)を適宜制御して、空乏層12の広がりを制御することにより赤外光に対する受光感度を調整することができる。それにより、最終的に再現される画像において、赤外光への相対的な依存性を調整して様々な画像を得ることができる。
【0046】
次に、本発明の第2実施例として、可視受光手段としてMOSフォトゲートを利用した例について説明する。図2は、第2実施例の固体撮像素子の1画素の光電変換部の縦断面構造を示す概略図である。
【0047】
基板20の表面には、酸化膜28を挟んでフォトゲート電極21が設けられており、フォトゲート電極21直下に形成されるMOSキャパシタ領域22内で主として可視光に対するキャリアを生成する。更に、第1実施例と同様に、基板10の裏面に赤外受光層23が形成されている。フォトゲート電極21の近傍には基板20に対する接触を確保するための第1電極24が設けられ、一方、赤外受光層23の下面には該赤外受光層23に対する接触を確保するための第2電極25が設けられている。そして、第1電極24と第2電極25との間には制御信号により切り替わるスイッチ26が設けられ、該スイッチ26の他端子には直流電源27が接続される。
【0048】
図4は上記第2実施例による固体撮像素子の受光動作を説明するための概念図である。可視光撮像モード(図4(A)参照)及び赤外光撮像モード(図4(B)参照)における基本的な動作は、可視光によるキャリアの蓄積動作が異なるだけで、それ以外は上記第1実施例と同じであるので簡単に説明する。
【0049】
1.可視光撮像モード(図4(A)参照)
スイッチ26を左側に倒すことにより、第1電極24と赤外受光層23下面の第2電極25とを短絡する。上方から光電変換部に照射された光のうち、可視光によってMOSキャパシタ領域22内にはキャリアが生成されて蓄積される。一方、赤外光は途中でエネルギを失うことなく基板20内部に深く入り込み、基板20を突き抜けて裏面の赤外受光層23にまで到達する。赤外受光層23は赤外光に対して高い感度を有しているから、赤外受光層23でキャリアが生成されるがすぐに散逸してしまいMOSキャパシタ領域22に殆ど入り込むことはないため、赤外受光層23は撮像には実質的に寄与せず、従来のフォトゲート型の固体撮像素子と同様の動作となる。
【0050】
2.赤外光撮像モード(図4(B)参照)
スイッチ26を右側に倒すことにより、赤外受光層23に接触する第2電極25に負電圧を印加する。これにより、図示したようにMOSキャパシタ領域22は赤外受光層23の間近まで拡大し、それに伴ってMOSキャパシタ領域22内に形成される電界によりキャリアの移動性が大きく向上する。このような状態で赤外受光層23でキャリアが生成されると、そのうちの電子はMOSキャパシタ領域22内へ容易に入り込み、上記電界の作用によって該領域22の上部まで迅速に移動し蓄積される。MOSキャパシタ領域22内には可視光により生成されたキャリアも存在するから、例えば図示しない転送ゲートが開かれると、赤外光によるキャリアと可視光によるキャリアとが同時に横方向へと送られる。
【0051】
このようにして、この第2実施例の固体撮像素子でも、第1実施例と同様に、可視光撮像モード、赤外光撮像モードを切り替えて実行することができ、赤外光のみによる撮像を行いたい場合には上記第1実施例と同様の手法を利用すればよい。
【0052】
第1及び第2実施例に係る上記説明では、1個の画素についての構成及び動作について説明したが、実際の固体撮像素子では、多数の画素が互いに近接して配置されている。そのため、動作の安定性確保と性能の向上を図るためには、例えば、可視光撮像モードにおいて、或る画素の赤外受光層で発生したキャリアが隣接した画素の空乏層に漏れ込むといった、画素間の干渉や妨害などの防止に配慮した構成とすることが好ましい。
【0053】
次に、このような点に配慮した固体撮像素子の構造と動作について説明する。図5は可視受光手段がPN接合フォトダイオードである縦断面構造の例、図6は可視受光手段がフォトゲートである縦断面構造の例であり、図1、図2と同様の構成要素には同一符号を付している。可視受光手段を除き、基本的な構造はいずれも同じであるので、図5についてのみ説明する。
【0054】
隣接する画素のN型領域11の間に基板10とは逆の伝導性(この例ではN型)の第1拡散領域30を形成するとともに、第1拡散領域30と各画素のN型領域11との間に基板10と同伝導性(この例ではP型)の第2拡散領域31を形成する。第1拡散領域30、第2拡散領域31にはそれぞれ適当な電圧DC1、DC2を印加する。
【0055】
第1拡散領域30に適宜の電圧を印加することにより、基板10内部での電位分布の均一性を高めることができ、それによって、空乏層12直下の赤外受光層13で生成されたキャリアを安定的に空乏層12へと導くことができる。また、隣接画素の中間の赤外受光層13で発生したキャリアを引き抜くことによって、他の画素の空乏層12への漏れ込みを防止し、それにより画像のにじみやぼけ等の画質劣化を改善することもできる。
【0056】
一方、第2拡散領域31に適宜の電圧を印加することにより、基板10表面付近での電位分布の均一性を高めることができ、それによって、基板10内のキャリアの挙動を一層安定させることができる。また、上述したような第1拡散領域30によるキャリアの引抜きを補助し、画像のにじみやぼけ等の画質劣化を一層改善することができる。
【0057】
また、上記のような構成を採ることによって隣接画素の影響を軽減できるため、多数の画素に対して基板10、20の裏面に形成した赤外受光層13、23は共通(つまり画素毎に分離されていない)であってもよいが、画素毎に、又は複数の画素をグループ化した各画素グループ毎に、赤外受光層13、23を分離した構成としてもよい。このような構成とすれば、素子の製造工程は若干複雑になるものの、隣接画素の影響を一層軽減して、画質のさらなる改善が可能となる。
【0058】
また、上記実施例はいずれも赤外受光層13、23を基板10、20の裏面に形成していたが、例えば図7に示すように、基板10の表面でN型領域11と重ならない位置に形成するようにしてもよい。この場合には、赤外受光層13に負電圧を印加すると空乏層12が横方向に拡大し、赤外受光層13で生成されたキャリアが空乏層12に到達し易くなる。
【0059】
更にまた、固体撮像素子に含まれる全ての画素の可視受光手段に対応して赤外受光層(赤外受光手段)を設ける必要はなく、要求される画像の質等に応じて、一部の画素のみに赤外受光層を設けてもよい。また。赤外受光層を備えた画素と、赤外受光層を備えない画素(可視受光手段のみの画素)とが存在する(特に近接して配置されている)場合、例えば両者の信号の差を求めることにより、赤外光に対する信号のみを抽出することができる。このような機能を利用することによって赤外画像を作成することができるとともに、従来のSi固体撮像素子では実現できないような各種の撮像が可能となる。
【0060】
なお、上記各実施例は一例であって、本発明の趣旨の範囲で適宜変形や修正を行っても、本願の請求の範囲に包含されることは明らかである。
【図面の簡単な説明】
【図1】 第1実施例の固体撮像素子における1画素の光電変換部の縦断面構造を示す概略図。
【図2】 第2実施例の固体撮像素子における1画素の光電変換部の縦断面構造を示す概略図。
【図3】 第1実施例による固体撮像素子の動作説明図。
【図4】 第2実施例による固体撮像素子の動作説明図。
【図5】 他の実施例による固体撮像素子の要部の縦断面構造を示す概略図。
【図6】 他の実施例による固体撮像素子の要部の縦断面構造を示す概略図。
【図7】 他の実施例による固体撮像素子の要部の縦断面構造を示す概略図。
【図8】 第1実施例の固体撮像素子を用いた撮像装置の構成図。
【図9】 従来のSi固体撮像素子の素子構造を示す概略縦断面図。
【符号の説明】
10、20…基板
11…N型領域
12…空乏層
13、23…赤外受光層
14、24…第1電極
15、25…第2電極
16、26…スイッチ
17、27…直流電源
21…フォトゲート電極
22…MOSキャパシタ領域
28…酸化膜
30…第1拡散領域
31…第2拡散領域
100…固体撮像素子
101…画像処理部
103…制御部
104…光学フィルタ
105…フィルタ駆動部
106…集光レンズ系
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8