TOP > 国内特許検索 > 光通信用送信装置およびコリメータレンズ > 明細書

明細書 :光通信用送信装置およびコリメータレンズ

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第3774768号 (P3774768)
公開番号 特開2005-006063 (P2005-006063A)
登録日 平成18年3月3日(2006.3.3)
発行日 平成18年5月17日(2006.5.17)
公開日 平成17年1月6日(2005.1.6)
発明の名称または考案の名称 光通信用送信装置およびコリメータレンズ
国際特許分類 H04B  10/10        (2006.01)
H04B  10/105       (2006.01)
H04B  10/22        (2006.01)
G02B  13/00        (2006.01)
G02B  13/18        (2006.01)
FI H04B 9/00 R
G02B 13/00
G02B 13/18
請求項の数または発明の数 7
全頁数 14
出願番号 特願2003-167420 (P2003-167420)
出願日 平成15年6月12日(2003.6.12)
審査請求日 平成15年9月24日(2003.9.24)
特許権者または実用新案権者 【識別番号】504143441
【氏名又は名称】国立大学法人 奈良先端科学技術大学院大学
発明者または考案者 【氏名】香川 景一郎
【氏名】太田 淳
【氏名】川上 智朗
個別代理人の代理人 【識別番号】100085501、【弁理士】、【氏名又は名称】佐野 静夫
審査官 【審査官】望月 章俊
参考文献・文献 特開2000-091998(JP,A)
特開平04-247419(JP,A)
特開2001-083462(JP,A)
特開2000-286799(JP,A)
調査した分野 H04B10/00-10/28
H04J14/00-14/08
特許請求の範囲 【請求項1】
指向性の高い光によって自由空間を介して通信を行う光通信の送信装置において、
光源と、
光源からの光を収束光とする集光レンズと、
集光レンズからの収束光を反射するとともに、光を反射する面上の一点を中心として互いに直交する2方向に回動して、反射後の光の方向を変化させるミラーと、
ミラーの回動中心を通る光軸を有し、ミラーからの収束光を受けて収束後の光を略平行な光として射出するとともに、射出する光の方向の変化量をミラーからの光の方向の変化量よりも大きくするコリメータレンズと、を備え
ミラーからの光の中心の光線がコリメータレンズの光軸に一致している状態からミラーを角θM1だけ回動させたときに、コリメータレンズが射出する略平行な光がコリメータレンズの光軸と成す角θB1は、近似的に次の式(1A)で表されることを特徴とする送信装置
θB1≒2・r1・θM1/f …(1A)
ここで、
1:ミラーの回動中心から空中に形成される光源像までの距離(ただし、レンズの内部で光を収束させる設定では、レンズが存在しないとした場合のものである。)
f:コリメータレンズの焦点距離、
である
【請求項2】
コリメータレンズに射出側から平行光を入射させたときに生じる結像面の形状に、前記収束光の収束面の形状が近づくように、コリメータレンズはミラーからの光が最初に透過する面で収束面の湾曲の符号を反転させることを特徴とする請求項1に記載の送信装置。
【請求項3】
コリメータレンズが、ミラーからの光の中心の光線と光軸との成す角が所定値以下の範囲内で、ミラーからの光の方向の変化量に対する射出する光の方向の変化量の比を略一定にすることを特徴とする請求項1又は2に記載の送信装置。
【請求項4】
収束光を略平行な光とする軸対称なコリメータレンズにおいて、
光軸上の一点を中心とする球面上に収束する方向可変の収束光を受けて、収束後の光を略平行な光として射出するとともに、射出する光の方向の変化量を受ける光の方向の変化量よりも大きくする構成になっており、収束光の中心の光線がコリメータレンズの光軸に一致している状態から、収束光の方向を前記光軸上の一点を中心として角θM2だけ変化させたときに、射出する略平行な光が光軸と成す角θB2は、近似的に次の式(1B)で表されることを特徴とするコリメータレンズ
θB2≒2・r2・θM2/f …(1B)
ここで、
2:光が収束する球面の曲率半径(ただし、レンズの内部で光を収束させる設定では、レンズが存在しないとした場合のものである。)
f:コリメータレンズの焦点距離、
である
【請求項5】
回動するミラーが反射した収束光を略平行な光とする軸対称なコリメータレンズにおいて、このコリメータレンズに射出側から平行光を入射させたときに生じる結像面の形状に、前記収束光の収束面の形状が近づくように、ミラーからの光が最初に透過する面で収束面の湾曲の符号を反転させることを特徴とする請求項4に記載のコリメータレンズ。
【請求項6】
受ける光の中心の光線と光軸との成す角が所定値以下の範囲内で、受ける光の方向の変化量に対する射出する光の方向の変化量の比を略一定にすることを特徴とする請求項4又は5に記載のコリメータレンズ。
【請求項7】
2枚のレンズより成り、光を最初に受けるレンズの内部または直前において光を収束させることを特徴とする請求項に記載のコリメータレンズ。
発明の詳細な説明 【0001】
【発明の属する技術分野】
本発明は、指向性の高い光によって自由空間を介して通信を行う光通信の送信装置に関する。
【0002】
【従来の技術】
自由空間を介して光通信を行う通信システムには、指向性の低い発散光を用いるものと、指向性の高い平行光を用いるものがある。前者は、送信側の装置と受信側の装置との相対的な向きに制約が少ないという特長を有する一方で、光の利用効率が低いため、S/N比が悪く、通信速度が低い。このため、例えば家電製品の遠隔操作のように、通信量が少ないシステムに採用される。後者は、ほとんど全ての光を通信に利用することができて、S/N比がよく、通信速度は高い。このため、複数のパーソナルコンピュータから成るローカルエリアネットワーク(LAN)で採用されつつある。
【0003】
しかしながら、指向性の高い光を用いる従来の通信システムでは、送信側の装置の送信部と受信側の装置の受信部を対向させて配置しており、その向きの設定に時間を要していた。この時間を短縮するための提案もいくつかなされている。例えば、特開2000-286799号公報では、双方向通信を行う送受信装置において、送受信部を直交する2方向に回動可能にするとともに、送受信部に多数のコーナーキューブを設けて、一方の装置からサーチ光を射出し、他方の装置のコーナーキューブで再帰反射された光を検出することにより、送受信部の適切な向きを求めることが開示されている。
【0004】
【特許文献1】
特開2000-286799号公報
【0005】
このように送受信部の向きを可変とすると、向きの設定に要する時間を短縮させることができるだけでなく、1つの装置から複数の装置への送信も可能となり、LANに好適な送受信装置となる。
【0006】
【発明が解決しようとする課題】
ところが、上記公報では、送信部を光源とその光を平行光とする放物面リフレクタで構成し、受信部を光を検出するセンサとセンサ上に光を集める放物面リフレクタで構成しているため、小型化は難しい。また、送受信部全体を回動させるため、大きな駆動力が必要である上、高速での回動も困難である。
【0007】
近年、反射面上の一点を中心として互いに直交する2方向に回動可能で、MEMS(Micro-Electro Mechanical Systems)によって駆動される小型のミラーが開発され、高速に向きを変え得る光学部材として注目されている。このMEMSミラーを送信部の光路上に備えて射出する光の方向を変化させるようにすれば、送信部全体を回動させる必要がなくなって、送信装置の小型化が可能になり、また、光の射出方向の高速な変化も可能になる。
【0008】
ただし、光源からの光を平行光とし、その平行光の光路上にMEMSミラーを配置するのでは、ミラーの大きさを平行光の光束径以下にすることはできず、小型化に限界が生じるとともに、光の射出方向を変化させる速度も遅くなる。また、ミラーの向きのみによって平行光の射出方向を変えようとすると、射出方向が変化する角度はミラーの回動角の2倍に限られてしまい、射出方向をあまり大きく変化させることはできない。
【0009】
本発明は、平行光の射出方向を高速にかつ大きく変化させることが可能な送信装置、および、これに適したコリメータレンズを提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明では、指向性の高い光によって自由空間を介して通信を行う光通信の送信装置において、光源と、光源からの光を収束光とする集光レンズと、集光レンズからの収束光を反射するとともに、光を反射する面上の一点を中心として互いに直交する2方向に回動して、反射後の光の方向を変化させるミラーと、ミラーの回動中心を通る光軸を有し、ミラーからの収束光を受けて収束後の光を略平行な光として射出するとともに、射出する光の方向の変化量をミラーからの光の方向の変化量よりも大きくするコリメータレンズと、を備え、ミラーからの光の中心の光線がコリメータレンズの光軸に一致している状態からミラーを角θM1だけ回動させたときに、コリメータレンズが射出する略平行な光がコリメータレンズの光軸と成す角θB1は、近似的に次の式(1A)で表される構成とする。更に好ましくは、コリメータレンズに射出側から平行光を入射させたときに生じる結像面の形状に、前記収束光の収束面の形状が近づくように、コリメータレンズはミラーからの光が最初に透過する面で収束面の湾曲の符号を反転させる構成とする。
θB1≒2・r1・θM1/f …(1A)
ここで、
1:ミラーの回動中心から空中に形成される光源像までの距離(ただし、レンズの内部で光を収束させる設定では、レンズが存在しないとした場合のものである。)
f:コリメータレンズの焦点距離、
である。
【0011】
この送信装置では、光源からの光を収束光としてコリメータレンズに導き、コリメータレンズに向かう収束光の方向をミラーによって変化させる。ミラーは反射面上の一点を中心として直交する2方向に回動可能であるから、コリメータレンズに向かう光を任意の方向に変化させることができる。コリメータレンズは、ミラーからの収束光を、その方向にかかわらず、略平行な光とする。
【0012】
ミラーからの光の方向が変化するとコリメータレンズが略平行にした光の方向も変化するが、コリメータレンズは射出する光の方向の変化量をミラーからの光の方向の変化量よりも大きくする。したがって、射出する略平行な光の方向の変化量は、ミラーの回動角の2倍を超える。ミラーは、収束しつつある光を反射するため、コリメータレンズが略平行にした後の光の光束径よりも小さくすることが可能である。また、コリメータレンズが略平行にした光の光束径がミラーの大きさによって制約されることもない。
【0013】
ここで、コリメータレンズが、ミラーからの光の中心の光線と光軸との成す角が所定値以下の範囲内で、ミラーからの光の方向の変化量に対する射出する光の方向の変化量の比を略一定にするようにするとよい。方向の変化量の比が一定であれば、射出する略平行な光の方向の変化量がミラーの回動角に比例することになり、所望の方向に光を射出するためのミラーの制御が容易になる。
【0014】
前記目的を達成するために、本発明ではまた、収束光を略平行な光とする軸対称なコリメータレンズにおいて、光軸上の一点を中心とする球面上に収束する方向可変の収束光を受けて、収束後の光を略平行な光として射出するとともに、射出する光の方向の変化量を受ける光の方向の変化量よりも大きくする構成とし、収束光の中心の光線がコリメータレンズの光軸に一致している状態から、収束光の方向を前記光軸上の一点を中心として角θM2だけ変化させたときに、射出する略平行な光が光軸と成す角θB2は、近似的に次の式(1B)で表されるものとする。このコリメータレンズを備えることで、上述の送信装置が実現される。更に好ましくは、回動するミラーが反射した収束光を略平行な光とする軸対称なコリメータレンズにおいて、このコリメータレンズに射出側から平行光を入射させたときに生じる結像面の形状に、前記収束光の収束面の形状が近づくように、ミラーからの光が最初に透過する面で収束面の湾曲の符号を反転させる構成とする。
θB2≒2・r2・θM2/f …(1B)
ここで、
2:光が収束する球面の曲率半径(ただし、レンズの内部で光を収束させる設定では、レンズが存在しないとした場合のものである。)
f:コリメータレンズの焦点距離、
である。
【0015】
ここで、受ける光の中心の光線と光軸との成す角が所定値以下の範囲内で、受ける光の方向の変化量に対する射出する光の方向の変化量の比を略一定にするようにするとよい。射出する光の方向の制御が容易になる。
【0016】
また、2枚のレンズで構成し、光を最初に受けるレンズの内部または直前において光を収束させるようにするとよい。この構成では、収束後の光を略平行な光とするために3つまたは4つの面を利用することができて、射出する略平行な光の方向を大きく変化させるための設計の自由度が高い。受ける光をレンズの内部で収束させる設定では、光が収束する面の形状を最初に光が透過する面によって球面から変化させることが可能であり、これにより、レンズの直前で収束させる設定と同様に、射出する光の方向を大きく変化させることができる。また、構成レンズを2枚に限ることで、大型化が避けられる。
【0017】
【発明の実施の形態】
以下、本発明の一実施形態の送受信装置について図面を参照しながら説明する。図1に、本実施形態の送受信装置1を含む光通信システム3の構成を模式的に示す。各送受信装置1は、略平行な光に情報を担持させて送出する送信部と、情報を担持した略平行な光を受けてその情報を取得する受信部より成り、屋内に配置されてLANを形成している。いくつかの送受信装置1は、パーソナルコンピュータ等の情報処理装置2に接続または内蔵されており、他の送受信装置1は、単独で配設されている。単独の送受信装置1は、例えば天井に取り付けられて、情報処理装置2に接続または内蔵されている送受信装置1間の通信の中継を行う。
【0018】
送受信装置1の送信部の光学構成を図2に示す。送信部は、光源11、光源11からの光を結像させて光源像を形成するリレーレンズ12、リレーレンズ12からの光を反射するミラー13、およびミラー13からの光を略平行な光として射出するコリメータレンズ14より成る。光源11としては、波長850nmの赤外光を発する面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)を用いている。
【0019】
リレーレンズ12は、2つのレンズ12a、12bより成り、光源11の各点からの光を収束光とする集光レンズとしても機能する。レンズ12aは光源11の各点からの発散光を平行光とし、レンズ12bはその平行光を収束光とする。なお、リレーレンズ12として単一のレンズを用いてもよい。
【0020】
ミラー13は、リレーレンズ12とリレーレンズ12からの光の収束位置(結像位置)との間に配置されており、リレーレンズ12からの収束しつつある光を反射する。ミラー13は、光を反射する面上の一点を中心に、互いに直交する2方向に回動可能であり、その回動中心がリレーレンズ12の光軸上に位置するように配置されている。ミラー13としては、回動を高速に行い得るMEMSミラーを用いている。
【0021】
コリメータレンズ14は2つのレンズ14a、14bから成り、その光軸Axはミラー13の回動中心を通る。コリメータレンズ14は、ミラー13からの光を最初に受けるレンズ14aの内部または直前でミラー14aからの光を収束(結像)させ、光が発散光となった状態で略平行な光とする。
【0022】
ミラー13の回動によりコリメータレンズ14に向かうミラー13からの光の方向は変化するが、コリメータレンズ14は、ミラー13からの光の方向にかかわらず、その光を略平行な光とする。ミラー13が回動すると、レンズ14aの内部または直前に形成される光源像は移動し、移動する光源像からの光によって空間が走査されることになる。
【0023】
送受信装置1の回路構成を図3に模式的に示す。送受信装置1は、情報送信のために、前述の光源11、ミラー13等のほか、パラレル/シリアル変換回路15、符号化回路16、光源駆動回路17、ミラー制御回路18、およびミラー駆動回路19を備えている。パラレル/シリアル変換回路15は、パラレル信号として与えられるデジタルの送信データをシリアル信号に変換し、符号化回路16は、シリアル信号とされた送信データを符号化する。光源駆動回路17は、符号化された送信データに基づいて、光源11の発光と非発光の状態を切り替える。
【0024】
ミラー制御回路18は、コリメータレンズ14が射出する略平行な光が送信先の送受信装置1に向かうように、ミラー駆動回路19を介して、ミラー13の向きを制御する。ミラー駆動回路19は、ミラー制御回路18からの指示に応じて、直交する2方向(x、y方向)にミラーを回動させる。
【0025】
送受信装置1は、情報受信のために、光センサ21、センサ駆動回路22、増幅回路23、デジタル化回路24、復号化回路25、およびシリアル/パラレル変換回路26を備えている。光センサ21は、波長選択フィルタを備えており、波長850nm程度の赤外光に感度を有し、可視光には感応しない。センサ駆動回路22は光センサ21を駆動し、増幅回路23は光センサ21の出力信号を増幅する。デジタル化回路24は、増幅回路23からアナログ信号として与えられる光センサ21の出力信号をデジタル信号に変換し、復号化回路25はそのデジタル信号を復号化する。シリアル/パラレル変換回路26はシリアル信号となっている復号化回路25からのデジタル信号をパラレル信号に変換する。
【0026】
送受信装置1はまた、全体を制御する制御部10を有する。制御部10はマイクロコンピュータやASIC(特定用途向けIC)等で構成されており、演算、記憶等の機能を有する。前述の情報処理装置2に接続または内蔵されている送受信装置1では、制御部10は、送信データを情報処理装置2から得てパラレル/シリアル変換回路15に与え、シリアル/パラレル変換回路26からの受信データを情報処理装置2に与える。通信の中継を行う独立の送受信装置1では、制御部10は、シリアル/パラレル変換回路26からの受信データをパラレル/シリアル変換回路15に与える。
【0027】
制御部10は略平行な光の射出方向の制御も司る。この制御はミラー制御回路18を介して行われる。制御部10は、送受信装置1の初期設定時に、略平行な光の射出方向を変化させて射出した光によって空間を走査し、その光を受けた他の送受信装置1の受光強度が最大になる方向を、その送受信装置1に対する光の射出方向として記憶しておく。通信の中継を行う送受信装置1の制御部10は、複数の送受信装置1に対する光の射出方向を記憶しており、送信先の送受信装置1に応じて略平行な光の射出方向を切り替える。
【0028】
送信部のコリメータレンズ14について説明する。ミラー13の回動によりミラー13からの光の方向が変化すると、コリメータレンズ14が射出する略平行な光の方向も変化する。ミラー13からの光の中心の光線がコリメータレンズ14の光軸Axに一致している状態からミラーを角θMだけ回動させたときに(図2参照)、コリメータレンズ14が射出する略平行な光がコリメータレンズ14の光軸Axと成す角θBは、近似的に次の式1で表される。
【0029】
θB≒2・r・θM/f … 式1
ここで、rは、光が収束する球面の曲率半径、すなわちミラー13の回動中心から空中に形成される光源像までの距離であり、レンズ14aの内部で光を収束させる設定では、レンズ14aが存在しないとした場合のものである。fは、コリメータレンズ14の焦点距離である。
【0030】
式1は角θBが角θMに略比例することを表している。また、例えば、r=3mm、f=2mmとすると、θB=3・θMとなって、ミラー13からの光の中心の光線がコリメータレンズ14の光軸Axと成す角(2・θM)よりも大きくなる。送受信装置1では、これを利用して、ミラー13からコリメータレンズ14に向かう光の方向の変化量よりも、射出する略平行な光の方向の変化量を大きくするとともに、前者に対する後者の比を略一定とする。
【0031】
以下、コリメータレンズ14の設計例をいくつか示す。なお、各設計例において、非球面は次の式2で定義している。
JP0003774768B2_000002t.gifここで、zは光軸方向のサグ、rは光軸からの距離、Rは曲率半径、A2~A10は偶数(2~10)次の非球面係数である。
【0032】
<設計例1>
設計例1のコリメータレンズ14の形状を図4に示し、諸パラメータを下記に掲げる。本設計例では、ミラー13からの光はレンズ14aの内部で収束する。
【0033】
JP0003774768B2_000003t.gif【0034】
なお、F数の1.04という値は焦点距離と有効直径から求まる値であり、有効直径内の一部分を通る実際の光に対するF数は、括弧内に記したように2.86である。
【0035】
上記設計例1のコリメータレンズ14を含む送信部の光学系全体の設計例を図5に示す。本設計例では、リレーレンズ12の光軸とコリメータレンズ14の光軸Axを直交させて、これらの光軸に対して45゜の角度を成す方向をミラー13の基準方向として、基準方向を中心にミラー13を回動させるようにしている。光源11の大きさ(キャビティサイズ)は15μm、その光の放射角は20゜(全角)、波長は前述のように850nmである。また、リレーレンズ12は焦点距離3mmの薄肉理想レンズとしている。なお、図5には、コリメータレンズ14の鏡胴とその寸法も示した。
【0036】
ミラー13からコリメータレンズ14に向かう光の中心の光線とコリメータレンズ14の光軸Axの成す角が0゜のとき、つまりミラー13が基準方向を向いているときの、コリメータレンズ14が射出する光の放射角は2.85×10-3゜(全角)である。ミラー13の基準方向からの回動角θMと、コリメータレンズ14が射出する略平行な光の偏向角(中心の光線とコリメータレンズ14の光軸Axの成す角)θBの関係を図6に示す。ミラー13の回動角θMが5.5゜程度になるまで、偏向角θBは回動角θMに略比例しており、その比例係数は3である。すなわち、コリメータレンズ14は、射出する略平行な光の方向の変動量をミラー13からの光の方向の変化量の1.5倍にしている。
【0037】
コリメータレンズ14の射出面(第4面)S4からの距離が2mの平面上での略平行な光の光束径は、ミラー13の回動角θMが0゜、1゜、2゜、3゜、4゜、5゜のとき、それぞれ3.7mm、3.6mm、3.6mm、4.3mm、5.8mm、11.7mmである。コリメータレンズ14が射出する光のスポットダイアグラムを図7に示す。これは、上記平面上に焦点距離3mmの撮像レンズを配置して、略平行な光を結像させて得たものである。
【0038】
<設計例2>
設計例2のコリメータレンズ14の形状を図8に示し、諸パラメータを下記に掲げる。本設計例でも、ミラー13からの光はレンズ14aの内部で収束する。
【0039】
JP0003774768B2_000004t.gif【0040】
本設計例では、ミラー13からの光が最初に透過するレンズ14aの面S1も非球面としている。射出する略平行な光の偏向角θBは、設計例1と同様に、ミラー13の回動角θMが5゜程度になるまで回動角θMに略比例しており、その比例係数は3である。コリメータレンズ14の射出面S4からの距離が2mの平面上での略平行な光の光束径は、4~6mmである。撮像レンズを用いて前述のようにして得たスポットダイアグラムを図9に示す。
【0041】
<設計例3>
設計例3のコリメータレンズ14の形状を図10に示し、諸パラメータを下記に掲げる。本設計例では、ミラー13からの光はレンズ14aの直前、すなわち第1面S1の近傍の空中で収束する。
【0042】
JP0003774768B2_000005t.gif【0043】
本設計例では、硝材としてPMMA(屈折率1.49)よりも屈折率の大きいS-TIH53(屈折率1.83)を用いている。また、射出する略平行な光の偏向角θBとミラー13の回動角θMが比例関係を有する範囲を、設計例1や設計例2の約1.5倍としている。すなわち、回動角θMが7.5゜を超えるまで偏向角θBは回動角θMに略比例する。その比例係数は3であり、偏向角θBの最大値は22.5゜以上である。コリメータレンズ14の射出面S4からの距離が2mの平面上での略平行な光の光束径は、4~10mmである。撮像レンズを用いて前述のようにして得たスポットダイアグラムを図11に示す。
【0044】
前述のように、コリメータレンズ14は、ミラー13からの光を最初に受けるレンズ14aの内部または直前でミラー13からの収束光を収束させ、発散光となった状態で略平行な光とする。設計例3のようにレンズ14aの直前で光を収束させる場合、および、設計例1や設計例2のようにレンズ14aの内部で光を収束させる場合のいずれも、平行化に関与するのは、主として面S2、S3、S4の3つである。レンズ14aの内部で光を収束させる設計例1、設計例2では、ミラー13からの光が最初に透過する面S1は、レンズ14aが存在しなければ球面となるミラー13からの収束光の収束面(各収束点を連ねた面)を、面S2、S3、S4による光の平行化に適する形状にする機能を有する。この点について説明する。
【0045】
設定例1のコリメータレンズ14を例にとって、図12に、面S1を透過してレンズ14a内で収束するミラー13からの光の収束面(曲線A)、コリメータレンズ14の射出瞳を通って逆方向(レンズ14bの面S4側)から入射する光の結像面(曲線B)、および、レンズ14aが存在しない場合のミラー13からの光の収束面(曲線C)、を示す。図12において、縦軸(y軸)は光軸からの距離を表し、横軸(z軸)は光軸Axに平行な方向の距離を表す。なお、レンズ14aが存在しない場合のミラー13からの光の収束面Cは、実際は光軸(z軸)方向にシフトしているが、ここではレンズ14a内の収束面Aと原点を一致させて表している。レンズ14a内の収束面Aと逆方向から入射する光の結像面Bとは原点が一致している。
【0046】
一般に、レンズによって光を結像させる場合、結像面には像面湾曲が生じる。図12においても、結像面Bは湾曲している。ところが結像面Bの湾曲とレンズ14aがない場合のミラー13からの光の収束面C(球面)の湾曲とは符号が逆であり、結像面Bと収束面Cには大きな形状差がある。このため、仮にレンズ14aの面S1を平面とすると、収束面Aの形状は収束面Cの形状からあまり変化せず、偏向角θBが非常に狭い範囲でしか略平行な光を得ることができなくなる。
【0047】
図12より明らかなように、面S1は収束面Aの湾曲の符号を収束面Cの湾曲の符号から反転させている。これにより、収束面Aの形状が結像面Bの形状に近づき、広い偏向角θBにわたって平行光にきわめて近い光を得ることが可能になっている。
【0048】
レンズ14aの直前で光を収束させる設計例3では、逆方向から入射する光の結像面Bはレンズ14aの外部(面S1の近傍)に位置する。面S1は、結像面Bの湾曲の符号を収束面Cの湾曲の符号と同じにして、結像面Bと収束面Cの形状差を小さく機能を有する。
【0049】
光の収束位置をレンズ14aの内部としてもレンズ14aの直前としても、射出側から見た光源像が実像になるか虚像になるかの違いがあるだけで、コリメータレンズ14の光学特性に本質的な差異は生じない。用いる硝材の屈折率に応じて、設計の容易な方を採用すればよい。
【0050】
なお、コリメータレンズ14を構成するレンズの数を3以上とすれば、射出する略平行な光の偏向角θBを一層大きくすることができる。ただし、構成レンズ数を増すほどコリメータレンズ14は大型化するから、移動式の送受信装置では、上記の各設計例のように、コリメータレンズ14を2つのレンズで構成するのが望ましい。
【0051】
また、本実施形態では、光の射出方向を高速で変化させるためにミラー13としてMEMSミラーを用いたが、ミラーの駆動方式はこれに限定されるものではない。光源11についても、レーザに限定されるものではなく、発光ダイオード(LED)等の他の種類を用いてかまわない。
【0052】
【発明の効果】
指向性の高い光によって自由空間を介して通信を行う光通信の送信装置において、本発明のように、光源と、光源からの光を収束光とする集光レンズと、集光レンズからの収束光を反射するとともに、光を反射する面上の一点を中心として互いに直交する2方向に回動して、反射後の光の方向を変化させるミラーと、ミラーの回動中心を通る光軸を有し、ミラーからの収束光を受けて収束後の光を略平行な光として射出するとともに、射出する光の方向の変化量をミラーからの光の方向の変化量よりも大きくするコリメータレンズと、を備え、ミラーからの光の中心の光線がコリメータレンズの光軸に一致している状態からミラーを角θM1だけ回動させたときに、コリメータレンズが射出する略平行な光がコリメータレンズの光軸と成す角θB1は、近似的に前記式(1A)で表されるようにすると、ミラーを小さくすることができて、射出する略平行な光の方向を高速に変化させることが可能になる上、射出する光の方向をミラーの回動角の2倍を超えて変化させることができる。
【0053】
コリメータレンズが、ミラーからの光の中心の光線と光軸との成す角が所定値以下の範囲内で、ミラーからの光の方向の変化量に対する射出する光の方向の変化量の比を略一定にするようにすると、所望の方向に光を射出するためのミラーの制御が容易になる。
【0054】
収束光を略平行な光とする軸対称なコリメータレンズにおいて、本発明のように、光軸上の一点を中心とする球面上に収束する方向可変の収束光を受けて、収束後の光を略平行な光として射出するとともに、射出する光の方向の変化量を受ける光の方向の変化量よりも大きくするようにし、収束光の中心の光線がコリメータレンズの光軸に一致している状態から、収束光の方向を前記光軸上の一点を中心として角θM2だけ変化させたときに、射出する略平行な光が光軸と成す角θB2は、近似的に前記式(1B)で表されるものとすると、指向性の高い光で通信を行う送信装置に好適なコリメータレンズとなる。
【0055】
受ける光の中心の光線と光軸との成す角が所定値以下の範囲内で、受ける光の方向の変化量に対する射出する光の方向の変化量の比を略一定にするようにすると、射出する光の方向の制御が容易になる。
【0056】
2枚のレンズで構成し、光を最初に受けるレンズの内部または直前において光を収束させるようにすると、射出する略平行な光の方向を大きく変化させるための設計の自由度が高い上、大型化も避けられる。
【図面の簡単な説明】
【図1】 本発明の一実施形態の送受信装置を含む光通信システムの構成をに模式的に示す図。
【図2】 送受信装置の送信部の光学構成を示す図。
【図3】 送受信装置の回路構成を模式的に示す図。
【図4】 送受信装置の送信部が備えるコリメータレンズの一設計例の断面図。
【図5】 送受信装置の送信部の光学系全体の設計例を示す図。
【図6】 送受信装置の送信部が備えるミラーの回動角と図4のコリメータレンズが射出する略平行な光の偏向角の関係を示す図。
【図7】 図4のコリメータレンズが射出する光のスポットダイアグラム。
【図8】 送受信装置の送信部が備えるコリメータレンズの他の設計例の断面図。
【図9】 図8のコリメータレンズが射出する光のスポットダイアグラム。
【図10】 送受信装置の送信部が備えるコリメータレンズの他の設計例の断面図。
【図11】 図10のコリメータレンズが射出する光のスポットダイアグラム。
【図12】 図4のコリメータレンズの第1面によるミラーからの光の収束面の変化を示す図。
【符号の説明】
1 送受信装置
2 情報処理装置
3 光通信システム
10 制御部
11 光源
12 リレーレンズ
12a、12b レンズ
13 ミラー
14 コリメータレンズ
14a、14b レンズ
15 パラレル/シリアル変換回路
16 符号化回路
17 光源駆動回路
18 ミラー制御回路
19 ミラー駆動回路
21 光センサ
22 センサ駆動回路
23 増幅回路
24 デジタル化回路
25 復号化回路
26 シリアル/パラレル変換回路
S1~S4 コリメータレンズ面
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11