TOP > 国内特許検索 > 多孔性物質の特性測定装置 > 明細書

明細書 :多孔性物質の特性測定装置

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第4572297号 (P4572297)
公開番号 特開2007-064731 (P2007-064731A)
登録日 平成22年8月27日(2010.8.27)
発行日 平成22年11月4日(2010.11.4)
公開日 平成19年3月15日(2007.3.15)
発明の名称または考案の名称 多孔性物質の特性測定装置
国際特許分類 G01N   5/02        (2006.01)
G01N  15/08        (2006.01)
G01N   7/00        (2006.01)
FI G01N 5/02 Z
G01N 15/08
G01N 7/00
請求項の数または発明の数 9
全頁数 19
出願番号 特願2005-249180 (P2005-249180)
出願日 平成17年8月30日(2005.8.30)
審査請求日 平成20年2月14日(2008.2.14)
特許権者または実用新案権者 【識別番号】504180239
【氏名又は名称】国立大学法人信州大学
発明者または考案者 【氏名】飯山 拓
個別代理人の代理人 【識別番号】110000121、【氏名又は名称】アイアット国際特許業務法人
審査官 【審査官】▲高▼見 重雄
参考文献・文献 特開昭59-065241(JP,A)
特開平03-115951(JP,A)
特開平07-198637(JP,A)
特開2000-121527(JP,A)
特開平06-265459(JP,A)
特開2005-069848(JP,A)
特開平10-132646(JP,A)
特開2002-277369(JP,A)
特開2000-292246(JP,A)
調査した分野 G01N 5/02
G01N 7/00
G01N 15/08
特許請求の範囲 【請求項1】
外部刺激による多孔性物質のガスの吸着量を検出して多孔性物質の特性を測定する方法に用いられる多孔性物質の特性測定装置であって
容積が一定で多孔性物質が収納された収納部と、該収納部へ導入される所定のガスが貯蔵されたガス貯蔵部と、上記収納部から上記ガスの排気を行うガス排気部とを備えるとともに、
上記収納部の内部圧力を検出する圧力検出部を有し、該圧力検出部で検出された検出圧力に基づいて、上記収納部への上記ガスの導入量と上記収納部からの上記ガスの排出量との少なくともいずれか一方を制御して、上記収納部の内部圧力を一定に維持するフィードバック制御部と、
上記収納部内部圧力を一定に維持した状態で上記多孔性物質に外部刺激を与える手段と
を備え、
上記ガスの導入量と上記ガスの排出量との差に基づいて上記外部刺激による上記多孔性物質の上記ガスの吸着量を測定する
ことを特徴とする多孔性物質の特性測定装置。
【請求項2】
前記フィードバック制御部は、前記収納部と前記ガス貯蔵部との間に配設され、前記収納部への前記ガスの導入量を調整する導入量調整部と、前記収納部と前記ガス排気部との間に配設され、前記収納部からの前記ガスの排出量を調整する排出量調整部とを備え、前記圧力検出部で検出された検出圧力に基づいて前記収納部の内部圧力を所定の設定値に維持するように、上記導入量調整部と上記排出量調整部との少なくともいずれか一方の流量調整を行うことを特徴とする請求項1記載の多孔性物質の特性測定装置。
【請求項3】
前記収納部の内部圧力が所定の設定値で平衡状態になった以後も、前記収納部に前記ガスを導入することを特徴とする請求項2記載の多孔性物質の特性測定装置。
【請求項4】
前記収納部への前記ガスの導入量を検出する導入量検出部と、前記収納部からの前記ガスの排出量を検出する排出量検出部とを備え、
上記導入量検出部で検出された前記ガスの導入量と、上記排出量検出部で検出された前記ガスの排出量との差から、前記多孔性物質への前記ガスの吸着量を測定することを特徴とする請求項1から3いずれかに記載の多孔性物質の特性測定装置。
【請求項5】
前記収納部の内部圧力の設定値に対応する設定圧力信号を出力する設定圧力出力部と、
前記圧力検出部から出力される検出圧力信号および上記設定圧力信号が入力され、かつ、上記設定圧力信号と上記検出圧力信号との差を増幅して出力する差動増幅回路とを備え、
該差動増幅回路からの出力に基づいて、前記ガスの導入量と排出量との少なくともいずれか一方の調整を行うことを特徴とする請求項1から4いずれかに記載の多孔性物質の特性測定装置。
【請求項6】
前記ガスの導入量を略一定とし、前記圧力検出部で検出された検出圧力に基づいて、前記ガスの排出量の調整を行うことを特徴とする請求項1から5いずれかに記載の多孔性物質の特性測定装置。
【請求項7】
外部刺激による多孔性物質のガスの吸着量を検出して多孔性物質の特性を測定する方法に用いられる多孔性物質の特性測定装置であって
容積が一定で多孔性物質が収納された収納部と、該収納部へ導入される所定のガスが貯蔵されたガス貯蔵部と、上記収納部から上記ガスの排気を行うガス排気部とを備えるとともに、
上記多孔性物質の重量を検出する重量検出部を有し、該重量検出部で検出された検出重量に基づいて、上記収納部への上記ガスの導入量と上記収納部からの上記ガスの排出量との少なくともいずれか一方を制御して、上記多孔性物質への上記ガスの吸着量を一定に維持するフィードバック制御部と、
上記ガスの吸着量を一定に維持した状態で上記多孔性物質に外部刺激を与える外部刺激付与手段と
を備え、
上記ガスの吸着量が一定に維持された状態で上記外部刺激に対応して変化する多孔性物質の特性を測定する
ことを特徴とする多孔性物質の特性測定装置。
【請求項8】
前記フィードバック制御部は、前記収納部と前記ガス貯蔵部との間に配設され、前記収納部への前記ガスの導入量を調整する導入量調整部と、前記収納部と前記ガス排気部との間に配設され、前記収納部からの前記ガスの排出量を調整する排出量調整部とを備え、前記重量検出部で検出された検出重量に基づいて前記多孔性物質への前記ガスの吸着量を所定の設定値に維持するように、上記導入量調整部と上記排出量調整部との少なくともいずれか一方の流量調整を行うことを特徴とする請求項7記載の多孔性物質の特性測定装置。
【請求項9】
前記多孔性物質への前記ガスの吸着量が所定の設定値となり、かつ、前記収納部の内部が平衡状態になった以後も、前記収納部に前記ガスを導入することを特徴とする請求項8記載の多孔性物質の特性測定装置。
発明の詳細な説明 【技術分野】
【0001】
本発明は、多孔性物質の特性測定装置および多孔性物質の特性測定方法に関する。
【背景技術】
【0002】
ゼオライトや活性炭等の多孔性物質の内部には、大量の微少空間が形成されている。この微少空間は種々のガスを吸着することから、微少空間を利用したガスの貯蔵や分離、反応が注目されている。近年では、水素やメタン等の貯蔵や、環境負荷物質の除去等を行うための新規な多孔性物質の開発が盛んに行われている。
【0003】
微少空間へのガスの取込量、すなわち、ガスの吸着量は、多孔性物質の重要な特性の一つである。そのため、新規な多孔性物質が合成された際等には、必ず、ガスの吸着量の測定が行われている。かかる吸着量の測定方法としては、コイルスプリング等の弾性体の伸長量から多孔性物質の重量増加分を測定することで吸着量を直接的に測定する重量法や、密閉容器内に封入したガスの圧力の変化を測定し気体の状態方程式を用いて吸着量を間接的に測定する容量法が知られている(たとえば、特許文献1から3参照)。
【0004】
重量法や容量法では、多孔性物質が収納された収納容器の内部温度を所定の温度に維持した状態で、吸着量の圧力依存性が測定される。すなわち、一定温度下において、収納容器の内圧を変化させたときの多孔性物質の吸着量が測定され、その測定結果に基づいて、一定温度下における多孔性物質の吸着量と収納容器の内圧との関係を示す吸着等温線が作成される。吸着量の圧力依存性の測定は、必要に応じて、収納容器の内部温度を種々変えながら行われ、各温度に対応した吸着等温線が作成される。そして、作成された吸着等温線を用いて吸着量の算出や多孔性物質の他の特性の解析が行われる。
【0005】

【特許文献1】特開2005-69848号公報
【特許文献2】特開2002-277369号公報
【特許文献3】特開2000-292246号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
多孔性物質の特性として、上述した吸着量以外にも重要な特性がある。たとえば、吸着されたガスと多孔性物質との結合力の指標となる吸着熱が、多孔性物質の重要な特性として挙げられる。しかしながら、重量法や容量法での測定結果から、直接的に得ることができるのは吸着等温線である。そして、吸着量以外の特性を得るためには、作成された吸着等温線を利用した複雑な解析が必要となる。
【0007】
そこで、本発明の課題は、多孔性物質の種々の特性を容易に得ることが可能な構成を備えた多孔性物質の特性測定装置および多孔性物質の特性測定方法を提供することにある。
【課題を解決するための手段】
【0008】
上記の課題を解決するため、本発明の多孔性物質の特性測定装置は、外部刺激による多孔性物質のガスの吸着量を検出して多孔性物質の特性を測定する方法に用いられる多孔性物質の特性測定装置であって、容積が一定で多孔性物質が収納された収納部と、収納部へ導入される所定のガスが貯蔵されたガス貯蔵部と、収納部から上記ガスの排気を行うガス排気部とを備えるとともに、収納部の内部圧力を検出する圧力検出部を有し、圧力検出部で検出された検出圧力に基づいて、収納部へのガスの導入量と収納部からの上記ガスの排出量との少なくともいずれか一方を制御して、収納部の内部圧力を一定に維持するフィードバック制御部と、収納部内部圧力を一定に維持した状態で、多孔性物質に外部刺激を与える手段とを備え、ガスの吸着量とガスの排出量との差に基づいて、外部刺激が与えられた状態でのガスの吸着量を測定することを特徴とする。
【0009】
本発明の多孔性物質の特性測定装置は、圧力検出部で検出された検出圧力に基づいて、ガスの導入量と排出量との少なくともいずれか一方を制御して、収納部の内部圧力を一定に維持するフィードバック制御部を備えている。そのため、多孔性物質が収納された収納部の内部圧力を一定に保った状態で、収納部にガスを導入しながら、収納部の内部の温度や電場、あるいは磁場を変化させることができる。また、収納部の内部圧力を一定に保った状態で、収納部にガスを導入しながら、強度を変化させつつ多孔性物質に光を照射することができる。したがって、圧力一定下における多孔性物質の種々の特性を容易に測定することができる。たとえば、圧力一定下における多孔性物質の温度と吸着量との関係を測定することができ、その測定結果に基づいて直接的に吸着等圧線の作成が可能となる。
【0010】
本発明において、フィードバック制御部は、収納部とガス貯蔵部との間に配設され、収納部へのガスの導入量を調整する導入量調整部と、収納部とガス排気部との間に配設され、収納部からのガスの排出量を調整する排出量調整部とを備え、圧力検出部で検出された検出圧力に基づいて収納部の内部圧力を所定の設定値に維持するように、導入量調整部と排出量調整部との少なくともいずれか一方の流量調整を行うことが好ましい。このように構成すると、導入量調整部や排出量調整部によって、ガスの導入量や排出量の調整を容易に行うことができる。
【0011】
本発明において、収納部の内部圧力が所定の設定値で平衡状態になった以後も、収納部にガスを導入することが好ましい。このように構成すると、より安定した多孔性物質の特性の測定が可能となる。
【0012】
本発明において、多孔性物質の特性測定装置は、収納部へのガスの導入量を検出する導入量検出部と、収納部からのガスの排出量を検出する排出量検出部とを備え、導入量検出部で検出されたガスの導入量と、排出量検出部で検出されたガスの排出量との差から、多孔性物質へのガスの吸着量を測定することが好ましい。このように構成すると、ガスの導入量および排出量を検出するといった簡易な構成で、多孔性物質へのガスの吸着量を直接的に測定することができる。
【0013】
本発明において、多孔性物質の特性測定装置は、収納部の内部圧力の設定値に対応する設定圧力信号を出力する設定圧力出力部と、圧力検出部から出力される検出圧力信号および設定圧力信号が入力され、かつ、設定圧力信号と検出圧力信号との差を増幅して出力する差動増幅回路とを備え、差動増幅回路からの出力に基づいて、ガスの導入量と排出量との少なくともいずれか一方の調整を行うことが好ましい。このように構成すると、設定圧力出力部から出力される設定圧力信号の分解能で収納部の内部圧力を変化させることができる。そのため、たとえば、収納部の内部温度を一定に保った状態で、収納部の内部圧力を多段階にかつ微少量ずつ変化させながら、多孔性物質の吸着量を測定することができる。すなわち、一定温度下において、収納部の内部圧力を変化させたときの多孔性物質の吸着量を連続測定に近い状態で測定することができ、より精度の高い吸着等温線を作成することができる。その結果、吸着等温線の傾き(微分値)を利用して得られる多孔性物質の特性(たとえば、細孔径分布)の精度を飛躍的に向上させることができる。
【0014】
本発明において、導入量調整部でのガスの導入量を略一定とし、圧力検出部で検出された検出圧力に基づいて、ガスの排出量の調整を行うことが好ましい。このように構成すると、排出量の調整のみを行えば良いため、ガスの流量調整が容易になる。また、収納部に導入されるガスの液化を防止することができる。すなわち、導入量の調整を行う場合には、流量調整が可能となるように、たとえば、導入量調整部の入側にある程度高い圧力をかける必要がある。そのため、ガスの種類や雰囲気温度によっては、収納部に導入されるガスが液化するおそれが生じる。これに対して、排出量の調整は、たとえば、排出量調整部の出側に負圧をかければ良いため、収納部に導入されるガスの液化を防止することが可能となる。
【0015】
また、上記の課題を解決するため、本発明の多孔性物質の特性測定装置は、外部刺激による多孔性物質のガスの吸着量を検出して多孔性物質の特性を測定する方法に用いられる多孔性物質の特性測定装置であって、容積が一定で多孔性物質が収納された収納部と、収納部へ導入される所定のガスが貯蔵されたガス貯蔵部と、収納部からガスの排気を行うガス排気部とを備えるとともに、多孔性物質の重量を検出する重量検出部を有し、該重量検出部で検出された検出重量に基づいて、収納部へのガスの導入量と収納部からのガスの排出量との少なくともいずれか一方を制御して、多孔性物質へのガスの吸着量を一定に維持するフィードバック制御部と、ガスの吸着量を一定に維持した状態で上記多孔性物質に外部刺激を与える外部刺激付与手段とを備え、ガスの吸着量が一定に維持された状態で上記外部刺激に対応して変化する多孔性物質の特性を測定することを特徴とする。
【0016】
本発明の多孔性物質の特性測定装置は、重量検出部で検出された検出重量に基づいて、ガスの導入量と排出量との少なくともいずれか一方を制御して、多孔性物質へのガスの吸着量を一定に維持するフィードバック制御部を備えている。そのため、多孔性物質に吸着されるガスの吸着量を一定に保った状態で、収納部にガスを導入しながら、収納部の内部圧力や内部温度、あるいは内部の電場、磁場等を変化させることができる。したがって、吸着量を一定としたときの多孔性物質の種々の特性を容易に測定することができる。たとえば、吸着量を一定としたときの収納部の内部圧力と内部温度との関係を測定することができ、その測定結果に基づいて直接的に吸着等量線の作成が可能となる。また、この吸着等量線を利用して、たとえば、多孔性物質の特性である等量吸着熱を、以下のClapeyron-Clausius式(式(1))から容易に得ることができる。
[式1]
JP0004572297B2_000002t.gif
ここで、qstは等量吸着熱、Pは内部圧力、Tは内部温度、Rはガス定数である。このように、本発明では等量吸着熱を求めるため、式(1)右辺に含まれる内部圧力と内部温度との関係を直接に測定することができる。
【0017】
本発明において、フィードバック制御部は、収納部とガス貯蔵部との間に配設され、収納部へのガスの導入量を調整する導入量調整部と、収納部とガス排気部との間に配設され、収納部からのガスの排出量を調整する排出量調整部とを備え、重量検出部で検出された検出重量に基づいて多孔性物質へのガスの吸着量を所定の設定値に維持するように、導入量調整部と排出量調整部との少なくともいずれか一方の流量調整を行うことが好ましい。このように構成すると、導入量調整部や排出量調整部によって、ガスの導入量や排出量の調整を容易に行うことができる。
【0018】
本発明において、多孔性物質へのガスの吸着量が所定の設定値となり、かつ、収納部の内部が平衡状態になった以後も、収納部にガスを導入することが好ましい。このように構成すると、より安定した多孔性物質の特性の測定が可能となる。
【0019】
さらに、上記の課題を解決するため、本発明の多孔性物質の特性測定方法は、容積が一定で多孔性物質が収納された収納部の内部を平衡状態にする工程と、多孔性物質に外部刺激を加える工程と、収納部の内部圧力を検出する圧力検出部で検出された検出圧力に基づいて収納部へのガスの導入量と収納部からのガスの排出量との少なくともいずれか一方を制御して収納部の内部圧力を維持する工程とを備え、ガスの導入量とガスの排出量との差に基づいて、外部刺激による多孔性物質のガスの吸着量を検出することを特徴とする。
【0020】
本発明の多孔性物質の特性測定方法では、圧力検出部で検出された検出圧力に基づいて、収納部へのガスの導入量や収納部からのガスの排出量を制御して収納部の内部圧力を維持し、ガスの導入量とガスの排出量との差に基づいて、外部刺激による多孔性物質のガスの吸着量を検出している。そのため、多孔性物質が収納された収納部の内部圧力を一定に保った状態で、収納部にガスを導入しながら、収納部の内部の温度や電場、あるいは磁場等といった外部刺激を変化させた状態で、多孔性物質のガスの吸着量を検出することができる。また、収納部の内部圧力を一定に保った状態で、収納部にガスを導入しながら、強度を変化させつつ多孔性物質に光を外部刺激として照射し、照射後の多孔性物質のガスの吸着量を検出することができる。したがって、圧力一定下における多孔性物質の種々の特性を容易に測定することができる。
【0021】
さらにまた、上記の課題を解決するため、本発明の多孔性物質の特性測定方法は、容積が一定で多孔性物質が収納された収納部の内部を平衡状態にする工程と、多孔性物質に外部刺激を加える工程と、多孔性物質の重量を検出する重量検出部で検出された検出重量に基づいて収納部へのガスの導入量と収納部からのガスの排出量との少なくともいずれか一方を制御して多孔性物質へのガスの吸着量を維持する工程とを備え、外部刺激に対応して変化する多孔性物質の特性を測定することを特徴とする。
【0022】
本発明の多孔性物質の特性測定方法では、重量検出部で検出された検出重量に基づいて、収納部へのガスの導入量や収納部からのガスの排出量を制御して多孔性物質へのガスの吸着量を維持し、外部刺激に対応して変化する多孔性物質の特性を測定している。そのため、多孔性物質に吸着されるガスの吸着量を一定に保った状態で、収納部にガスを導入しながら、収納部の内部圧力や内部温度、あるいは内部の電場、磁場等といった外部刺激を変化させることができる。したがって、吸着量を一定としたときの多孔性物質の種々の特性を容易に測定することができる。
【発明の効果】
【0023】
以上説明したように、本発明の多孔性物質の特性測定装置および多孔性物質の特性測定方法では、多孔性物質の種々の特性を容易に得ることが可能となる。
【発明を実施するための最良の形態】
【0024】
以下、本発明を実施するための最良の形態を図面に基づいて説明する。
【0025】
[実施の形態1]
(多孔性物質の特性測定装置の構成)
図1は、本発明の実施の形態1にかかる多孔性物質の特性測定装置1の概略構成を示す模式図である。
【0026】
本形態の多孔性物質の特性測定装置1(以下、「特性測定装置1」と表記する。)は、ゼオライトや活性炭等の多孔性物質2の種々の特性(たとえば、ガスの吸着特性)を測定するための装置である。この特性測定装置1は、図1に示すように、容積が一定で多孔性物質2が収納された収納部3と、収納部3の内部圧力を検出する圧力検出部4と、収納部3へ導入される所定のガスが貯蔵されたガス貯蔵部5と、収納部3からガスの排出を行うガス排気部6と、収納部3とガス貯蔵部5との間に配設され、収納部3へのガスの導入量を調整する導入量調整部としての導入量調整弁7と、収納部3とガス排気部6との間に配設され、収納部3からのガスの排出量を調整する排出量調整部としての排出量調整弁8とを備えている。なお、圧力検出部4と排出量調整弁8とは、圧力検出部4で検出された検出圧力に基づいて、収納部3の内部圧力を一定に維持するフィードバック制御部の一部を構成している。
【0027】
また、特性測定装置1は、図1に示すように、収納部3へのガスの導入量を検出する導入量検出部としての導入側流量計9と、収納部3からのガスの排出量を検出する排出量検出部としての排出側流量計10とを備えている。本形態では、導入側流量計9は、導入量調整弁7とガス貯蔵部5との間に配設され、排出側流量計10は、排出量調整弁8とガス排気部6との間に配設されている。なお、導入側流量計9は、収納部3と導入量調整弁7との間に配設されても良いし、排出側流量計10は、収納部3と排出量調整弁8との間に配設されても良い。
【0028】
さらに、特性測定装置1は、図1に示すように、特性測定装置1の制御等を行う制御部12と、排出量調整弁8に制御信号を出力する差動増幅回路13とを備えている。本形態の制御部12は、収納部3の内部圧力の設定値に対応する設定圧力信号を出力する設定圧力出力部となっている。なお、制御部12と差動増幅回路13とは、圧力検出部4等とともに、フィードバック制御部を構成している。
【0029】
本形態の特性測定装置1で使用されるガスは多種多様であり、たとえば、窒素、水素、水蒸気、二酸化炭素、メタン、メタノール、クロロホルム、あるいは、ブロモホルム等である。この特性測定装置1では、これらのガスを用いて、たとえば、多孔性物質2の細孔径分布等の構造的な特性や、除湿性能、不純物除去性能、あるいは、有害物質除去性能等の種々の特性が得ることができるようになっている。
【0030】
収納部3は、図1に示すように、多孔性物質2が収納される収納容器14と、導入量調整弁7および排出量調整弁8と収納容器14との間に配設される中間容器15と、収納容器14と中間容器15とを接続する接続路16とを備えている。
【0031】
収納容器14は、多孔性物質2の出し入れが可能で、かつ、密閉可能な容器で構成されている。中間容器15は、ガスの導入あるいはガスの排出によって収納容器14の内部圧力が急激に変化するのを防止するバッファとしての機能を備えている。この中間容器15は、密閉容器となっている。接続路16は、収納容器14と中間容器15との間でガスが自由に往来できるように、収納容器14と中間容器15とを接続している。この接続路16は、往来するガスが外部へ漏出しないように構成されている。
【0032】
ガス貯蔵部5は、収納部3へ導入されるガスが貯蔵される密閉容器であり、たとえば、ガス貯蔵部5はガスボンベである。このガス貯蔵部5は図示を省略する開閉弁を備えている。また、ガス貯蔵部5には、必要に応じて所定の内圧がかけられている。
【0033】
ガス排気部6は、収納部3からガスの排出を行う真空ポンプ(図示省略)を備えている。この真空ポンプは、収納部3の内部圧力を真空(より具体的には、たとえば、10-6Torr)にすることができる能力を備えている。
【0034】
本形態の導入量調整弁7および排出量調整弁8はともに、ピエゾ素子を利用してガスの流量を調整するピエゾバルブである。ピエゾバルブを使用することで、導入量調整弁7および排出量調整弁8は、ガスの流量の微調整が可能で、かつ、この微調整を高速で行うことが可能となっている。また、導入量調整弁7は、所定の配管によって、中間容器15と導入側流量計9とに接続され、排出量調整弁8は、所定の配管によって、中間容器15と排出側流量計10とに接続されている。
【0035】
本形態では、導入量調整弁7は、一定流量のガスを収納部3へ導入するように調整されている。この導入量調整弁7での流量は、たとえば、制御部12で設定され、制御部12からの制御信号を受けて、導入量調整弁7での流量調整が行われている。なお、導入量調整弁7は、ピエゾバルブには限定されず、一定流量のガスを収納部3へ導出することが可能な流量調整弁であれば良い。
【0036】
また、本形態では、排出量調整弁8での流量は、圧力検出部4で検出された収納部3内部の検出圧力に基づいて調整されている。より具体的には、後述のように、差動増幅回路13には、圧力検出部4で検出される収納部3の検出圧力に対応する検出圧力信号と、収納部3の内部圧力の設定値に対応する設定圧力信号とが入力され、かつ、差動増幅回路13は、設定圧力信号と検出圧力信号との差を増幅して出力するように構成されている。そして、排出量調整弁8での流量は、差動増幅回路13から出力された制御信号に基づいて、収納部3の内部圧力を設定値に近づけるように調整されている。なお、排出量調整弁8は、ピエゾバルブには限定されず、差動増幅回路13からの電気信号によって自動で流量調整を行うことが可能な流量調整弁であれば良い。
【0037】
このように本形態では、導入量調整弁7での流量が一定に調整され、排出量調整弁8での流量が差動増幅回路13から出力された制御信号に基づいて調整されることで、収納部3の内部圧力が設定値となるように、ガスの流量が調整(制御)されている。すなわち、収納部3の内部圧力が設定値の近辺で一定に維持されるように、導入量調整弁7および排出量調整弁8の調整が行われている。
【0038】
本形態の導入側流量計9および排出側流量計10はともに、通過するガスの流速を測定する流速カウンタである。図1に示すように、導入側流量計9および排出側流量計10で検出されたガスの流速に対応する信号は、制御部12に入力されるようになっている。そして、導入側流量計9で検出されたガスの流速の時間履歴から、制御部12で、収納部3へのガスの導入量が算出されるようになっている。同様に、排出側流量計10で検出されたガスの流速の時間履歴から、制御部12で、収納部3からのガスの排出量が算出されるようになっている。また、算出されたガスの導入量とガスの排出量との差から、制御部12で、多孔性物質2へのガスの吸着量が算出されるようになっている。
【0039】
図1に示すように、導入側流量計9は、所定の配管によって、導入量調整弁7とガス貯蔵部5とに接続されている。排出側流量計10は、所定の配管によって、排出量調整弁8とガス排気部6とに接続されている。
【0040】
圧力検出部4は、たとえば、高精度の圧力センサであり、中間容器15の内部圧力を検出するようになっている。この圧力検出部4は、検出された収納部3の検出圧力に対応する検出圧力信号をデジタル信号として差動増幅回路13に向かって出力するようになっている。
【0041】
制御部12は、たとえば、パーソナルコンピュータである。この制御部12では、上述のように、導入量調整弁7での流量が入力されたり、導入側流量計9や排出側流量計10で検出されたガスの流速に基づいて、収納部3へのガスの導入量や収納部3からのガスの排出量、多孔性物質2へのガスの吸着量等が算出されるようになっている。また、制御部12には収納部3の内部圧力の設定値が入力されるようになっており、制御部12は、この設定値に対応する設定圧力信号を差動増幅回路13に向かって出力するようになっている。より具体的には、制御部12は、ADコンバータによってデジタル信号に変換された設定圧力信号を出力するようになっている。すなわち、制御部12は、ADコンバータの分解能(刻み値)で、多段階にかつ微少量ずつ変化させた設定圧力信号を出力できるようになっている。
【0042】
差動増幅回路13には、圧力検出部4から出力された検出圧力信号と、制御部12から出力された設定圧力信号とが入力されように構成されている。また、差動増幅回路13は、設定圧力信号と検出圧力信号との差を増幅した信号を制御信号として排出量調整弁8に向かって出力するように構成されている。
【0043】
(多孔性物質の特性測定方法)
図2は、図1の特性測定装置1での測定結果に基づいて作成された吸着等温線を示すグラフである。図3は、図1の特性測定装置1での測定結果に基づいて作成された吸着等圧線を示すグラフである。
【0044】
以上のように構成された特性測定装置1を用いて、多孔性物質2の種々の特性が測定される。以下では、多孔性物質2の特性測定方法の代表的なものとして、収納部3の内部温度を一定に保った状態で、収納部3の内部圧力を変化させたときの多孔性物質2のガスの吸着量の測定方法の一例と、収納部3の内部圧力を一定に保った状態で、収納部3の内部温度を変化させたときの多孔性物質2のガスの吸着量の測定方法の一例との2つの特性測定方法を説明する。
【0045】
はじめに、収納部3の内部温度を一定に保った状態で、収納部3の内部圧力を変化させたときの多孔性物質2のガスの吸着量の測定方法の一例について説明する。
【0046】
まず、ガス貯蔵部5の開閉弁(図示省略)を閉じた状態で、収納部3(すなわち、収納容器14、中間容器15および接続路16)の内部温度を一定の温度T1にする。より具体的には、たとえば、図示を省略する恒温槽の中に収納部3を配置して、収納部3の内部温度を温度T1にする。その後、ガス排気部6に設けられた真空ポンプ(図示省略)によって、収納部3を真空状態にする。
【0047】
収納部3を真空状態にしたところで、ガス貯蔵部5の開閉弁を開き、収納部3の内部が、第1の設定値に対応する圧力で平衡状態になるまで、収納部3にガスを導入する。この際には、制御部12から、収納部3の内部圧力の第1の設定値に対応する設定圧力信号が出力され、圧力検出部4から、検出された収納部3の検出圧力に対応する検出圧力信号が出力されている。また、差動増幅回路13から、設定圧力信号と検出圧力信号との差を増幅した制御信号が出力され、この制御信号が排出量調整弁8に入力されている。そして、制御信号に基づいて、収納部3の内部圧力を第1の設定値に近づけるように(すなわち、収納部3の内部圧力を第1の設定値に対応する圧力のままで一定に維持するように)、排出量調整弁8でのガスの排出量が調整される。なお、この際には、導入量調整弁7でのガスの導入量は一定となっている。また、この際には、必要に応じてガス排気部6に設けられた真空ポンプを駆動している。
【0048】
やがて、収納部3の内部が第1の設定値に対応する内部圧力で平衡状態となる。収納部3へガスを導入してから、収納部3の内部が平衡状態となるまでの、導入側流量計9および排出側流量計10で検出されたガスの流速の時間履歴から、制御部12で、多孔性物質2へのガスの吸着量を算出する。なお、収納部3の内部が平衡状態になると、収納部3へのガスの導入量と収納部3からのガスの排出量とが等しくなる。
【0049】
収納部3の内部が平衡状態になった後、収納部3の内部圧力の設定値を、第1の設定値から第2の設定値へ変更する。より具体的には、制御部12から出力される設定圧力信号を第2の設定値に対応したものに変更する。収納部3の内部圧力の設定値が変更されると、収納部3の内部圧力を変更後の設定値に近づけるように、排出量調整弁8でのガスの排出量が調整される。やがて、収納部3の内部が第2の設定値に対応する内部圧力で平衡状態となる。収納部3の内部圧力の設定値を変更してから収納部3の内部が平衡状態となるまでの、導入側流量計9および排出側流量計10で検出されたガスの流速の時間履歴から、制御部12で、多孔性物質2へのガスの吸着量を算出する。
【0050】
収納部3の内部圧力の設定値を変えながら、以上の測定を繰り返すことで、収納部3の内部温度を一定の温度T1としたときの、収納部3の内部圧力と多孔性物質2のガスの吸着量との関係を測定することができる。また、この測定結果から、吸着等温線を作成することができ、たとえば、図2の曲線L1で示すような吸着等温線を得ることができる。なお、図2では、横軸が収納部3内部の相対圧力Po、縦軸が多孔性物質2の吸着量mとなっている。また、収納部3の内部温度を温度T1よりも低い一定の温度T2として、上記と同様の測定を行うと、図2の曲線L2で示すような吸着等温線を得ることができる。
【0051】
ここで、上述のように、設定圧力信号は、ADコンバータの分解能で段階的に変化させることができるため、非常に多くの測定値を得ることができる。具体的には、本形態では、収納部3の内部圧力の設定値を0.01Torrずつ変化させながら、多孔性物質2の吸着量を測定することができる。しかし、特性測定装置1での測定結果からでは、直接、完全に連続した曲線L1、L2を得ることはできない。したがって、特性測定装置1での測定結果から吸着等温線を作成する場合には、内挿法によって、測定点と測定点との間の値を補完している。
【0052】
また、この特性測定装置1において、収納部3の内部圧力を変化させながら、多孔性物質2の吸着量の測定を行う測定時間は、従来の重量法や容量法で同等の情報量を得るための測定時間の約1/3から1/5程度とすることが可能である。
【0053】
続いて、収納部3の内部圧力を一定に保った状態で、収納部3の内部温度を変化させたときの多孔性物質2のガスの吸着量の測定方法の一例について説明する。
【0054】
まず、上述した測定方法と同様に、ガス貯蔵部5の開閉弁(図示省略)を閉じた状態で、収納部3の内部温度を一定の温度T3にする。その後、ガス排気部6に設けられた真空ポンプ(図示省略)によって、収納部3を真空状態にする。収納部3を真空状態にしたところで、ガス貯蔵部5の開閉弁を開き、収納部3の内部が平衡状態になるまで、収納部3にガスを導入する。
【0055】
このとき、収納部3の内部圧力を、たとえば、圧力P1に設定する。排出量調整弁8は、入力された制御信号に基づいて、収納部3の内部圧力を圧力P1に近づけるように(すなわち、収納部3の内部圧力を一定圧力P1に維持するように)、ガスの排出量を調整する。なお、このときには、導入量調整弁7でのガスの導入量は一定となっている。また、このときには、必要に応じてガス排気部6に設けられた真空ポンプを駆動している。
【0056】
やがて、収納部3の内部が圧力P1で平衡状態となる。収納部3へガスを導入してから、収納部3の内部が平衡状態となるまでの、導入側流量計9および排出側流量計10で検出されたガスの流速の時間履歴から、制御部12で、多孔性物質2へのガスの吸着量を算出する。
【0057】
その後、収納部3の内部圧力の設定値は変更せずに、収納部3の内部温度を変更する。より具体的には、たとえば、収納部3が配置された恒温槽の設定温度を変更する。収納部3の内部温度を変更すると、収納部3の内部の平衡状態がくずれる。また、多孔性物質2へ新たにガスが吸着され、あるいは、多孔性物質2に吸着されたガスが放出される。ここで、収納部3の内部圧力の設定値は変更されていないため、排出量調整弁8は、収納部3の内部圧力を圧力P1に近づけるように(すなわち、収納部3の内部圧力を一定圧力P1に維持するように)、ガスの排出量を調整する。やがて、収納部3の内部は圧力P1で再び平衡状態となる。収納部3の内部温度を変更してから、収納部3の内部が再び平衡状態となるまでの、導入側流量計9および排出側流量計10で検出されたガスの流速の時間履歴から、制御部12で、多孔性物質2へのガスの新たな吸着量、あるいは、多孔性物質2からのガスの放出量を算出する。なお、収納部3の内部温度を変更した場合であっても、導入量調整弁7でのガスの導入量は一定となっている。
【0058】
収納部3の内部が平衡状態になった後、再び、収納部3の内部圧力の設定値は変更せずに、収納部3の内部温度を変更して、多孔性物質2へのガスの吸着量、あるいは、多孔性物質2からのガスの放出量を算出する。収納部3の内部温度を変更しながら、以上の測定を繰り返すことで、収納部3の内部圧力を一定の圧力P1としたときの、収納部3の内部温度と多孔性物質2のガスの吸着量との関係を測定することができる。また、この測定結果から、吸着等圧線を作成することができ、たとえば、図3の曲線L3で示すような吸着等圧線を得ることができる。なお、図3では、横軸が収納部3の内部温度T、縦軸が多孔性物質2の吸着量mとなっている。また、収納部3の内部圧力を圧力P1よりも高い一定の圧力P2として、上記と同様の測定を行うと、図3の曲線L4で示すような吸着等圧線を得ることができる。
【0059】
なお、収納部3の内部温度は段階的に変化させることしかできないため、特性測定装置1での測定結果から直接、連続的な曲線L3、L4を得ることはできない。したがって、特性測定装置1での測定結果から吸着等圧線を作成する場合には、内挿法によって、測定点と測定点との間の値を補完している。
【0060】
(実施の形態1の主な効果)
以上説明したように、実施の形態1の特性測定装置1では、圧力検出部4で検出された検出圧力に基づいて、多孔性物質2が収納された収納部3の内部圧力を一定に維持するように排出量調整弁8の流量調整を行っている。すなわち、収納部3の内部が所定の設定圧力で平衡状態を維持するように、収納部3にガスを導入し、また、収納部3からガスの排出している。そのため、収納部3の内部圧力の設定値を変えたり、所定の圧力の下で、収納部3の内部温度を変化させても、収納部3の内部は、変更後の設定値に対応する圧力や所定圧力ですぐに平衡状態となる。したがって、たとえば、収納部3の内部圧力を一定に保った状態で、収納部3にガスを導入しながら、収納部3の内部温度を変化させることができる。その結果、圧力一定下における収納部3の内部温度と多孔性物質2の吸着量との関係を容易に測定することができ、その測定結果に基づいて直接的に吸着等圧線の作成が可能となる。
【0061】
実施の形態1では、導入側流量計9で検出されたガスの流速から収納部3へのガスの導入量が算出され、排出側流量計10で検出されたガスの流速から収納部3からのガスの排出量が算出されている。そして、算出されたガスの導入量とガスの排出量との差から、多孔性物質2へのガスの吸着量が算出されている。すなわち、導入側流量計9で検出されたガスの流速と、排出側流量計10で検出されたガスの流速との差から、多孔性物質2へのガスの吸着量を測定できるようになっている。そのため、ガスの流速を検出するといった簡易な構成で、多孔性物質2へのガスの吸着量を直接的に測定することができる。
【0062】
実施の形態1では、制御部12からデジタル信号として出力される設定圧力信号と圧力検出部4からデジタル信号として出力される検出圧力信号とが、差動増幅回路13に入力されるようになっている。また、差動増幅回路13は、設定圧力信号と検出圧力信号との差を増幅した信号を制御信号として排出量調整弁8に向かって出力し、その制御信号に基づいて、排出側調整弁8は流量調整を行うように構成されている。そのため、収納部3の内部温度を一定に保ちつつ、制御部12から出力される設定圧力信号の分解能で収納部3の内部圧力を多段階にかつ微少量ずつ変化させながら、多孔性物質2の吸着量を測定することができる。すなわち、一定温度下において、収納部3の内部圧力を変化させたときの多孔性物質2の吸着量を連続測定に近い状態で測定することができる。その結果、特性測定装置1での測定結果から吸着等温線を作成する場合にも、内挿法によって、高い精度の補完が可能となり、精度の高い吸着等温線を作成することができる。したがって、吸着等温線の傾き(微分値)を利用して得られる細孔径分布等の多孔性物質2の特性の精度を飛躍的に向上させることができる。また、制御部12から出力される設定圧力信号の分解能で収納部3の内部圧力を多段階にかつ微少量ずつ変化させることができるため、収納部3の内部圧力を変化させた場合であっても、より短時間で収納部3の内部を平衡状態に戻すことができる。
【0063】
実施の形態1では、導入量調整弁7でのガスの導入量を一定とし、圧力検出部4で検出された検出圧力に基づいて、排出量調整弁8の流量調整を行っている。そのため、収納部3に導入されるガスの液化を防止することができる。すなわち、導入量調整弁7で流量調整を行う場合には、流量調整が可能となるように、導入量調整弁7の入側にある程度高い圧力をかける必要がある。そのため、ガスの種類や雰囲気温度によっては、ガスが液化するおそれが生じる。これに対して、実施の形態1では、排出量調整弁8で流量調整を行っているため、ガス排気部6に設けられた真空ポンプで排出量調整弁8の出側に負圧をかければ良い。その結果、導入量調整弁7の入側に高い圧力をかける必要がなくなり、ガスの液化を防止することができる。
【0064】
[実施の形態2]
(多孔性物質の特性測定装置の構成)
図4は、本発明の実施の形態2にかかる多孔性物質の特性測定装置51の概略構成を示す模式図である。
【0065】
実施の形態2の多孔性物質の特性測定装置51(以下、「特性測定装置51」と表記する。)と実施の形態1の特性測定装置1との主要な相違点は、多孔性物質2の重量を検出する重量検出部61を備えている点、および、重量検出部61で検出された検出重量に基づいて、多孔性物質2の重量を一定に維持するように(すなわち、ガスの吸着量を一定に維持するように)、排出量調整弁8の流量調整を行う点である。以下では、この相違点を中心に、実施の形態2の特性測定装置51の構成、および、特性測定装置51を用いた多孔性物質2の特性測定方法について説明する。なお、以下の説明では、実施の形態1の特性測定装置1の構成と共通する構成については、同一の符号を付してその説明を省略または簡略化する。
【0066】
図4に示すように、特性測定装置51は、容積が一定で多孔性物質2が収納された収納部53と、収納部53の内部圧力を検出する圧力検出部4と、収納部53へ導入される所定のガスが貯蔵されたガス貯蔵部5と、収納部3からガスの排出を行うガス排気部6と、収納部3とガス貯蔵部5との間に配設され、収納部3へのガスの導入量を調整する導入量調整弁7と、収納部3とガス排気部6との間に配設され、収納部3からのガスの排出量を調整する排出量調整弁8と、多孔性物質2の重量を検出する重量検出部61とを備えている。また、特性測定装置51は、図4に示すように、特性測定装置51の制御等を行う制御部12と、排出量調整弁8に制御信号を出力する差動増幅回路13とを備えている。なお、重量検出部61と排出量調整弁8と制御部12と差動増幅回路13とは、重量検出部61で検出された検出重量に基づいて、多孔性物質2へのガスの吸着量を一定に維持するフィードバック制御部を構成している。
【0067】
実施の形態1の特性測定装置1と同様に、実施の形態2の特性測定装置51で使用されるガスは多種多様であり、たとえば、窒素、水素、水蒸気、二酸化炭素、メタン、メタノール、クロロホルム、あるいは、ブロモホルム等である。
【0068】
収納部53は、多孔性物質2の出し入れが可能で、かつ、密閉可能な容器で構成されている。また、後述の光学式の位置センサ63によって、多孔性物質2の位置検出を行うため、収納部53の下端側は、光が透過可能となるように透明になっている。
【0069】
重量検出部61は、収納部53の内部で多孔性物質2を浮上させる浮上手段62と、多孔性物質2の位置検出を行う位置センサ63とを備えている。
【0070】
浮上手段62は、多孔性物質2が載置されるとともに永久磁石(図示省略)が固定された可動部64と、可動部64を浮上させる電磁石(図示省略)を有する固定部65とを備えている。可動部64は、図4に示すように、多孔性物質2が載置された状態で収納部53の内部に移動可能に配設されている。固定部65は、図4に示すように、収納部53の下側に固定された状態で配設されている。そして、固定部65の電磁石を通電状態にすると、この電磁石と可動部64の永久磁石との反発力で、可動部64が収納部53の内部で浮上するようになっている。
【0071】
位置センサ63は、発光素子(図示省略)を有する発光部66と、発光素子からの光を受光する受光素子(図示省略)を有する受光部67とを備えた光学式のセンサである。この位置センサ63は、図4に示すように、収納部53の下端側の側方に配設されている。より具体的には、位置センサ63は、収納部53の下端側の側方であって、可動部64とともに浮上した状態の多孔性物質2を検出できる位置に配設されている。
【0072】
重量検出部61では、可動部64に載置された多孔性物質2が位置センサ63の検出範囲内で浮上した状態となるように、固定部65の電磁石に電流が供給されるようになっている。すなわち、重量検出部61では、位置センサ63(具体的には受光部67)からの検出信号に基づいて、固定部65の電磁石に供給される電流が測定されたり、調整されるようになっている。そして、固定部65の電磁石に供給される電流値から多孔性物質2の重量が検出されるようになっている。より具体的には、図4に示すように、固定部65には、圧力検出部4で検出された収納部53の内部圧力に対応する検出信号が入力されるようになっており、固定部65では、収納部53の内部圧力の変化の影響を排除した多孔性物質2の重量が検出されるようになっている。また、固定部65は、検出された多孔性物質2の重量に対応する検出重量信号をデジタル信号として差動増幅回路13に向かって出力するようになっている。
【0073】
実施の形態1と同様に、実施の形態2の導入量調整弁7および排出量調整弁8はともにピエゾバルブである。導入量調整弁7は、所定の配管によって、収納部3とガス貯蔵部5とに接続され、排出量調整弁8は、所定の配管によって、収納部3とガス排気部6とに接続されている。
【0074】
また、実施の形態1と同様に、実施の形態2では、導入量調整弁7は、一定流量のガスを収納部53へ導出するように調整されている。また、排出量調整弁8での流量は、重量検出部61で検出された多孔性物質2の検出重量に基づいて調整されている。より具体的には、差動増幅回路13には、重量検出部61で検出される多孔性物質2の検出重量に対応する検出重量信号と、多孔性物質2の重量の設定値に対応する設定重量信号とが入力され、かつ、差動増幅回路13は、設定重量信号と検出重量信号との差を増幅して出力するように構成されている。そして、排出量調整弁8での流量は、差動増幅回路13から出力された制御信号に基づいて、多孔性物質2の重量を設定値に近づけるように調整(制御)されている。
【0075】
このように実施の形態2でも、実施の形態1と同様に、導入量調整弁7での流量が一定に調整され、排出量調整弁8での流量が差動増幅回路13から出力された制御信号に基づいて調整されることで、多孔性物質2の重量が設定値に近づくように、ガスの流量が調整されている。すなわち、多孔性物質2の重量が設定値の近辺で一定に維持されるように、導入量調整弁7および排出量調整弁8の調整が行われている。
【0076】
図4に示すように、制御部12には、圧力検出部4で検出された収納部53の内部圧力に対応する検出信号が入力されるようになっている。また、制御部12には多孔性物質2の重量の設定値が入力されるようになっており、制御部12は、この設定値に対応する設定重量信号を差動増幅回路13に向かって出力するようになっている。より具体的には、制御部12は、ADコンバータによってデジタル信号に変換された設定重量信号を出力するようになっている。すなわち、制御部12は、ADコンバータの分解能(刻み値)で、多段階にかつ微少量ずつ変化させた設定重量信号を出力できるようになっている。
【0077】
(多孔性物質の特性測定方法)
図5は、図4の特性測定装置51での測定結果に基づいて作成された吸着等量線を示すグラフである。
【0078】
以上のように構成された特性測定装置51を用いて、多孔性物質2の種々の特性が測定される。以下では、多孔性物質2の重量を一定に保った状態で(すなわち、多孔性物質2へのガスの吸着量を一定に保った状態で)、収納部53の内部温度を変化させたときの収納部53の内部圧力の測定方法の一例を説明する。
【0079】
まず、ガス貯蔵部5の開閉弁(図示省略)を閉じた状態で、収納部53の内部温度を一定の温度T4にする。たとえば、図示を省略する恒温槽の中に収納部53を配置して、収納部53の内部温度を温度T4にする。その後、ガス排気部6に設けられた真空ポンプ(図示省略)によって、収納部53を真空状態にする。収納部53を真空状態にしたところで、ガス貯蔵部5の開閉弁を開き、収納部53の内部が平衡状態になるまで、収納部53にガスを導入する。
【0080】
このとき、収納部53の内部圧力の変化の影響を排除した多孔性物質2の重量を、たとえば、重量M1に設定する。排出量調整弁8では、入力された制御信号に基づいて、多孔性物質2の重量を重量M1に近づけるように(すなわち、多孔性物質2の重量を一定の重量M1に維持するように)、ガスの排出量が調整される。なお、このときには、導入量調整弁7でのガスの導入量は一定となっている。また、このときには、必要に応じてガス排気部6に設けられた真空ポンプを駆動している。
【0081】
やがて、収納部53の内部が平衡状態となる。このときの収納部53の内部圧力を測定する。より具体的には、たとえば、圧力検出部4からの検出信号に基づいて制御部12で収納部53の内部圧力を算出する。
【0082】
収納部53の内部が平衡状態となった後、収納部53の内部温度を変更する。たとえば、収納部53が配置された恒温槽の設定温度を変更する。収納部53の内部温度を変更し、収納部53の内部が平衡状態となった後、再び、収納部53の内部圧力を測定する。ここで、収納部53の内部温度を変更すると、多孔性物質2へのガス吸着現象、あるいは、多孔性物質2に吸着されたガス放出現象が発生するが、排出量調整弁8では、入力された制御信号に基づいて、多孔性物質2の重量を重量M1に近づけるようにガスの排出量が調整されるため、収納部53の内部圧力の変化の影響を排除した多孔性物質2の重量は一定の重量M1に維持されている。
【0083】
その後さらに、収納部53の内部温度を変更し、収納部53の内部が平衡状態となった後、収納部53の内部圧力を測定する。収納部53の内部温度を変更しながら、以上の測定を繰り返すことで、多孔性物質2の重量を一定の重量M1としたときの、収納部53の内部温度と内部圧力との関係を測定することができる。また、この測定結果から、吸着等量線を作成することができ、たとえば、図5の曲線L5で示すような吸着等量線を得ることができる。なお、図3では、横軸が収納部53の内部温度T、縦軸が収納部53の内部圧力Pとなっている。また、多孔性物質2の重量を重量M1よりも重い一定の重量M2として、上記と同様の測定を行うと、図5の曲線L6で示すような吸着等量線を得ることができる。
【0084】
また、特性測定装置1での測定結果から得られた吸着等量線を利用して、上述した式(1)から多孔性物質2の特性の1つである等量吸着熱を容易に算出することができる。
【0085】
なお、収納部3の内部温度は段階的に変化させることしかできないため、特性測定装置1での測定結果から直接、連続的な曲線L5、L6を得ることはできない。したがって、特性測定装置1での測定結果から吸着等量線を作成する場合には、内挿法によって、測定点と測定点との間の値を補完している。
【0086】
(実施の形態2の主な効果)
以上説明したように、実施の形態2の特性測定装置51では、重量検出部61で検出された検出重量に基づいて、多孔性物質2へのガスの吸着量を一定に維持するように排出量調整弁8の流量調整を行っている。そのため、多孔性物質2に吸着されたガスの吸着量を一定に保った状態で、収納部53にガスを導入しながら、収納部53の内部温度を変化させることができる。したがって、吸着量を一定としたときの収納部53の内部圧力と内部温度との関係を容易に測定することができ、その測定結果に基づいて直接的に吸着等量線の作成が可能となる。また、この吸着等量線を利用して、たとえば、多孔性物質の特性である等量吸着熱を容易に得ることができる。
【0087】
実施の形態2では、導入量調整弁7でのガスの導入量を一定とし、重量検出部61で検出された検出重量に基づいて、排出量調整弁8の流量調整を行っている。そのため、収納部53に導入されるガスの液化を防止することができる。
【0088】
[他の実施の形態]
上述した各形態は、本発明の好適な形態の一例ではあるが、これに限定されるものではなく本発明の要旨を変更しない範囲において種々変形実施が可能である。たとえば、上述した各形態の説明では、収納部3、53の容積が「一定」であり、また、収納部3、53の内部圧力や内部温度、あるいは、多孔性物質2のガスの吸着量を「一定」にしたときの多孔性物質2の種々の特性を測定しているが、この「一定」は、全くの同一状態を意味するのではなく、測定や検出の際に許される誤差の範囲や、求められる測定値の精度から許容される範囲で変化するものも含む。
【0089】
また、上述した実施の形態1では、収納部3の内部温度を一定に保った状態で、収納部3にガスを導入しながら、収納部3の内部圧力を次第に変化させたり、収納部3の内部圧力を一定に保った状態で、収納部3にガスを導入しながら、収納部3の内部温度を変化させている。すなわち、収納部3の内部圧力や内部温度を外部刺激として多孔性物質2に加えている。この他にもたとえば、収納部3の内部圧力を一定に保った状態で、収納部3にガスを導入しながら、収納部3の内部の電場や磁場を変化させても良い。また、収納部3の内部圧力を一定に保った状態で、収納部3にガスを導入しながら、光の強度を変化させつつ多孔性物質2に光を照射しても良い。このようにすると、圧力一定下における多孔性物質2の種々の特性を容易に測定することができる。たとえば、多孔性物質2の吸着量と電界の強さとの関係を容易に測定することができる。同様に、実施の形態2においても、多孔性物質2に吸着されるガスの吸着量を一定に保った状態で、収納部53にガスを導入しながら、収納部53の内部の電場や磁場等を変化させても良い。すなわち、多孔性物質2に対する外部刺激は、収納部3、53の内部圧力や内部温度の他、収納部3、53の内部の電場や磁場、あるいは、多孔性物質2に照射される光等の様々な刺激とすることができる。
【0090】
また、収納部3、53の内部の電場や磁場、あるいは、多孔性物質2に照射される光等を外部刺激とすることで、たとえば、これらの外部刺激によって、多孔性物質2の内部に形成された微小空間の形状に変形が生じ、ガスの吸着量が変化するというスイッチング機能の探索も可能となる。このスイッチング機能の探索が進むと多孔性物質2へのガスの容易な貯蔵と、多孔性物質2からのガスの容易な取り出しが可能となる。また、外部刺激によって、多孔性物質2の内部に形成された微小空間で分子の秩序構造の形成が行われる可能性が指摘されており、特性測定装置1、51を用いることで、微小空間で分子の秩序構造の形成が行われるか否かの探索も可能となる。
【0091】
さらに、上述した各形態では、導入量調整弁7でのガスの導入量を一定とし、圧力検出部4(または重量検出部61)での検出結果に基づいて、排出量調整弁8の流量調整を行っている。この他にも、たとえば、排出量調整弁8でのガスの排出量を一定とし、圧力検出部4(または重量検出部61)での検出結果に基づいて、導入量調整弁7の流量調整を行っても良い。すなわち、差動増幅回路13からの制御信号が導入量調整弁7に入力され、その制御信号に基づいて、導入量調整弁7の流量調整を行うように構成しても良い。この場合、導入量調整弁7はフィードバック制御部の一部を構成する。また、導入量調整弁7および排出量調整弁8の両者に差動増幅回路13からの制御信号が入力されるように構成し、導入量調整弁7および排出量調整弁8の両者の流量調整を行うようにしても良い。この場合には、導入量調整弁7および排出量調整弁8の両者がフィードバック制御部の一部を構成する。
【0092】
さらにまた、上述した各形態では、多孔性物質2の種々の特性の測定に際して、ガスの導入と排出を維持しつつ種々の特性の測定を行っているが、ガスの導入と排出を止めてから、種々の特性の測定を行っても良い。すなわち、収納部3、53の内部が平衡状態となったら、導入量調整弁7と排出量調整弁8とを一旦閉じ、その後、特性の測定を行っても良い。
【0093】
また、上述した実施の形態1では、導入側流量計9および排出側流量計10を用いて多孔性物質2へのガスの吸着量を測定している。この他にも、たとえば、導入側流量計9および排出側流量計10に代えて、実施の形態2で説明した重量検出部61を実施の形態1の特性測定装置1に配設し、重量検出部61を用いて、多孔性物質2へのガスの吸着量を測定しても良い。この場合であっても、収納部3の内部圧力を一定に保った状態で、多孔性物質2へのガスの吸着量と収納部3の内部圧力との関係等の種々の関係を測定することができる。
【0094】
さらに、上述した各形態では、ガス貯蔵部5とは別の構成として導入量調整弁7や導入側流量計9を備え、また、ガス排気部6とは別の構成として排出量調整弁8や排出側流量計10を備えている。この他にもたとえば、ガス貯蔵部5にガスの導入量の調整機能や計測機能を持たせたり、ガス排気部6にガスの排出量の調整機能や計測機能を持たせても良い。
【0095】
さらにまた、上述した各形態では、導入量検出部は、流速カウンタからなる導入側流量計9であり、排出量検出部は、流速カウンタからなる排出側流量計10である。この他にも、たとえば、導入量検出部や排出量検出部は、通過するガスの分子量を直接測定することができる分子量カウンタであっても良い。
【0096】
また、上述した実施の形態2では、多孔性物質2の吸着量を一定に保った状態で、収納部53の内部温度を変化させたときの収納部53の内部圧力の変化を測定している。この他にもたとえば、収納部53の内部圧力を変化させたときの収納部53の内部温度の変化を測定し、その結果から吸着等量線を作成しても良い。
【0097】
さらに、上述した実施の形態1では、収納部3の内部温度を一定に保った状態で、収納部3の内部圧力を変化させたときの多孔性物質2のガスの吸着量を測定する際に、まず、収納部3を真空状態としている。この他にも、たとえば、初期状態として、収納部3の内部圧力を所定の圧力に設定し、その後、内部圧力を次第に上げながら、また、内部圧力を次第に下げながら、温度一定下での多孔性物質2のガスの吸着量を測定しても良い。
【0098】
なお、収納部3、53の内部圧力は、真空から1気圧の範囲や1気圧から20気圧の範囲等、用いられるガスに合わせて種々設定することが可能である。また、本発明の構成で採用されるガスは、超臨界ガス等の特殊な状態のガスであっても良い。
【図面の簡単な説明】
【0099】
【図1】本発明の実施の形態1にかかる多孔性物質の特性測定装置の概略構成を示す模式図である。
【図2】図1の特性測定装置での測定結果に基づいて作成された吸着等温線を示すグラフである。
【図3】図1の特性測定装置での測定結果に基づいて作成された吸着等圧線を示すグラフである。
【図4】本発明の実施の形態2にかかる多孔性物質の特性測定装置の概略構成を示す模式図である。
【図5】図4の特性測定装置での測定結果に基づいて作成された吸着等量線を示すグラフである。
【符号の説明】
【0100】
1、51 特性測定装置
2 多孔性物質
3、53 収納部
4 圧力検出部(フィードバック制御部の一部)
5 ガス貯蔵部
6 ガス排気部
7 導入量調整弁(導入量調整部、フィードバック制御部の一部)
8 排出量調整弁(排出量調整部、フィードバック制御部の一部)
9 導入側流量計(導入量検出部)
10 排出側流量計(排出量検出部)
12 制御部(設定圧力出力部、フィードバック制御部の一部)
13 差動増幅回路(フィードバック制御部の一部)
61 重量検出部(フィードバック制御部の一部)
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4