TOP > 国内特許検索 > 地盤の剛性測定装置における重錘落下緩衝装置 > 明細書

明細書 :地盤の剛性測定装置における重錘落下緩衝装置

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第3987441号 (P3987441)
公開番号 特開2004-239701 (P2004-239701A)
登録日 平成19年7月20日(2007.7.20)
発行日 平成19年10月10日(2007.10.10)
公開日 平成16年8月26日(2004.8.26)
発明の名称または考案の名称 地盤の剛性測定装置における重錘落下緩衝装置
国際特許分類 G01M   7/08        (2006.01)
FI G01M 7/00 H
請求項の数または発明の数 4
全頁数 8
出願番号 特願2003-027807 (P2003-027807)
出願日 平成15年2月5日(2003.2.5)
審査請求日 平成17年5月27日(2005.5.27)
特許権者または実用新案権者 【識別番号】000151520
【氏名又は名称】株式会社東京測器研究所
【識別番号】000173784
【氏名又は名称】財団法人鉄道総合技術研究所
発明者または考案者 【氏名】上浦 正樹
【氏名】関根 悦夫
【氏名】岡野 晴樹
【氏名】藤生 高弘
個別代理人の代理人 【識別番号】100077805、【弁理士】、【氏名又は名称】佐藤 辰彦
【識別番号】100099690、【弁理士】、【氏名又は名称】鷺 健志
【識別番号】100109232、【弁理士】、【氏名又は名称】本間 賢一
審査官 【審査官】本郷 徹
参考文献・文献 特開平05-087657(JP,A)
特開平10-331143(JP,A)
特開昭52-085682(JP,A)
特開2000-088725(JP,A)
特開2003-176504(JP,A)
特表2001-519008(JP,A)
調査した分野 G01M 7/08
特許請求の範囲 【請求項1】
重錘を落下させ、該重錘による衝撃力を緩衝材を介して地盤に伝達して、この衝撃力に対する地盤からの反力と地盤の変位とに基づいて地盤の剛性を測定する装置において、
前記緩衝材として、ばね定数の異なる上下複数のコイル部分を有する複合コイルばねを用い、複合コイルばねは、低剛性の地盤の測定に適したコイル部分と、該低剛性の地盤よりも高剛性の地盤の測定に適したコイル部分との少なくとも2つのコイル部分を有し、その2つのコイル部分の相互作用によって高剛性の地盤から低剛性の地盤まで広範囲の剛性の地盤の剛性測定を可能としたことを特徴とする地盤の剛性測定装置における重錘落下緩衝装置。
【請求項2】
重錘を落下させ、該重錘による衝撃力を緩衝材を介して地盤に伝達して、この衝撃力に対する地盤からの反力と地盤の変位とに基づいて地盤の剛性を測定する装置において、
前記緩衝材として、ばね定数の異なる上下複数のコイル部分を有する複合コイルばねを用い、複合コイルばねは、地盤からの反力の立ち上がり当初の所定期間、前記複数のコイル部分のうちの最小のばね定数のコイル部分による緩衝作用が営まれ、その後他のコイル部分による緩衝作用を受けつつ地盤からの反力がピークに達するように構成されていることを特徴とする地盤の剛性測定装置における重錘落下緩衝装置。
【請求項3】
前記複合コイルばねは、前記各コイル部分となるそれぞれ独立した複数のコイルばねを繋ぎ合わせて構成されていることを特徴とする請求項1又は2記載の地盤の剛性測定装置における重錘落下緩衝装置。
【請求項4】
前記複合コイルばねは、不等ピッチコイルばねで構成されていることを特徴とする請求項1又は2記載の地盤の剛性測定装置における重錘落下緩衝装置。
発明の詳細な説明 【0001】
【発明の属する技術分野】
本発明は、道路や軌道等の地盤の剛性を測定する装置に関し、特に、重錘を落下させ、その衝撃力を利用して地盤の剛性を測定する重錘落下式の剛性測定装置における重錘落下緩衝装置に関する。
【0002】
【従来の技術】
地盤の剛性を測定する方法としては、古くから平板載荷試験といわれる方法が知られている。これは、地盤上に置かれる直径30cmの円形載荷板に荷重を与え、荷重の大きさと載荷板(地盤)の変位との関係から地盤の剛性を測定する方法であり、地盤の剛性を評価する値として、荷重強さ(載荷荷重を載荷板の面積で除した値)~変位曲線から得た変位0.125cmの時の荷重強さを0.125cmで除して得られる値(K値)を求めている。然し、平板載荷試験では、載荷板に与える荷重の反力を受ける重機等の大きな反力装置が必要で、試験時間も数時間を要する。
【0003】
そこで、重錘落下式の剛性測定装置を用いて地盤の剛性をより簡便に測定することも従来行われている。この剛性測定装置は、地盤に載荷板を介して載置される荷重計上に重錘を落下させて、重錘による衝撃力を荷重計と載荷板とを介して地盤に伝達し、この衝撃力に対する地盤からの反力を荷重計で検出すると共に、変位検出手段で地盤の変位を検出するように構成されている。そして、地盤の剛性を評価するK値として、平板載荷試験と同様に、地盤変位が所定値である時の荷重強さ(荷重計による地盤反力の計測値を載荷板の面積で除した値)を前記所定値で除した値を求めている。
【0004】
また、重錘落下式の剛性測定装置では、急激な衝撃によるデータ波形の乱れや衝撃力によるバウンド等で地盤反力の計測値がばらつくことを防止するため、衝撃力の伝達経路に緩衝材を配置し、地盤に重錘の衝撃力が緩衝材で緩衝されつつ伝達されるようにしている。そして、従来は、緩衝材としてゴム材を用いている。
【0005】
ここで、地盤反力は、緩衝材による緩衝作用の影響で山形の波形を描くようにして変化し、この波形のピーク値を地盤反力の計測値として上記K値を求めている。この場合、測定条件を整えるには、各種剛性の地盤において反力波形の立ち上がり開始からピークまでの時間(ピーク時間)が所定範囲に収まるようにし、更に、緩衝材が線形変形域(弾性域)で緩衝作用を営んでいる状態でピークに達するようにすることが望まれる。
【0006】
然し、ゴム材の変形特性は基本的に非線形であって、弾性域が狭いため、地盤の剛性に応じて頻繁にゴム材を取り換えることが必要になり、更に、同質、同形状のゴム材であっても、個々のゴム材で特性に差を生じ、得られるデータがばらつきやすく、非常に扱いにくいものであった。また、地盤の剛性測定は屋外で行うのが殆どであるが、ゴム材は気温の影響を受けやすいため、気温によってデータがばらつくことがあり、更に、ゴム材は比較的早い段階から経年劣化を生じ、耐久性の面でも問題があった。
【0007】
そこで、上記の問題を解消するために、弾性域が広く、気温の影響も受けにくく、耐久性にも優れたコイルばねを緩衝材として用いることが考えられている。然し、道路や軌道等の施工現場では、地盤の剛性が場所毎に大きく異なるため、コイルばねの弾性域をもってしても対応できず、ゴム材ほどではないにしろ、地盤状況に応じてばね定数の異なるコイルばねに取り換えざるを得なくなる。即ち、地盤反力が大きくなる高剛性の地盤ではばね定数の大きなコイルばねを用い、地盤反力が小さくなる低剛性の地盤ではばね定数の小さなコイルばねを用いることが必要になる。
【0008】
また、本願発明者は、地盤に伝達される衝撃力を当初は低く抑えて、地盤を安定させることがより正確なデータを得るために有効であることを知見するに至った。
【0009】
なお、本出願に関連する先行技術文献としては例えば次のようなものがある。
【0010】
【特許文献】
特許第2506282号
【0011】
【発明が解決しようとする課題】
本発明は、以上の点に鑑み、広範囲の剛性の地盤に緩衝材を取り換えずに対処でき、更に、測定精度も向上し得るようにした地盤の剛性測定装置における重錘落下緩衝装置を提供することをその課題としている。
【0012】
【課題を解決するための手段】
本発明の地盤の剛性測定装置における重錘落下緩衝装置は、上記課題を解決するために、重錘を落下させ、該重錘による衝撃力を緩衝材を介して地盤に伝達して、この衝撃力に対する地盤からの反力と地盤の変位とに基づいて地盤の剛性を測定する装置において、前記緩衝材として、ばね定数の異なる上下複数のコイル部分を有する複合コイルばねを用いることを基本的な特徴とする。
【0013】
そして、第1発明では、比較的(相対的に)低剛性の地盤の測定に適したコイル部分と、該低剛性の地盤よりも高剛性の地盤の測定に適したコイル部分との少なくとも2つのコイル部分を有する複合コイルばねを緩衝材として用い、前記高剛性の地盤の測定に適したコイル部分のばね定数を、前記低剛性の地盤の測定に適したコイル部分のばね定数よりも大きく設定しておく。このようにすることにより、低剛性の地盤では、ばね定数の小さなコイル部分が緩衝作用を営む状態で反力波形がピークになり、高剛性の地盤では、ばね定数の大きなコイル部分が緩衝作用を営む状態で反力波形がピークになる。そして、高剛性の地盤で反力が大きくなっても、ばね定数の大きなコイル部分の緩衝作用により反力波形の立ち上がりが急になるため、ピーク時間は低剛性の地盤と同様に所定範囲に収まる。従って、広範囲の剛性の地盤に緩衝材を取り換えずに対処できる。
【0014】
また、第2発明では、地盤からの反力の立ち上がり当初の所定期間、複数のコイル部分のうちの最小のばね定数のコイル部分による緩衝作用が営まれ、その後他のコイル部分による緩衝作用を受けつつ地盤からの反力がピークに達するように複合コイルばねを構成する。これによれば、地盤に伝達される衝撃力が当初は低く抑えられる。そのため、地盤を安定させてより正確なデータを得ることができ、測定精度が向上する。上記した比較的剛性の低い地盤の測定に適した比較的小さなばね定数のコイル部分と、比較的剛性の高い地盤の測定に適した比較的大きなばね定数のコイル部分との2つのコイル部分を有する複合コイルばねを用いる場合、高剛性の地盤では、比較的小さなばね定数のコイル部分(最小のばね定数のコイル部分)の緩衝作用により、地盤に伝達される衝撃力を当初は低く抑えることができる。また、比較的小さなばね定数のコイル部分よりも更にばね定数の小さなコイル部分を付加することにより、低剛性の地盤でも、地盤に伝達される衝撃力を当初は低く抑えることができる。
【0015】
尚、上記した複合コイルばねは、ばね定数の異なるそれぞれ独立した複数のコイルばねを繋ぎ合わせて構成することができ、この場合、各コイルばねが上記各コイル部分となる。また、不等ピッチコイルばねで複合コイルばねを構成しても良く、この場合、ピッチの異なる各部分で上記各コイル部分が構成される。
【0016】
また、本発明では、「地盤」は、路盤、路面、地面、舗装面等を総称的に意味するものである。そして、本発明の剛性測定装置は、例えば鉄道等の枕木の下の路盤や、道路、構造物の建設前の更地、構造物内の地面、空港の路面等の剛性を測定する場合に適用可能である。
【0017】
【発明の実施の形態】
図1は、地盤の剛性を測定する重錘落下式剛性測定装置を示している。この装置は、円板状の載荷板1を介して地盤A上に載置される荷重計2と、荷重計2上に落下させる重錘3と、重錘3を荷重計2の上方で係脱可能に係止する係止機構4とを備えている。
【0018】
荷重計2は、金属製の円筒状の起歪体5と、その上下両端に装着した天板部材6及び底板部材7とを備えるロードセル状のものであり、底板部材7の下面に載荷板1が固着されている。起歪体5の内周面には、図示省略したひずみゲージが貼着されており、荷重計2に作用する上下方向の荷重で発生する起歪体5のひずみにより、ひずみゲージを介して荷重に応じた荷重信号が出力される。
【0019】
また、荷重計2の内部には、底板部材7の中心部に位置させて上下方向の加速度を検出する加速度センサ8が固定されている。そして、加速度センサ8から出力される加速度信号を荷重信号と共に外部のデータ処理装置9に送信し、加速度センサ8で検出された加速度を2回積分することで地盤Aの上下方向の変位を求めるようにしている。尚、加速度センサ8に代えて速度センサを設け、速度センサで検出された速度を1回積分することにより地盤Aの上下方向の変位を求めることも可能である。
【0020】
荷重計2の天板部材6上には円板状の補助板10が固設されており、この補助板10に立設したガイドロッド11に前記重錘3を上下動自在に外挿している。重錘3は、その上端部に固定したノブ12を把持して持ち上げられるようになっている。
【0021】
前記係止機構4は、ガイドロッド11に位置調整自在に取り付けられる支持部材13に軸14を介して揺動可能に軸着された操作レバー15を備えており、この操作レバー15の下端に、重錘3の上端部に固定した筒体16の上端のフランジ16aに係合する係止片17を設けて、重錘3を上方位置に係止できるようにしている。操作レバー15は、係止片17がフランジ16aに係合する方向にばね18で付勢されている。そして、操作レバー15の上部を把持して、図の矢印Pの向きに操作レバー15を揺動させることにより、係止片17がフランジ16aから離脱して、重錘3が荷重計2に向けて落下するようにしている。
【0022】
重錘3が荷重計2に落下すると、重錘3による衝撃力が荷重計2と載荷板1とを介して地盤Aに伝達され、この衝撃力に対する地盤Aからの反力を荷重計2が受けて、この反力が計測されると共に、地盤Aの変位が計測される。
【0023】
また、地盤Aに対する衝撃力の伝達経路には、地盤Aに急激な衝撃が加わらないように、本発明の重錘落下緩衝装置を構成する緩衝材が配置されている。本実施形態では、荷重計2上の補助板10の上面に、ガイドロッド11を囲うようにして後記詳述する複合コイルばね19から成る複数の緩衝材を配置している。これら緩衝材の緩衝作用により地盤Aの反力と変位は、図4に例示する如く、山形の波形を描くように変化する。そして、反力と変位のピーク値をそれぞれの計測値とし、変位の計測値が所定値zsになるように重錘3の質量や落下高さを調整して、この時の荷重強さ(反力の計測値を載荷板1の面積で除した値)を前記所定値zsで除して地盤の剛性を評価する値(K値)を求める。但し、重錘3の質量や落下高さを調整しても、前記所定値に正確に一致した変位を得ることは困難である。そこで、重錘3の質量や落下高さを変化させて、前記所定値を挟む変位を得るような測定を行い、比例配分でK値を求めている。また、変位の所定値zsは、直径30cmの載荷板を用いて行う平板載荷試験の0.125cmを基準にしており、載荷板1の直径が30cmでないときは、載荷板1の直径をφsとして、0.125cmに直径30cmの載荷板との直径比(φs/30)を乗じた値を変位の所定値zsに設定している。
【0024】
ここで、測定条件を整えるには、各種剛性の地盤において変位の計測値が所定値zsになるような測定を行った時の反力波形の立ち上がり開始からピークまでの時間(ピーク時間TP)が所定範囲(6~10msec程度)に収まるようにし、更に、緩衝材が線形変形域(弾性域)で緩衝作用を営んでいる状態でピークに達するようにすることが望まれる。
【0025】
そこで、本実施形態では、緩衝材として、図2に示す如く、上側の第1のコイル部分19aと、これよりもばね定数の大きな下側の第2のコイル部分19bとを有する複合コイルばね19を用いている。尚、第1と第2のコイル部分19a,19bは上下逆に配置しても良い。このような複合コイルばね19を用いると、地盤反力が比較的小さな領域では、図2(b)に示す如く、主として第1のコイル部分19aが弾性変形してこれによる緩衝作用が営まれ、地盤反力が大きくなって第1のコイル部分19aが完全に圧縮された後、図2(c)に示す如く、第2のコイル部分19cのみが弾性変形してこれによる緩衝作用が営まれる。そのため、高剛性の地盤での測定を行うと、地盤反力は、図4に示す如く、立ち上がり当初の所定期間、第1のコイル部分19aによる緩衝作用で緩やかに上昇し、その後第2のコイル部分19bによる緩衝作用を受けつつ急上昇してピークに達するような波形を描く。
【0026】
ここで、第1のコイル部分19aのばね定数は、比較的剛性の低い地盤での測定に適した比較的小さな値、即ち、比較的剛性の低い地盤において変位の計測値が所定値zsになるような測定を行った時に、第1のコイル部分19aが緩衝作用を営む状態で反力波形がピークになり、且つ、ピーク時間TPが所定範囲に収まるような値に設定されている。また、第2のコイル部分19bのばね定数は、比較的剛性の高い地盤での測定に適した比較的大きな値、即ち、比較的剛性の高い地盤において変位の計測値が所定値zsになるような測定を行った時に、第1のコイル部分19aが緩衝作用を営む状態で反力波形がピークになり、且つ、ピーク時間TPが所定範囲に収まるような値に設定されている。そのため、広範囲の剛性の地盤に緩衝材を取り換えずに対処できる。更に、高剛性の地盤における測定では、地盤に伝達される衝撃力が第1のコイル部分19aの緩衝作用により当初は低く抑えられるため、地盤を安定させてより正確なデータを得ることができ、測定精度が向上する。低剛性の地盤では、地盤自体の緩衝作用も得られるため、当初の衝撃力を緩衝材で低く抑えなくてもよいが、必要であれば、第1のコイル部分19aよりもばね定数の小さなコイル部分を複合コイルばね19に付加すればよい。
【0027】
尚、上記実施形態では、第1と第2の各コイル部分19a,19bをそれぞれ独立したコイルばねで構成し、これら2つのコイルばねを溶接等で繋ぎ合わせて複合コイルばね19を製作している。然し、複合コイルばね19はこれに限られるものではなく、例えば、図3に示すように、不等ピッチコイルばねで複合コイルばね19を構成してもよい。この場合、ピッチの狭い部分がばね定数の小さな第1のコイル部分19a、ピッチの広い部分がばね定数の大きな第2のコイル部分19bになる。
【0028】
また、上記実施形態では、ガイドロッド11を囲うようにして複数の複合コイルばね19を配置したが、コイル径を大きくした単一の複合コイルばねをその内周空間にガイドロッド11が遊挿されるように配置することも可能である。
【図面の簡単な説明】
【図1】本発明に係わる剛性測定装置の一実施形態の全体構成を示す図。
【図2】(a)図1の剛性測定装置における重錘落下緩衝装置の緩衝材として用いた複合コイルばねを示す図、(b)複合コイルばねの低荷重状態を示す図、(c)複合コイルばねの高荷重状態を示す図。
【図3】複合コイルばねの他の実施形態を示す図。
【図4】図1の剛性測定装置で測定した地盤の反力と変位の波形を示す図。
【符号の説明】
A…地盤 2…荷重計 3…重錘 19…複合コイルばね 19a…ばね定数の小さなコイル部分 19b…ばね定数の大きなコイル部分
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3