TOP > 国内特許検索 > 加速度推定装置、電動機制御装置及び加速度推定方法 > 明細書

明細書 :加速度推定装置、電動機制御装置及び加速度推定方法

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第3974832号 (P3974832)
公開番号 特開2004-080935 (P2004-080935A)
登録日 平成19年6月22日(2007.6.22)
発行日 平成19年9月12日(2007.9.12)
公開日 平成16年3月11日(2004.3.11)
発明の名称または考案の名称 加速度推定装置、電動機制御装置及び加速度推定方法
国際特許分類 H02P   5/74        (2006.01)
B60L   9/16        (2006.01)
FI H02P 7/74 G
H02P 7/74 D
B60L 9/16 B
請求項の数または発明の数 6
全頁数 11
出願番号 特願2002-239536 (P2002-239536)
出願日 平成14年8月20日(2002.8.20)
新規性喪失の例外の表示 特許法第30条第1項適用 平成14年7月25日に開催された社団法人電気学会交通・電気鉄道リニアドライブ合同研究会TER-02-57、LD-02-72おいて発表
審査請求日 平成16年12月2日(2004.12.2)
特許権者または実用新案権者 【識別番号】000173784
【氏名又は名称】財団法人鉄道総合技術研究所
発明者または考案者 【氏名】山下 道寛
【氏名】渡邉 朝紀
個別代理人の代理人 【識別番号】100090033、【弁理士】、【氏名又は名称】荒船 博司
【識別番号】100093045、【弁理士】、【氏名又は名称】荒船 良男
審査官 【審査官】天坂 康種
参考文献・文献 特開2002-223503(JP,A)
特開平10-080190(JP,A)
特開平07-276952(JP,A)
特開平09-023678(JP,A)
特開2002-044804(JP,A)
特開平11-027811(JP,A)
調査した分野 H02P 6/00 - 6/02
H02P 5/28 - 5/44
H02P 5/46 - 5/52
H02P 7/36 - 7/80
H02P 7/628- 7/632
H02P 21/00
特許請求の範囲 【請求項1】
1以上の誘導電動機を定電流制御の下でベクトル制御によって駆動するインバータの出力電流値の所定座標系における位相を演算する位相演算手段と、
前記位相演算手段により演算された位相を時間について一階微分することにより、インバータ周波数の推定値を算出する第1微分手段と、
前記第1微分手段により算出されたインバータ周波数の推定値を時間について一階微分することにより、前記1以上の誘導電動機の平均加速度の推定値を算出する第2微分手段と、
を備えることを特徴とする加速度推定装置。
【請求項2】
請求項1に記載の加速度推定装置であって、
前記第1微分手段は、前記位相演算手段により演算された位相について、帯域通過フィルタ演算及び一階微分演算を同順又は逆順に行
前記第2微分手段は、前記第1微分手段による演算結果について、低域通過フィルタ演算及び一階微分演算を同順又は逆順に行うことを特徴とする加速度推定装置。
【請求項3】
1以上の誘導電動機の駆動をベクトル制御する電動機制御装置であって、
請求項1又は2に記載の加速度推定装置と、
前記加速度推定装置により算出された平均加速度の推定値に基づいて、前記1以上の誘導電動機の空転又は滑走を検知する検知手段と、
を備えることを特徴とする電動機制御装置。
【請求項4】
1以上の誘導電動機の駆動をベクトル制御する電動機制御装置であって、
請求項1又は2に記載の加速度推定装置と、
前記加速度推定装置により算出された平均加速度の推定値に基づいて、前記1以上の誘導電動機の粘着力を推定する粘着力推定手段と、
を備えることを特徴とする電動機制御装置。
【請求項5】
1以上の誘導電動機を定電流制御の下でベクトル制御によって駆動するインバータの出力電流値の所定座標系における位相を演算した後、当該位相を時間について一階微分することにより、インバータ周波数の推定値を算出し、当該インバータ周波数の推定値を時間について一階微分することにより、前記1以上の誘導電動機の平均加速度の推定値を算出する加速度推定方法。
【請求項6】
請求項5に記載の加速度推定方法であって、
前記演算された位相について帯域通過フィルタ演算及び一階微分演算を同順又は逆順に演算した後、低域通過フィルタ演算及び一階微分演算を同順又は逆順に演算することにより、前記1以上の誘導電動機の平均加速度の推定値を算出することを特徴とする加速度推定方法。
発明の詳細な説明 【0001】
【発明の属する技術分野】
本発明は、誘導電動機に係る加速度推定装置、電動機制御装置及び加速度推定方法に関する。
【0002】
【従来の技術】
誘導電動機は種々の動力として利用されており、例えば機関車を含む鉄道車両や電気自動車等の電気車が挙げられる。中でも鉄道車両における誘導電動機の制御として、近年、速度センサレスベクトル制御の研究・開発が盛んに行われている。従来の誘導電動機の空転滑走・再粘着制御は、誘導電動機の回転子に連動した軸の速度を検出する速度センサからのパルスをもとにしたものであり、軸の速度、即ち誘導電動機の速度が得られることを前提としたものである。
【0003】
速度センサレスベクトル制御は速度センサを用いないものである。このため、速度センサレスベクトル制御における空転滑走・再粘着制御は、速度センサを用いないことによる性能低下が生じないことが望まれる。
【0004】
そこで、各車輪の速度差によって主電動機電流に差が生じることに着目した空転滑走・再粘着方式として、特開2002-44804号公報の発明が知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、各車輪の速度差に着目した方式は、各主電動機の相対速度が大きいときに有利であるが、全軸が空転したりして、相対速度が小さいときには、空転又は滑走の検知等が困難になると考えられる。
【0006】
本発明は上記課題に鑑みて為されたものであり、その目的とするところは、速度センサを用いずとも、また各誘導電動機の相対速度が小さい場合であっても、誘導電動機の駆動軸の空転又は滑走の検知等を可能とするための装置又は方法を実現することである。
【0007】
【課題を解決するための手段】
以上の課題を解決するため、請求項1に記載の発明の加速度推定装置は、
1以上の誘導電動機(例えば、図1の電動機10)を定電流制御の下でベクトル制御によって駆動するインバータ(例えば、図1のインバータ20)の出力電流値の所定座標系(例えば、静止座標系)における位相を演算する位相演算手段(例えば、図の位相演算器51)と、
前記位相演算手段により演算された位相を時間について一階微分することにより、インバータ周波数の推定値を算出する第1微分手段と、
前記第1微分手段により算出されたインバータ周波数の推定値を時間について一階微分することにより、前記1以上の誘導電動機の平均加速度の推定値を算出する第2微分手段と、
を備えることを特徴とする。
【0008】
また請求項5に記載の発明の加速度推定方法は、
1以上の誘導電動機を定電流制御の下でベクトル制御によって駆動するインバータの出力電流値の所定座標系における位相を演算した後、当該位相を時間について一階微分することにより、インバータ周波数の推定値を算出し、当該インバータ周波数の推定値を時間について一階微分することにより、前記1以上の誘導電動機の平均加速度の推定値を算出することを特徴とする。
【0009】
この請求項1又は5に記載の発明によれば、インバータの出力電流値について所定の演算を行うことにより、当該インバータが一括して駆動している誘導電動機の平均加速度を推定することができる。したがって、容易に誘導電動機の加速度を得ることができるため、各誘導電動機の相対速度が小さい場合であっても、誘導電動機の駆動軸の空転又は滑走の検知等が可能となる。尚、本発明は速度センサを用いたものでないため、ベクトル制御下は勿論、速度センサレスベクトル制御下においても適用が可能である。
【0010】
また請求項2に記載の発明は、請求項1に記載の加速度推定装置であって、
前記第1微分手段は、前記位相演算手段により演算された位相について、帯域通過フィルタ演算(例えば、図のBPF52による演算)及び一階微分演算(例えば、図の微分演算器53による演算)を同順又は逆順に行
前記第2微分手段は、前記第1微分手段による演算結果について、低域通過フィルタ演算(例えば、図のLPF54)及び一階微分演算(例えば、図の微分演算器55)を同順又は逆順に行うことを特徴としている。
【0011】
また請求項6に記載の発明は、請求項5に記載の加速度推定方法であって、
前記演算された位相について帯域通過フィルタ演算及び一階微分演算を同順又は逆順に演算した後、低域通過フィルタ演算及び一階微分演算を同順又は逆順に演算することにより、前記1以上の誘導電動機の平均加速度の推定値を算出することを特徴としている。
【0012】
この請求項2又は6に記載の発明によれば、単に二階微分の演算を行うのではなく、加速度の推定演算に不要なノイズを除去するために、帯域通過フィルタ及び低域通過フィルタの演算を行う。このことにより、より精度のよい平均加速度の推定が可能となる。
【0013】
また請求項3に記載の発明は、1以上の誘導電動機の駆動をベクトル制御する電動機制御装置であって、
請求項1又は2に記載の加速度推定装置と、
前記加速度推定装置により算出された平均加速度の推定値に基づいて、前記1以上の誘導電動機の空転又は滑走を検知する検知手段と、
を備えることを特徴とする。
【0014】
また請求項4に記載の発明は、1以上の誘導電動機の駆動をベクトル制御する電動機制御装置であって、
請求項1又は2に記載の加速度推定装置と、
前記加速度推定装置により算出された平均加速度の推定値に基づいて、前記1以上の誘導電動機の粘着力を推定する粘着力推定手段と、
を備えることを特徴とする。
【0015】
この請求項3に記載の発明によれば、加速度推定装置によって推定された加速度を用いることで、例えば、速度センサレスベクトル制御において、各誘導電動機の相対速度が小さい場合であっても、誘導電動機の駆動軸の空転又は滑走の検知及びその際の制御が可能であり、また請求項4に記載の発明によれば、例えば、空転又は滑走後の再粘着制御を実現できる。
【0016】
【発明の実施の形態】
以下、本発明を、電車を駆動する誘導電動機の制御装置の一部に適用した実施の形態について詳細に説明する。
【0017】
1.主回路システム
図1は、電車の主回路システムの概略図である。インバータ20には、パンタグラフ及びコンバータ等を介して架線の電力が供給される。またベクトル制御演算器40から入力されるu相、v相、w相の電圧指令値Vu*,Vv*,Vw*に基づいてインバータ20は出力電圧を調整し、並列接続された4台の3相誘導電動機11~14(以下、包括的に電動機10という。)に一括して給電する。以下、インバータ20から出力される電流を一括電流という。
【0018】
電流センサ31,32(以下、包括的に電流センサ30という。)は、インバータ20の出力端に設けられ、インバータ20から出力されるu相及びv相の一括電流をそれぞれ検出し、一括電流値iu,ivとしてベクトル制御演算器40及び加速度推定装置50に出力する。
【0019】
ベクトル制御演算器40は、電流センサ30からフィードバックされた一括電流値iu,ivに基づいて、トルク分電流と磁束分電流を算出し、電圧指令値Vu*,Vv*,Vw*を決定してインバータ20に出力する。
【0020】
すなわち、図1の主回路システムは、ベクトル制御によって電動機10の駆動を制御する構成である。尚、本実施の形態において、ベクトル制御演算器40は、定電流制御を行うものとして説明する。この場合、各誘導電動機の負荷にばらつきが生じても、電圧指令値Vu*,Vv*,Vw*としては一定値が出力されることとなる。また、定電流制御においては、通常、電動機のすべり周波数が一定値と考えられるため、インバータ周波数の微分値とロータ周波数の微分値とが略同一と考えられる。
【0021】
またベクトル制御演算器40及び加速度推定装置50は、CPUや、プログラムを記憶したROM、RAM等から構成されるコンピュータにより実現されるものであり、例えば制御ボードとして電動機の制御装置に実装される。またインバータ20を含めて一体的にインバータ装置として構成され得る。
【0022】
そして、加速度推定装置50は、電流センサ30から出力される一括電流値iu,ivに基づいて、各誘導電動機11~14の平均加速度を推定する。すなわち、速度センサを用いることなく、平均加速度の推定が可能であるため、速度センサレスベクトル制御においても加速度推定装置50を適用可能である。
【0023】
2.加速度推定装置
図2は、加速度推定装置50の機能ブロック図である。加速度推定装置50は、電流センサ30から出力される一括電流値iu,ivから、静止座標系上の位相θを演算して出力する位相演算器51と、位相θについて所定帯域を通過させ、位相θ′として出力する帯域通過フィルタ(以下、BPFという。)52と、位相θ′の一階微分を求めることによりインバータ周波数の推定値f1を算出する微分演算器53と、周波数f1の所定域以下を通過させ、周波数f1′として出力する低域通過フィルタ(以下、LPFという。)54と、周波数f1′の一階微分を求めることにより加速度推定値αiを算出する微分演算器55とを備えて構成される。
【0024】
▲1▼位相演算器51の動作原理
図3は、誘導電動機の一次側の三相巻線を示す図であり、図4は、図3の三相巻線を電気的・磁気的に等価な二相(α-β)巻線に変換した図である。ここで、u相巻線とα相巻線の角度をゼロとする。
【0025】
三相巻線の相電流は(1)~(3)式となる。
【数1】
JP0003974832B2_000002t.gif【0026】
三相-二相変換を行い、α-β座標系(静止座標系)において、一次電流iα,iβは(4)~(5)式で表される。
【数2】
JP0003974832B2_000003t.gif【0027】
(4)~(5)式を整理すると(6)~(7)式となる。
【数3】
JP0003974832B2_000004t.gif【0028】
従って一次電流ベクトルi1の振幅|i1|は、(8)式となる。
【数4】
JP0003974832B2_000005t.gif【0029】
次に一次電流ベクトルi1とα軸とのなす角(位相)を求める。一次電流ベクトルi1の大きさ(振幅)は相電流の波高値の√(3/2)倍である。このため、一次電流ベクトルi1の振幅を相電流の波高値に合わせるため、一次電流ベクトルi1の振幅を√(2/3)倍して、一次電流ベクトルi1とα軸とのなす角(位相)を求めると、(9)式となる。
【数5】
JP0003974832B2_000006t.gif【0030】
▲2▼BPF52~微分演算器55の動作原理
(9)式で得られる位相θについて基本波以外の周波数の影響を少なくするため、BPF52は、所定帯域を通過帯域として通過させ位相θ′として出力する。
【0031】
インバータ周波数の推定値f1は、位相θの時間変化率として求めることができるため、BPF52を通過した位相θ′を用いると、(10)式により算出することができる。
【数6】
JP0003974832B2_000007t.gif【0032】
微分演算器55は、この(10)式で求められたインバータ周波数の推定値f1の時間変化を求めるわけであるが、電車の駆動軸の周波数変化に鑑み、周波数雑音を低減させるため、f1を一旦LPF54に通過させた後に微分する。LPF54を通過したインバータ周波数の推定値をf1′とすると、加速度推定値αiは(11)式により算出することができる。尚、ベクトル制御による定電流制御下においては、すべり周波数がほぼ一定と考えられるため、インバータ周波数とロータ周波数とが略一致する。このため、(11)式が成り立つものである。
【数7】
JP0003974832B2_000008t.gif【0033】
3.実施例
新幹線電車を、時速275~300km/hで試験走行させ、所定軸に毎分6リットルの散水を行った時の試験結果の一例が図5である。12~42秒間に数回の空転が生じている。同図(a)において、Vt_1,Vt_2,Vt_3,Vt_4は各軸(それぞれ図1の電動機11~14に相当する。)の進行方向速度[km/h]である。また、この間にベクトル制御演算器40に入力されたトルク分電流指令値i1qrefと磁束分電流指令値i1defを同図(b)に、各電動機の一次電流ベクトルの大きさi1_1,i1_2,i1_3,i1_4を同図(c)に示す。
【0034】
図5の解析区間(32秒~40秒間)において、Vt_1,Vt_2,Vt_3,Vt_4の全ての軸の速度が一時的に約10km/h程度上昇し、空転の検知によってトルク分電流指令値i1qrefが一時的に引き下げられている。このため図5の解析区間においては全軸空転が生じていると考えられる。
【0035】
この解析区間において、本実施の形態の加速度推定装置50を適用した。解析区間においてインバータ周波数は約180Hzであるため、BPF52は100~250Hzを通過帯域とした。また空転時におけるインバータ周波数の時間変化は高々数Hzであるため、LPF54は3Hz以下を通過帯域とする急峻なカットオフ特性を持つようにした。
【0036】
本実施例の適用結果を図6に示す。同図(a)は解析区間における4軸の平均速度(実測値)を、同図(b)は(a)の平均速度から得られる平均加速度(実測値)及び加速度推定装置50が算出した加速度推定値αiを、同図(c)はトルク分電流値i1qrefを示す図である。尚、加速度(インバータ周波数の時間変化)は、車輪加速度に相当すると考えられるため、[km/h/s]に換算している。
【0037】
図6より、加速度推定装置50による平均加速度の推定が精度良く実現できていることが分かる。すなわち、加速度推定装置50の出力値が所定の加速度閾値を超えたか否かを判断することにより、空転の検知が可能となる。具体的には、例えば、加速度閾値を-5.0[km/h/s]とし、加速度推定装置50から出力される加速度推定値αiが加速度閾値を超えたか否かを監視することにより空転を検知する検知部を構成し、電動機制御装置が具備することにより実現できる。勿論この検知部も加速度推定装置50と同様、コンピュータ等が実装された制御基板等により実現可能である。尚、空転のみならず、滑走の検知も同様にして可能である。
【0038】
4.変形例
(1)加速度推定装置の構成
図2において、位相演算器51が出力した位相θについてBPF52が所定帯域を通過させ、θ′として出力した後、微分演算器53がインバータ周波数の推定値f1を算出することとして説明した。しかし、微分演算器53が、位相演算器51の出力する位相θに基づいて、インバータ周波数数の推定値f1を算出した後、BPF52が、f1の所定帯域を通過させて出力する構成としてもよい。また同様に、LPF54と微分演算器55との演算順序を入れ替えることとしてもよい。
【0039】
(2)再粘着制御
加速度推定装置50によって、速度センサレスベクトル制御において、電動機の平均加速度を制御よく推定することが可能となったが、加速度の推定が可能となった為に、例えば、空転・滑走後の再粘着制御に推定値を利用することが実現できる。
【0040】
具体的に説明する。電動機の車軸とレールとの接線力に相当する負荷トルクは、空転・滑走によって変化する。その変化した負荷トルクを推定する方法として特開2002-44804号公報の数式(4)~(8)が知られている。この内、(6)式である、dωr-n/dt=(dω1/dt)-(dωs-n/dt)の(dω1/dt)の項に加速度推定装置50による加速度推定値を利用することができる。
【0041】
詳細には、同公報(6)式において、回転子角周波数ωr-nの時間変化は、一次角周波数ω1の時間変化からすべり角周波数ωs-nの時間変化を減算した値となる。しかし、すべり角周波数ωs-nは定電流制御においては一定と仮定できるため、簡単に同公報の(4)式を算出し、空転・滑走によって変化した負荷トルクを推定することで、再粘着制御を実現できる。
【0042】
また次の方法により再粘着制御を行うこととしてもよい。即ち、粘着電流値Iμを推定する方法として、電気学会論文誌D(産業応用部門誌)H11年2月号「粘着力推定を行う空転再粘着制御 -粘着力推定方法と高速新幹線電車での試験結果-」に記載の(5)式が知られている。この式を本実施の形態に適用して変換すると次式となる
【数8】
JP0003974832B2_000009t.gif【0043】
ここで、Kμは定数であり、一次電流ベクトルi1の振幅は(8)式から算出できる。そして、加速度推定値αiは、加速度推定装置50による推定値を利用することができる。すなわち、速度センサレスベクトル制御において、粘着力の推定を簡単に実現することができる。
【0044】
なお、これらの変形例に示した粘着力推定の機能部は、加速度推定装置50と同様、コンピュータ等が実装された制御基板等により実現可能である。
【0045】
(3)インバータ20と電動機10
上記実施の形態においては、インバータ20が4台の誘導電動機11~14に一括して給電することとして説明したが、電動機の数はこれに限らない。即ち、インバータ20が1台の電動機を給電・駆動することとしても、上記実施の形態を適用することが可能である。
【0046】
【発明の効果】
本発明によれば、インバータの出力電流値について所定の演算を行うことにより、当該インバータが一括して駆動している誘導電動機の平均加速度を推定することができる。したがって、容易に誘導電動機の加速度を得ることができるため、各誘導電動機の相対速度が小さい場合であっても、誘導電動機の駆動軸の空転又は滑走の検知等が可能となる。
【図面の簡単な説明】
【図1】電車の主回路システムの概略図。
【図2】加速度推定装置の機能ブロック図。
【図3】誘導電動機の一次側の三相巻線を示す図。
【図4】図3の三相巻線を電気的・磁気的に等価な二相(α-β)巻線に変換した図。
【図5】実施例の試験結果の一例を示す図。
【図6】実施例の適用結果の一例を示す図。
【符号の説明】
10 誘導電動機
20 インバータ
30 電流センサ
60 電動機制御装置
40 ベクトル制御演算器
50 加速度推定装置
51 位相演算器
52 BPF
53 微分演算器
54 LPF
55 微分演算器
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5