TOP > 国内特許検索 > 電波近接センサ > 明細書

明細書 :電波近接センサ

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第3735721号 (P3735721)
公開番号 特開2004-257848 (P2004-257848A)
登録日 平成17年11月4日(2005.11.4)
発行日 平成18年1月18日(2006.1.18)
公開日 平成16年9月16日(2004.9.16)
発明の名称または考案の名称 電波近接センサ
国際特許分類 G01S  13/38        (2006.01)
G01V   3/12        (2006.01)
FI G01S 13/38
G01V 3/12 A
請求項の数または発明の数 4
全頁数 11
出願番号 特願2003-048577 (P2003-048577)
出願日 平成15年2月26日(2003.2.26)
審査請求日 平成15年2月26日(2003.2.26)
特許権者または実用新案権者 【識別番号】390014306
【氏名又は名称】防衛庁技術研究本部長
発明者または考案者 【氏名】佐藤 祐司
【氏名】官野 高雄
個別代理人の代理人 【識別番号】100079290、【弁理士】、【氏名又は名称】村井 隆
審査官 【審査官】宮川 哲伸
参考文献・文献 特開昭49-79798(JP,A)
特開昭59-116073(JP,A)
特開昭48-14280(JP,A)
実開平5-84882(JP,U)
特開昭49-65195(JP,A)
特開平8-166444(JP,A)
特開平7-280924(JP,A)
調査した分野 G01S 7/00 ~ 7/42
G01S 13/00 ~ 13/95
G01V 3/12
特許請求の範囲 【請求項1】
連続波の電波を放射して反射物体からの反射電波を検出する電波近接センサにおいて、
異なった3つ以上の発振周波数の高周波を切り替えて出力する発振回路と、
前記発振回路の発振周波数を時間により切り替える制御信号を出力する発振制御回路と、
前記発振制御回路の制御信号で制御された前記発振回路の高周波出力を電波として放射する送信用アンテナと、
前記送信用アンテナから放射された電波の反射物体からの反射電波を受信する受信用アンテナと、
前記受信用アンテナの受信信号と前記発振回路の高周波出力とを混合し、前記反射物体との相対速度に応じて発生するドップラー信号を検出するミキサと、
前記ミキサ出力について前記発振制御回路の制御信号に基づき前記発振回路のそれぞれの発振周波数毎に同期検波を行う検波回路と、
前記検波回路で同期検波された前記発振周波数に対応する各出力からドップラー信号をそれぞれ抽出するための3つ以上のフィルタ回路と、
前記発振回路の発振周波数に応じた前記フィルタ回路のそれぞれの出力の位相差を検出する位相検出回路と、
前記位相検出回路の複数の出力を同時に用いることで、前記反射物体の距離を算出し出力する演算回路とを備え、
前記演算回路は、前記位相検出回路の出力である3つ以上の位相差を同時に用いることにより、前記反射物体の距離を、前記異なった3つ以上の発振周波数の3つ以上の周波数差それぞれから得られる測定可能最大距離の最小公倍数である距離まで算出することを特徴とする電波近接センサ。
【請求項2】
連続波の電波を放射して反射物体からの反射電波を検出する電波近接センサにおいて、
異なった3つ以上の発振周波数の高周波をそれぞれ出力する発振回路と、
前記発振回路の高周波出力を電波として放射する送信用アンテナと、
前記送信用アンテナから放射された電波の反射物体からの反射電波を受信する受信用アンテナと、
前記受信用アンテナの受信信号と前記発振回路の高周波出力とを混合し、前記反射物体との相対速度に応じて発生するドップラー信号を検出するミキサと、
発振周波数の異なる前記発振回路のそれぞれの発振周波数に対応する各ミキサ出力からドップラー信号をそれぞれ抽出するための3つ以上のフィルタ回路と、
前記発振回路の発振周波数に応じた前記フィルタ回路のそれぞれの出力の位相差を検出する位相検出回路と、
前記位相検出回路の複数の出力を同時に用いることで、前記反射物体の距離を算出し出力する演算回路とを備え、
前記演算回路は、前記位相検出回路の出力である3つ以上の位相差を同時に用いることにより、前記反射物体の距離を、前記異なった3つ以上の発振周波数の3つ以上の周波数差それぞれから得られる測定可能最大距離の最小公倍数である距離まで算出することを特徴とする電波近接センサ。
【請求項3】
前記受信用アンテナの出力と前記ミキサとの間に、時間に対して連続で位相を変化させる可変相器を挿入することで、反射物体との相対速度が存在しない場合でも擬似ドップラー信号を発生させる請求項1又は2記載の電波近接センサ。
【請求項4】
1つのアンテナを前記送信用アンテナと前記受信用アンテナとに共用した請求項1,2又は3記載の電波近接センサ。
発明の詳細な説明
【0001】
【発明の属する技術分野】
本発明は、連続波の電波を放射して反射物体からの反射電波を検出し、反射物体までの距離を測定するために用いられる電波近接センサに関するものである。
【0002】
【従来の技術】
従来、連続波の電波を使用し反射物体までの距離を検出可能な電波近接センサとしては、図5に示すように、2つの周波数の連続波の電波を制御信号に基づき時間で切り替えて放射し、反射電波のドップラー信号を制御信号で同期検波してその位相差から距離を測定する2周波CW方式と、図6に示すように、時間により周波数を連続的に変化させる変調を加えた連続波の電波を放射し、反射電波と放射電波の周波数差から距離を測定するFM-CW方式がある。
【0003】
図5の2周波CW方式において、1は送信用アンテナ、2は発振器(発振回路)であり、3は発振制御回路である。発振器2は異なった2つの発振周波数の高周波を切り替えて出力可能なものであり、発振制御回路3は発振器2の発振周波数を時間により切り替える制御信号を出力するものであり、送信用アンテナ1は発振制御回路3の制御信号で制御された発振器2の高周波出力を電波として放射する。
【0004】
受信用アンテナ4は送信用アンテナ1から放射された電波の反射物体からの反射電波を受信し、その受信信号がミキサ5に加えられる。ミキサ5には前記発振器2の高周波出力もカプラ等の結合手段6を介して加えられており、ここで、受信用アンテナ4の受信信号と発振器2の高周波出力とを混合し、前記反射物体との相対速度に応じて発生するドップラー信号を検出する。検波回路7はミキサ出力について発振制御回路3の制御信号に基づき発振器2のそれぞれの発振周波数毎に同期検波を行う。フィルタ回路8-1,8-2は、検波回路7で同期検波された前記発振周波数に対応する各出力からドップラー信号をそれぞれ抽出し、位相検出回路9で発振器2の2つの発振周波数に応じたフィルタ回路8-1,8-2のそれぞれの出力の位相差を検出し、これより距離測定結果が得られる。
【0005】
図6のFM-CW方式において、1は送信用アンテナ、2は発振器(発振回路)であり、10は周波数変調回路である。送信用アンテナ1は周波数変調回路10の変調信号で周波数変調された発振器2の高周波出力を電波として放射する。受信用アンテナ4は送信用アンテナ1から放射された電波の反射物体からの反射電波を受信し、その受信信号がミキサ5に加えられる。ミキサ5には前記発振器2の高周波出力もカプラ等の結合手段6を介して加えられており、ここで、受信用アンテナ4の受信信号と発振器2の高周波出力とを混合し、前記反射物体との相対速度に応じて発生するドップラー信号を含む周波数差信号を検出する。そして、前記周波数差信号を検波回路11で検波した検波信号をフィルタ回路12を通し、さらに周波数検出回路13で周波数検出を行うことで距離測定結果が得られる。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した2つの方式のうち、前者は、距離の測定精度を上げるためには2つの周波数の差を大きくする必要があり、その結果、測定できる最大距離が短くなる欠点を有する。また、反射電波のドップラー効果による周波数変化をドップラー信号として検出する必要があるため、電波近接センサとの間で相対速度のない反射物体の検出及び距離の測定は不可能である。なお、相対速度のない反射物体の検出及び距離の測定については、2つの異なる周波数の連続波の電波を同時に送信し、反射電波を異なる送信周波数の信号と混合して検波することで行う方法も考えられるが、2つの異なる周波数の連続波の電波を制御信号に基づき時間で切り替えて放射する機構への適用が困難であることから、極めて周波数の近い信号を分離することが容易な、ドップラー信号として検出する方法が一般的に用いられている。
【0007】
次に、後者は、電波近接センサとの間で相対速度のない反射物体の検出及び距離の測定は可能であるが、近距離の反射物体の検出及び距離の測定を行うためには周波数を変化させる範囲を極めて大きくしなければならず、またこの場合は、測定できる最大距離が短くなる欠点を有する。
【0008】
本発明は、このような背景の下になされたもので、距離の測定精度の向上及び測定できる最大距離の延長の両立を図った電波近接センサを提供することを目的としている。
【0009】
また、本発明は、電波近接センサとの間で相対速度を有しない反射物体の検出及び距離の測定が可能な電波近接センサを提供することをもう1つの目的としている。
【0010】
本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本願請求項1の発明に係る電波近接センサは、連続波の電波を放射して反射物体からの反射電波を検出する構成において、
異なった3つ以上の発振周波数の高周波を切り替えて出力する発振回路と、
前記発振回路の発振周波数を時間により切り替える制御信号を出力する発振制御回路と、
前記発振制御回路の制御信号で制御された前記発振回路の高周波出力を電波として放射する送信用アンテナと、
前記送信用アンテナから放射された電波の反射物体からの反射電波を受信する受信用アンテナと、
前記受信用アンテナの受信信号と前記発振回路の高周波出力とを混合し、前記反射物体との相対速度に応じて発生するドップラー信号を検出するミキサと、
前記ミキサ出力について前記発振制御回路の制御信号に基づき前記発振回路のそれぞれの発振周波数毎に同期検波を行う検波回路と、
前記検波回路で同期検波された前記発振周波数に対応する各出力からドップラー信号をそれぞれ抽出するための3つ以上のフィルタ回路と、
前記発振回路の発振周波数に応じた前記フィルタ回路のそれぞれの出力の位相差を検出する位相検出回路と、
前記位相検出回路の複数の出力を同時に用いることで、前記反射物体の距離を算出し出力する演算回路とを備え、
前記演算回路は、前記位相検出回路の出力である3つ以上の位相差を同時に用いることにより、前記反射物体の距離を、前記異なった3つ以上の発振周波数の3つ以上の周波数差それぞれから得られる測定可能最大距離の最小公倍数である距離まで算出することを特徴としている。
【0012】
本願請求項2の発明に係る電波近接センサは、連続波の電波を放射して反射物体からの反射電波を検出する構成において、
異なった3つ以上の発振周波数の高周波をそれぞれ出力する発振回路と、
前記発振回路の高周波出力を電波として放射する送信用アンテナと、
前記送信用アンテナから放射された電波の反射物体からの反射電波を受信する受信用アンテナと、
前記受信用アンテナの受信信号と前記発振回路の高周波出力とを混合し、前記反射物体との相対速度に応じて発生するドップラー信号を検出するミキサと、
発振周波数の異なる前記発振回路のそれぞれの発振周波数に対応する各ミキサ出力からドップラー信号をそれぞれ抽出するための3つ以上のフィルタ回路と、
前記発振回路の発振周波数に応じた前記フィルタ回路のそれぞれの出力の位相差を検出する位相検出回路と、
前記位相検出回路の複数の出力を同時に用いることで、前記反射物体の距離を算出し出力する演算回路とを備え、
前記演算回路は、前記位相検出回路の出力である3つ以上の位相差を同時に用いることにより、前記反射物体の距離を、前記異なった3つ以上の発振周波数の3つ以上の周波数差それぞれから得られる測定可能最大距離の最小公倍数である距離まで算出することを特徴としている。
【0013】
本願請求項3の発明に係る電波近接センサは、請求項1又は2において、前記受信用アンテナの出力と前記ミキサとの間に、時間に対して連続で位相を変化させる可変相器を挿入することで、反射物体との相対速度が存在しない場合でも擬似ドップラー信号を発生させることを特徴としている。
【0014】
本願請求項4の発明に係る電波近接センサは、請求項1,2又は3において、1つのアンテナを前記送信用アンテナと前記受信用アンテナとに共用したことを特徴としている。
【0015】
【発明の実施の形態】
以下、本発明に係る電波近接センサの実施の形態を図面に従って説明する。
【0016】
図1乃至図3を用いて本発明に係る電波近接センサの第1の実施の形態を説明する。
【0017】
図1は電波近接センサの構成図であって、1は送信用アンテナ、22は発振器(発振回路)であり、23は発振制御回路である。発振器22は異なった3つ以上の発振周波数の高周波を切り替えて出力可能なものであり、発振制御回路23は発振器22の発振周波数を時間により切り替える制御信号を出力するものである。そして、発振制御回路23の制御信号により発振周波数が短時間ずつ切り替えられた発振器22の高周波の発振出力は、送信用アンテナ1から放射される。なお、切り替えられる発振周波数は3つ以上であればよいが、図1では3周波数の切り替えとして示している。
【0018】
前記送信用アンテナ1から放射された電波は、反射物体が存在する場合に反射して受信用アンテナ4で受信され、その受信信号は可変相器24を経由してミキサ5に加えられる。ミキサ5には前記発振器22の高周波出力もカプラ等の結合手段6で分配されて加えられており、ここで、受信用アンテナ4の受信信号と発振器22の高周波出力とを混合し、前記反射物体との相対速度に応じて発生するドップラー信号を検出する。
【0019】
なお、反射物体が電波近接センサとの間で相対速度を有さず、反射信号にドップラー効果による周波数変化が存在しない場合等は、受信用アンテナ4の出力とミキサ5との間に挿入された可変相器24で、時間に対し連続で位相を変化させて(例えば時間の経過に比例して位相を単調増加させて)擬似ドップラー信号を付加する。また、反射物体が電波近接センサとの間で相対速度を有するときは可変移相器24は作動させないようにしてもよいし、あるいは前記ドップラー信号の周波数に対して前記擬似ドップラー信号の周波数が大きく異なるようにして混同を避けるようにすればよい。
【0020】
検波回路7はミキサ出力について発振制御回路23の制御信号に基づき発振器22のそれぞれの発振周波数毎に同期検波を行う。フィルタ回路8-1,8-2,8-3は、検波回路7で同期検波された3つの発振周波数に対応する各出力からドップラー信号をそれぞれ抽出し、位相検出回路9-1,9-2,9-3で発振器22の3つの発振周波数に応じたフィルタ回路8-1,8-2,8-3間の出力の位相差(それぞれのドップラー信号間の位相差)を検出する。位相検出回路9-1,9-2,9-3の出力は演算回路25に入力され、反射物体までの距離が算出され、距離測定結果が出力される。
【0021】
以下、電波近接センサの原理について説明する。
【0022】
図5に示した従来の2周波CW方式では、2つの発振周波数のドップラー信号間の位相差を△Φ、2つの発振周波数fl,f2の周波数差を△f、光速をC、各々の信号の初期位相をφ1,φ2とすると、時間tの送信信号Vtl(t)及びVt2(t)は次のようになる。
t1(t)=sin(2πf1・t+φ1) …(1)
t2(t)=sin(2πf2・t+φ2) …(2)
【0023】
反射物体で反射された後、受信された受信信号Vr1(t),Vr2(t)は、反射物体までの距離をR、光速をC、それぞれの目標との相対速度によって受信信号に重畳したドップラー波数をfd1,fd2とすると
JP0003735721B2_000002t.gifとなる。
【0024】
ここで、これらの周波数f1+fd1,f2+fd2の受信信号と、周波数f1,f2の送信信号をミキサで混合して検波すると、次式の中間周波数帯の信号VI1(t),VI2(t)が得られる。
JP0003735721B2_000003t.gifここで、Δf≪f1であれば、fd1≒fd2となるので、(5),(6)式の信号の位相差Δφを求めると、次のようになる。
Δφ=4π(f2-f1)R/C=4πΔf・R/C …(7)
従って、位相差Δφが得られれば、目標までの距離Rは(8)式で求められる。
R=CΔφ/4πΔf …(8)
【0025】
前記(8)式から明らかなように、周波数差Δfを大きくすれば、距離Rに応じた位相差Δφも大きくなり距離の測定精度は向上する。しかしΔφがπを超えた場合は、位相差がΔφであるのかΔφ+nπ(n=1,2,3,…)であるのかが特定できず、測定された距離が確定できなくなるため、測定精度向上のため周波数差Δfを大きくすると測定できる最大距離が短くなる。2周波CW方式における測定距離と位相差の関係を図2(A)に示す。
【0026】
また、測定できる最大距離が長距離及び短距離である異なる2周波で距離の測定を行い、遠距離に目標の存在しないことを確認して短距離での検出を行う2周波CW方式も存在するが、精度よく距離の測定が行えるのは短距離に限られている。
【0027】
本発明の電波近接センサでは、3つ以上の発振周波数を用い、それぞれで測定された位相差を同時に用いることで遠距離までの高精度の距離測定を可能としている。以下3つの発振周波数の場合を例として説明する。
【0028】
3つの発振周波数をそれぞれfl、f2、f3(fl>f2>f3)とすると、(9)式から(11)式に示す3つの周波数差が得られる。
△f(1-2)=fl-f2 …(9)
△f(2-3)=f2-f3 …(10)
△f(1-3)=fl-f3 …(11)
【0029】
ここで、△f(1-2)を△f(2-3)よりも小さく、△f(1-3)を△f(2-3)よりも大きくなるように周波数差を設定し、それぞれの周波数差に応じたドップラー信号間の位相差を△φ(1-2)、△φ(2-3)及び△φ(1-3)とすれば、測定距離と位相差の関係は図2(B)に示すようになる。
【0030】
図2(B)から周波数差の大きい△f(1-3)では、距離Rに応じた位相差△φ(1-3)も大きいことから距離の測定精度も高く得られ、この周波数差で位相差△φ(1-3)がπを超えた遠距離についても、周波数差の小さい△f(1-2)の△φ(1-2)による測定結果から測定された距離を確定できる。
【0031】
距離の確定が不可能となるのは、3つの周波数差の全てで位相差がπとなる点以遠となり、測定できる最大距離は、3つの周波数差のそれぞれの最大距離の最小公倍数の距離まで延長される。
【0032】
演算回路25による距離算出の原理について、3つの発振周波数の場合を例として更に説明する。
【0033】
3つの周波数差△f(1-2)、△f(2-3)及び△f(1-3)により測定される距離をR(1-2)、R(2-3)及びR(1-3)とすると、(8)式より
R(1-2)=CΔφ(1-2)/4πΔf(1-2) …(12)
R(2-3)=CΔφ(2-3)/4πΔf(2-3) …(13)
R(1-3)=CΔφ(1-3)/4πΔf(1-3) …(14)
となる。
【0034】
また、それぞれの周波数差単独で測定可能な最大距離をそれぞれRmax(1-2)、Rmax(2-3)、Rmax(1-3)とすると
Rmax(1-2)=C/4Δf(1-2) …(15)
Rmax(2-3)=C/4Δf(2-3) …(16)
Rmax(1-3)=C/4Δf(1-3) …(17)
となる。
【0035】
ここで、3つの周波数差で測定される距離は同一であることから(18)式が成立する。
(k+1)R(1-2)=(m+1)R(2-3)=(n+1)R(1-3)
(k,m,n=0,1,2,3,…) …(18)
【0036】
上述したとおり、単一の周波数差では(15)~(17)式で求められる最大距離を超えた場合に距離の確定ができなくなるが、それぞれの最大距離の最小公倍数の距離までの範囲で(18)式を成り立たせるk,m及びnの値は一つの組しかないため、k,m及びnを演算回路25により数値計算等で求めればよい。
【0037】
もちろん周波数差の大きな△f(1-3)で測定された距離に比べ、周波数差の小さな△f(1-2)や△f(2-3)により測定された距離の精度は低いことから、(18)式の適用においては、等号の成立について誤差範囲を設けることとなる。
【0038】
以上の方法により、周波数差が最も大きい△f(1-3)の距離測定の精度で、周波数差が最も小さい△f(1-2)のRmax(1-2)よりも最大距離を更に遠くまで延長することが可能となる。
【0039】
一例として、△f(1-2)=5MHz、Δf(2-3)=7.5MHz、Δf(1-3)=12.5MHzとした場合は、(8)~(10)式より光速C=3×10m/sとすると、Rmax(1-2)=5m、Rmax(2-3)=6m、Rmax(1-3)=15mとなり、これらの最小公倍数30mまで測定可能な最大距離を高精度に延長できる。
【0040】
図3(A)は2周波CW方式、同図(B)は本発明の電波近接センサのミキサ出力及び検波回路による同期検波後にフィルタ回路によりドップラー信号を抽出した結果をそれぞれ模式的に表したものであり、これらのドップラー信号間の位相差から距離を測定する。
【0041】
また、反射物体からの反射電波の受信信号の周波数をF、時間tに対する可変相器24による位相変化量を2πf・tとすると、可変相器の出力信号A(t)は
A(t)=sin(2πFt+2πf・t)
=sin2π(F+f)t …(19)
となり、Fに対しθの周波数変化を付加できる。
【0042】
このように可変相器24により、受信信号について時間tに対し連続で位相を変化させ、このときの位相変化量を2πf・tとすると、目標で反射されたされた後、受信された(3),(4)式の受信信号Vrl(t),Vr2(t)は、擬似ドップラー信号の周波数fだけ偏移した次の式の信号Vrsl(t),Vrs2(t)に変換される。
rs1(t)=sin{2π(fd1+f)t-4πf1・R/C+φ1}
…(20)
rs2(t)=sin{2π(fd2+f)t-4πf2・R/C+φ2}
…(21)
よって、これらの信号と周波数fl,f2の送信信号をミキサで混合して検波すると、擬似ドップラー信号により次式の中間周波数帯の信号VISl(t),VIS2(t)が得られる。
ISl(t)=sin(2πf・t-4πf1・R/C) …(22)
IS2(t)=sin(2πf・t-4πf2・R/C) …(23)
【0043】
反射物体が電波近接センサとの間で相対速度が存在せず反射信号にドップラー効果による周波数変化がない場合等においては、上述の可変相器による擬似ドップラー信号を用いることで2周波CW方式では不可能な物体の検出及び距離の測定が可能となる。
【0044】
上述の第1の実施の形態における原理の説明では、3つの異なる発振周波数を用いる場合を例としているが、4つ以上の異なる発振周波数を用いる場合は、得られる周波数差が多数となり、測定できる最大距離の延長が更に可能となる。
【0045】
図4は電波近接センサの第2の実施の形態を示す。この第2の実施の形態では、発振周波数を切り替える代わりに、3つの異なる周波数で発振する発振器32-1,32-2,32-3を用い、これに対応させて送信用アンテナ1、受信用アンテナ4、可変相器24、ミキサ5及びカプラ等の結合手段6を設けている。そして、各発振器32-1,32-2,32-3に対応したミキサ5の出力に含まれるドップラー信号を、フィルタ回路8-1,8-2,8-3でそれぞれ抽出する。これ以降の処理は前述の第1の実施の形態と同様である。また、動作原理も発振周波数の切り替えを行わない点を除けば第1の実施の形態と同じであり、同一又は相当部分に同一符号を付して説明を省略する。
【0046】
なお、各実施の形態において発振制御回路、検波回路、フィルタ回路、位相検出回路及び演算回路は、アナログ回路又はデジタル回路で構成することができることはいうまでも無く、信号処理プロセッサなどを用いることも可能である。
【0047】
また、送信用アンテナと受信用アンテナは、サーキュレータ等を用いて送信波と受信波の分離を行うことで共用化することも可能である。
【0048】
また、反射物体と電波近接センサの間に相対速度が必ず存在する場合においては、可変相器を省略することも可能である。
【0049】
以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0050】
【発明の効果】
以上説明したように、本発明に係る電波近接センサによれば、距離の測定精度の向上及び測定できる最大距離の延長を両立することができるとともに、電波近接センサとの間で相対速度を有しない反射物体の検出及び距離の測定が可能となる効果がある。
【図面の簡単な説明】
【図1】本発明に係る電波近接センサの第1の実施の形態を示す構成図である。
【図2】(A)は2周波CW方式、(B)は本発明の第1の実施の形態の場合の測定距離と位相差との関係図である。
【図3】(A)は2周波CW方式、(B)は本発明の第1の実施の形態の場合におけるミキサ出力及びドップラー信号の模式図である。
【図4】本発明の第2の実施の形態を示す構成図である。
【図5】2周波CW方式の電波近接センサの構成図である。
【図6】FM-CW方式の電波近接センサの構成図である。
【符号の説明】
1 送信用アンテナ
2,22,32-1,32-2,32-3 発振器
3,23 発振制御回路
4 受信用アンテナ
5 ミキサ
6 結合手段
7,11 検波回路
8-1,8-2,8-3,12 フィルタ回路
9,9-1,9-2,9-3 位相検出回路
10 周波数変調回路
24 可変相器
25 演算回路
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5