TOP > 国内特許検索 > 微小熱量測定装置および微小熱量測定方法 > 明細書

明細書 :微小熱量測定装置および微小熱量測定方法

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第4851831号 (P4851831)
公開番号 特開2007-278888 (P2007-278888A)
登録日 平成23年10月28日(2011.10.28)
発行日 平成24年1月11日(2012.1.11)
公開日 平成19年10月25日(2007.10.25)
発明の名称または考案の名称 微小熱量測定装置および微小熱量測定方法
国際特許分類 G01N  25/20        (2006.01)
C12M   1/34        (2006.01)
C12Q   1/02        (2006.01)
FI G01N 25/20 J
C12M 1/34 A
C12Q 1/02
請求項の数または発明の数 6
全頁数 17
出願番号 特願2006-106482 (P2006-106482)
出願日 平成18年4月7日(2006.4.7)
審査請求日 平成21年4月3日(2009.4.3)
特許権者または実用新案権者 【識別番号】801000027
【氏名又は名称】学校法人明治大学
発明者または考案者 【氏名】中別府 修
個別代理人の代理人 【識別番号】100064414、【弁理士】、【氏名又は名称】磯野 道造
審査官 【審査官】▲高▼見 重雄
参考文献・文献 特表2001-513882(JP,A)
特開2005-315677(JP,A)
特開平03-076570(JP,A)
特開2004-037225(JP,A)
特開2005-233686(JP,A)
特開2003-302359(JP,A)
特開平08-122160(JP,A)
調査した分野 G01N 25/00-25/72
C12M 1/34
C12Q 1/02
特許請求の範囲 【請求項1】
基板と、前記基板に固定された温度測定部とを備える微小熱量測定装置であって、
前記基板の開口部に架けられ、前記温度測定部に接するブリッジ流路と、
前記ブリッジ流路で被測定物を含んだ流体を一定周期で往復させるポンプと、
前記温度測定部から出力される発熱量に応じた温度計測信号から前記一定周期と同じ周期の信号成分を抽出するロックインアンプと、
前記温度計測信号にローパスフィルタをかけるとともに前記温度計測信号を増幅する低雑音増幅器とを有することを特徴とする微小熱量測定装置。
【請求項2】
前記ブリッジ流路は、管の形状であることを特徴とする請求項1に記載の微小熱量測定装置。
【請求項3】
前記ブリッジ流路の両端がそれぞれ接続し、二股に分岐している分岐路をさらに有することを特徴とする請求項1又は請求項2に記載の微小熱量測定装置。
【請求項4】
前記基板、前記温度測定部とブリッジ流路を収納し、低熱伝導率ガスを封入可能なチャンバをさらに有することを特徴とする請求項1乃至請求項3のいずれか1項に記載の微小熱量測定装置。
【請求項5】
前記温度測定部は、前記ブリッジ流路の中央の近傍に測温接点が設けられ、前記基板上に基準接点が設けられている熱電対を有することを特徴とする請求項1乃至請求項4のいずれか1項に記載の微小熱量測定装置。
【請求項6】
請求項1~請求項5のいずれか1項に記載の微量熱量測定装置を用いて熱量測定を行う微小熱量測定方法。
発明の詳細な説明 【技術分野】
【0001】
本発明は、微生物や細胞の代謝熱等の微小熱量を測定する微小熱量測定装置および微小熱量測定方法に関する。
【背景技術】
【0002】
従来、微生物や細胞の代謝熱のような微小熱量を測定する微小熱量測定では、多数の微生物や生体細胞による平均的総和的な発熱を長時間測定している(例えば、非特許文献1乃至6参照。)。例えば、大腸菌の増殖活性を測定する場合、10個以上の細胞数に対する発熱の20時間におよぶ測定が必要になる。このような微生物や細胞の活動にともなう代謝熱を測定する方法は、微生物や細胞にダメージを与えない非破壊測定法であり、微生物や細胞の活動状況の判定、増殖速度の計測、薬剤の抗微生物効果、殺菌効果の評価、食品等の腐敗のモニター、環境汚染物質の生態学的評価などに利用できる。

【非特許文献1】古賀邦正,“微生物のコロニー増殖と熱測定”,Netsu Sokutei 31(3),(2004) P117-124
【非特許文献2】高橋克忠,“8.6細胞・微生物の熱測定”,第5版 実験化学講座6 温度・熱,圧力,(2005) P321-326
【非特許文献3】J. Higuera-Guisset, J. Rodriguez-Viejo, M. Chacon, F. J. Munoz, N. Vigues, J. Mas, “Calorimetry of microbial growth using a thermopile based microreactor”, thermochimica acta, 427, (2005)P187-191
【非特許文献4】Yuyan Zhang, Srinivas Tadigadapa, Calorimetric biosensors with integrated microfluidicchannels, Biosensors & Bioelectronics, 19, (2004) P1733-1743 (Pennsylvania State Univ. USA)
【非特許文献5】V. Baier, R Fodisch, A. Ihring, E. Kessler, J. Lerchner, G. Wolf, J.M. Kohler, M. Nietzsch, M. Krugel, Highly sensitive thermopile heat power sensor for micro-fluid calorimetryof biochemical processes, Sensor and Actuators A, 123-124 (2005) P354-359
【非特許文献6】J. Lerchner, A. Wolf, G. Wolf, V. Baier, E. Kessler, M. Nietzsch, M. Krugel, “A new micro-fluid chip calorimeter for biochemical applications”, thermochimica acta, xxx,(2005) xxx-xxx (in press)
【発明の開示】
【発明が解決しようとする課題】
【0003】
従来の代謝熱の測定では、測定に必要な細胞数が多く、また、測定に長い時間がかかり、多数の細胞の平均的な代謝挙動を測っていた。これは、微生物や細胞の1細胞当りの代謝熱が極微小であり、代謝熱を高感度に測定できないことによると考えられた。すなわち、代謝熱の熱量を測定する際に、ノイズが大きく熱量計測の分解能が低いので、微小熱量が測定できず、大きな熱量を測定しなければならないので多くの細胞を必要としていた。また、大きなノイズの影響を低減するために、熱量計測信号の時間平均を取る必要があり、計測に長い時間を必要としていた。さらに、多くの細胞の代謝熱の総和は、細胞の増殖、成長、定常活動等の異なる過程の発熱を全て含んでおり、長時間の計測からは平均的、統計的な代謝量や増殖活性しか得られず、細胞の個別、詳細な活動を調べるには至っていない。
【0004】
そこで、本発明では、前記した問題を解決し、微小熱量を短時間で測定可能な、微小熱量測定装置と微小熱量測定方法とを提供することを目的とする。
【課題を解決するための手段】
【0005】
前記課題を解決するため、本発明では、基板と、前記基板に固定された温度測定部とを備える微小熱量測定装置であって、前記基板の開口部に架けられ、前記温度測定部に接するブリッジ流路と、前記ブリッジ流路で被測定物を含んだ流体を一定周期で往復させるポンプと、前記温度測定部から出力される発熱量に応じた温度計測信号から前記一定周期と同じ周期の信号成分を抽出するロックインアンプと、前記温度計測信号にローパスフィルタをかけるとともに前記温度計測信号を増幅する低雑音増幅器とを有することを特徴とする。ブリッジ流路には、測定対象の微生物や細胞を含む培養液を流すことができ、細胞等をブリッジ流路内に配置することができる。ブリッジ流路は、基板の開口部に架けられているので、ブリッジ流路内での細胞等の発熱により発生した熱は周囲へ放散しにくく、発熱量は微小でもブリッジ流路の温度を大きく上昇させる。ブリッジ流路は温度測定部に接しているので、上昇したブリッジ流路の温度を測定することができ、細胞等の発熱量に応じた温度計測信号を測定することができる。ブリッジ流路の温度上昇を大きくできるので、相対的にノイズが小さくなり熱量の分解能が高くなり、微小熱量が測定でき、細胞の数が少なくても代謝熱の測定をすることができる。また、相対的に小さくなったノイズをキャンセルするためには、温度計測信号の短い時間の平均操作で充分であるので、短時間で測定を完了することができる。
微小熱量測定装置が、前記ブリッジ流路で被測定物を含んだ流体を一定周期で往復させるポンプと、前記温度測定部から出力される温度計測信号から前記一定周期と同じ周期の信号成分を抽出するロックインアンプとをさらに有することにより、被測定物である生体細胞等を含んだ培養液のような流体は、ポンプにより、吐出されたり吸引されたりすると、ブリッジ流路を順方向と逆方向とに流すことができる。順方向と逆方向との流れにより流体を一定周期で往復運動するように流すことができる。流体が往復運動することにより、生体細胞等もその一定周期と同じ周期でブリッジ流路内を順方向と逆方向に往復運動する。発熱している生体細胞等が温度測定部に対してその一定周期と同じ周期で繰り返し移動することになるので、温度測定部に測定された測温値はその一定周期と同じ周期で変動する。そこで、ロックインアンプにより、この測温値として温度測定部から出力される温度計測信号から、前記一定周期と同じ周期の信号成分を抽出すれば、生体細胞等の発熱に起因する信号を取得することができ、逆に、ノイズはこれらの周期で発生していない限り抽出されないので、ノイズを減らすことができる。ノイズを減らせるので、熱量の計測分解能が高くでき、また、熱量計測の時間分解能も高くなり、少数細胞の詳細な代謝の様子を測定することができる。
微小熱量測定装置が、前記温度測定部から出力される温度計測信号から、低周波数成分のみを抽出するローパスフィルタをさらに有することにより、生体細胞等の代謝熱が発熱の際に高周波成分を有することはないので、高周波成分をカットしても測定には支障はなく、高周波のノイズを除去することができる。このことによっても、ノイズを減らせるので、熱量の分解能を高くでき、時間分解能も高くすることができる。
【0006】
なお、ブリッジ流路は、管の形状であることが好ましい。生体細胞等を含んだ培養液を管の中に配置することができるので、ブリッジ流路上から培養液や生成物質等が蒸発せず、蒸発に伴う温度変化が避けられるため、微小な代謝熱の計測が可能となり、また、生体細胞の置かれる環境が変化することがない。
【0007】
微小熱量測定装置が、ブリッジ流路の両端がそれぞれ接続し二股に分岐している分岐路を、さらに有することが好ましい。ブリッジ流路の一端に、培養液をブリッジ流路に導入する導入路と、ブリッジ流路から培養液や代謝物質を廃棄する廃棄路とに分岐している分岐路を設けることができる。さらに、ブリッジ流路の他端にも、培養液をブリッジ流路に導入する導入路と、ブリッジ流路から培養液を廃棄する廃棄路とに分岐している分岐路を設けることができる。そして、ブリッジ流路の一端側の導入路からブリッジ流路を経由して他端側の廃棄路への順方向に培養液を流すとともに細胞等も順方向に移動させることができる。同様に、ブリッジ流路の他端側の導入路からブリッジ流路を経由して一端側の廃棄路への逆方向に培養液を流すとともに生体細胞等も逆方向に移動させることができる。ここで、培養液を順方向と逆方向とに交互に流して、細胞等がブリッジ流路内に留まって順方向と逆方向に移動する往復運動をすると、細胞に対して順方向と逆方向にある培養液を新鮮な培養液に交換することができる。そして、細胞等を生きた状態で安定して維持することができる。また、ブリッジ流路一端側の導入路から廃棄路へ試薬等を含む培養液を流すことで、ブリッジ流路内の細胞は移動させず、拡散により試薬等を細胞へ輸送することができる。そして、試薬に対する細胞の代謝活動の応答を調べることができる。
【0008】
微小熱量測定装置が、前記基板、前記温度測定部とブリッジ流路を収納し低熱伝導率ガスを封入可能なチャンバを、さらに有することが好ましい。前記温度測定部とブリッジ流路の周辺の雰囲気を低熱伝導率ガスにすることができるので、生体細胞等により発熱した熱が、前記温度測定部とブリッジ流路から周辺の雰囲気のガスの対流により外部に逃げるのを抑制することができる。
【0011】
前記温度測定部は、前記ブリッジ流路の中央の近傍に測温接点が設けられ、前記基板上に基準接点が設けられている熱電対を有することが好ましい。ブリッジ流路の中央は、ブリッジ流路の中で基板に架かる両端より最も離れているので、ブリッジ流路の中でも最も熱伝導しにくく、温度が上昇しやすいので、その中央に細胞等と測温接点とをおいて測定することにより、最も高い温度差を測定することができる。同じ熱量の発熱であっても中央で測定することで高い温度差が得られるので、熱量の測定の分解能を高めることができる。一方、基板上は熱伝導しやすく温度が安定して一定になるので、基準接点をおいて測定することによりノイズを除去することができる。
【0012】
そして、以上で説明してきた微量熱量測定装置を用いて熱量測定を行う微小熱量測定方法によれば微小熱量を短時間で測定できる。
【発明の効果】
【0013】
このように本発明によれば、微小熱量を短時間で測定可能な、微小熱量測定装置と微小熱量測定方法とを提供することができる。そして、細胞研究、薬効検査、毒性試験、アレルギー試験,食品の腐敗試験等を迅速かつ高感度に実施可能になることが期待される。
【発明を実施するための最良の形態】
【0014】
次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
本発明の実施形態に係る微小熱量測定装置では、1個~100個の少数の生体細胞の代謝熱のような微小熱量を、10秒~1000秒の短時間で測定することが要求されると考えられた。種々の細胞は代謝によりおよそ平均的に0.1~60pW/cellの極微小な発熱を行うので、上記の要求を満たすためには、微小熱量の測定の分解能を10pWレベルに高めればよいことがわかった。
【0015】
10pWレベルの微小熱量を測定するには、生体細胞等の被測定物と熱が逃げる先となる環境との間の熱抵抗が非常に大きく被測定物と環境との間に発生する僅かな温度差に起因する微小な温度計測信号を高感度に検出するセンサと、この微小な温度計測信号をノイズの中から抽出する測定システムとが必要である。微小熱量測定装置1では、図1に示すように、センサ12と、測定システムとして、ポンプ7、8と、低雑音増幅器4と、ロックインアンプ3と、流動監視カメラ9と、制御部2とを有する。
【0016】
センサ12は、半導体微細加工技術を利用して作製され、後記する微小で熱抵抗が高いブリッジ流路と、熱電対を多数集積した高感度サーモパイル等の高感度な温度測定部とを集積している。
【0017】
センサ12は、真鍮製の台座27の上に配置されている。センサ12と台座27とは、アルミニウム製の内側チャンバ17の中に収められている。台座27は内側チャンバ17の底の上に配置されている。内側チャンバ17はペルチェ装置21の上に配置されている。内側チャンバ17とペルチェ装置21とは、アルミニウム製の中間チャンバ18の中に収められている。ペルチェ装置21は中間チャンバ18の底の上に配置されている。中間チャンバ18はアルミブロック22の上に配置されている。中間チャンバ18とアルミブロック22とは、ステンレス製の外側チャンバ19の中に収められている。アルミブロック22は外側チャンバ19の底の上に配置されている。外側チャンバ19はホットプレート23の上に配置されている。これらによりセンサ12の温度を一定に安定して維持することができる。なお、センサ12の下は中空30になっている。これは代謝熱が台座27を伝導して逃げるのを抑えるためである。また、内側チャンバ17には内側窓26が設けられ、中間チャンバ18には中間窓25が設けられ、外側チャンバ19には外側窓24が設けられており、センサ12にセットされた細胞等の往復運動を、流動監視カメラ9から窓24、25、26を介して監視することができる。
【0018】
内側チャンバ17には、低熱伝導率ガス11を導入するガス導入管14が接続されている。また、内側チャンバ17には、内部のガスを排気する排気管15が接続されている。ガス導入管14と排気管15には、内側チャンバ17に低熱伝導率ガス11を封入するためのバルブ13と16が設けられている。センサ12の周囲の雰囲気を低熱伝導率ガス11の雰囲気にすることができる。センサ12と、外界の環境との間の熱抵抗を高めることができるので、センサ12における温度上昇量を大きくすることができる。
【0019】
測定システムについて、低雑音増幅器4はローパスフィルタ5と電圧計Vとを有している。センサ12によって検出された代謝熱に起因する微小な温度計測信号は、細胞等の代謝熱が発熱する際に高周波成分を有することはないので、高周波成分をカットしても測定には支障はなく、ローパスフィルタ5によって、高周波のノイズを除去することができる。そして、電圧計Vは、ノイズを除去した温度計測信号に対して電圧を測定することができる。
【0020】
ポンプ7は、導入パイプIN2によりセンサ12に接続されている。ポンプ7は、導入パイプIN2を介してセンサ12に細胞等を含んだ培養液を供給する。また、ポンプ7は、いったん供給した培養液を導入パイプIN2を介して吸引することにより回収することができる。
【0021】
同様に、ポンプ8は、導入パイプIN1によりセンサ12に接続されている。ポンプ8は、導入パイプIN1を介してセンサ12に生体細胞等を含んだ培養液を供給する。また、ポンプ8は、いったん供給した培養液を導入パイプIN1を介して吸引することにより回収することができる。センサ12は、廃棄パイプOUT1とOUT2とに接続している。ポンプ7と8から新鮮な培養液がセンサ12に供給されると、古くなった培養液は、新鮮な培養液に押されて廃棄パイプOUT1とOUT2を通り外部に放出される。ポンプ7と8は、センサ12内で生体細胞等を含んだ培養液を一定周期で往復させることにより、センサ12によって検出される微小な温度計測信号を特定周波数の一定周期で振動する交流信号とすることができる。ロックインアンプ3は、特定周波数の信号成分のみを抽出する。特定周波数で発生していないノイズは抽出されないので、ノイズを減らすことができる。代謝熱に対応した電圧信号を計測することができる。
【0022】
ヒータ電源Eは、センサ12内に設けられたヒータを発熱させるための電源であり、センサ12によって検出される微小な温度計測信号の強度と、発熱量との相関関係の較正をするために用いる。
【0023】
図2に示すように、センサ12は、シリコン(Si)の基板31と、基板31に固定された温度測定部35、36と、基板31の開口部31aに架けられ温度測定部35、36に接するブリッジ流路32とを有する。ブリッジ流路32は管の形状をしており、ブリッジ流路32の中には細胞49を含む培養液65が入れられて、培養液65で満たされる。ブリッジ流路32は、開口部31aに架けられているので、基板31などの周囲の環境とブリッジ流路32との間の熱抵抗を高めることができ、代謝熱等の僅かな発熱でもブリッジ流路32の温度上昇量を大きくすることができる。
【0024】
センサ12は、ブリッジ流路32の両端がそれぞれ接続し、二股に分岐している分岐路34、33をさらに有する。ブリッジ流路32の一端に分岐路33が接続している。図2と図3に示すように、分岐路33は、導入パイプIN2に連結し培養液65をブリッジ流路32に導入する導入路と、廃棄パイプOUT2に連結しブリッジ流路32から培養液65を廃棄する廃棄路とに分岐している。図2のブリッジ流路32の他端に、分岐路34が接続している。分岐路34は、導入パイプIN1に連結し培養液65をブリッジ流路32に導入する導入路と、廃棄パイプOUT1に連結しブリッジ流路32から培養液65を廃棄する廃棄路とに分岐している。分岐路33、34も管の形状をしており、分岐路33、34とブリッジ流路32との中には細胞49を含む培養液65が入れられて、培養液65で満たされる。
【0025】
基板31の上には酸化シリコン(SiO)の下層膜51が形成され、下層膜51の上には酸化シリコンの上層膜52が形成されている。この積層された下層膜51と上層膜52とにより、管の形状のブリッジ流路32と、分岐路33、34とが形成されている。
【0026】
温度測定部35、36はブリッジ流路32の両側に設けられている。温度測定部35、36も、ブリッジ流路32と同様に、基板31の開口部31aに架けられている。温度測定部35、36は、直列接続した複数の熱電対で構成されている。ブリッジ流路32の中央の近傍に複数の熱電対それぞれの測温接点が集中して設けられている。また、基板31上に複数の熱電対それぞれの基準接点が設けられている。温度測定部35は、配線57、58に電気的に接続している。温測用パッド47、48は、配線57、58を介して温度測定部35に電気的に接続している。温度測定部36は、配線55、56に電気的に接続している。温測用パッド45、46は、配線55、56を介して温度測定部36に電気的に接続している。温測用パッド46と温測用パッド47とは、配線59により電気的に接続しているので、温度測定部35と温度測定部36とは直列に接続される。温測用パッド45と温測用パッド48とは、電圧計Vに接続され、温度測定部35で検出された温度計測信号の強度と、温度測定部36で検出された温度計測信号の強度とが足された信号強度が電圧として測定される。
【0027】
較正用ヒータ41は、ブリッジ流路32内で、ブリッジ流路32の中央に配置される。較正用ヒータ41は、配線53、54に電気的に接続している。ヒータ用パッド42、43は、配線54、53を介して較正用ヒータ41に電気的に接続している。ヒータ用パッド43、42は、ヒータ電源Eに接続され、ヒータ電源Eに印加された電力に応じた熱量だけ較正用ヒータ41は発熱する。
【0028】
図3に示すように、配線55乃至58は、下層膜51と上層膜52とで挟まれるように配置されている。同様に、温度測定部35、36の熱電対と配線53、54も、下層膜51と上層膜52とで挟まれるように配置されている。
【0029】
図4と図5に示すように、温度測定部35と36とはそれぞれ、第1材料線61と、第1材料線61と第1測温接点37で接続する第2材料線62とを有する第1熱電対を有している。なお、図5は図4におけるV-V線断面図である。第1測温接点37は、ブリッジ流路32の中央の近傍に配置されている。第1材料線61の一端は基板31の上方に配置され基準接点39になる。第2材料線62の一端は基板31の上方に配置され基準接点38になる。また、温度測定部35と36とはそれぞれ、第1材料線61と同じ材料からなる第1材料線63と、第2材料線62と同じ材料からなり第1材料線63と第2測温接点37で接続する第2材料線64とを有する第2熱電対を有している。第2測温接点37は、ブリッジ流路37の中央の近傍に配置されている。第1材料線63の一端は基板31の上方に配置され基準接点38になる。第2材料線64の一端は基板31の上方に配置され基準接点39になる。温度測定部35では、複数、例えば図4では5本の第1熱電対と、複数の例えば5本の第2熱電対とを交互に直列に接続している。直列接続するためには、第1熱電対の基準接点38と第2の熱電対の基準接点38とを接続するか、あるいは、第1熱電対の基準接点39と第2の熱電対の基準接点39とを接続すればよい。第1材料線61、63としては、ニッケル(Ni)を用いることができ、第2材料線62、64としては、クロム(Cr)を用いることができる。また、第1材料線61、63としてシリコン(Si)を用い、第2材料線62、64として金(Au)を用いることにより、ニッケルとクロムに比べて計測感度で3~5倍の向上が期待される。以上説明してきたように、温度測定装置35、36はそれぞれ、高感度薄膜サーモパイルを構成している。この高感度薄膜サーモパイルを用いて、ブリッジ流路32の温度上昇を高い変換率で電圧信号(温度計測信号)へ変換することになる。
【0030】
次に、センサ12の製造方法を説明する。
まず、図6(a)と図7(a)に示すように、シリコンの基板31に、ブリッジ流路32と分岐路33と34になる溝をフォトリソグラフィ法とエッチング法により形成する。
【0031】
次に、膜厚5μmの酸化シリコン膜を、下層膜51として、溝の内部も含めシリコンの基板31上に等方的に成膜する。成膜方法としては化学気相成長(CVD)法やスパッタ法を用いることができる。
【0032】
図6(b)と図7(b)に示すように、ポリシリコン(poly-Si)膜を、犠牲層69として、ブリッジ流路32と分岐路33、34とに埋め込むように、下層膜51上に成膜する。成膜方法としてはCVD法を用いることができる。そして、ブリッジ流路32と分岐路33、34の内部以外に成膜した下層膜51上の犠牲層69をエッチバック法により除去する。このことにより、ブリッジ流路32と分岐路33、34の内部にのみ犠牲層69を残すことができる。較正用ヒータ41を犠牲層69上に、CVD法やスパッタ法と、フォトリソグラフィ法とエッチング法により形成する。また、第1材料線61、63と第2材料線62、64とを、下層膜51上に、CVD法やスパッタ法と、フォトリソグラフィ法とエッチング法により形成する。図2と図7(b)の配線53、54、55、56、57、58、59とヒータ用パッド42、43と温測用パッド45、46、47、48とを、スパッタ法とフォトリソグラフィ法とエッチング法により形成する。
【0033】
図6(c)と図7(c)に示すように、膜厚5μmの酸化シリコン膜を、上層膜52として、下層膜51と犠牲層69との上に等方的に成膜する。この成膜においては、較正用ヒータ41の側面と上面にも上層膜52は成膜されるので、較正用ヒータ41は上層膜52に固定される。同様に、図2の配線53、54の側面と上面にも上層膜52は成膜されるので、配線53、54は上層膜52に固定される。上層膜52の成膜方法としてはCVD法やスパッタ法を用いることができる。
【0034】
図2と図7(c)に示すように、分岐路33、34の導入路と廃棄路とのそれぞれの端部の上層膜52を、フォトリソグラフィ法とエッチング法により除去する。このことにより、分岐路33、34内の犠牲層69が露出する。
【0035】
図2と図6(d)と図7(d)に示すように、開口部31aにある基板31と、分岐路33、34とブリッジ流路32内の犠牲層69を除去する。この除去はドライ犠牲層エッチング法により行うことができる。ドライ犠牲層エッチング法によれば、下層膜51と上層膜52に対して選択的に基板31と犠牲層69とをエッチングすることができる。開口部31aにある基板31を除去することにより、ブリッジ流路32と温度測定部35、36とにおける下層膜51の下の基板31も除去される。なお、分岐路33、34との中の犠牲層69は導入路と廃棄路とのそれぞれの端部からエッチングされ除去され、さらにはブリッジ流路32内の中の犠牲層69もエッチングされる。
【0036】
最後に、図2と図5に示すように、開口部31aの下層膜51と上層膜52とを除去する。このことにより、開口部31aは貫通し、ブリッジ流路32と温度測定部35、36とは開口部31aに架けられることになる。この除去の際に、ヒータ用パッド42、43と温測用パッド45、48の上の上層膜52も除去し、ヒータ用パッド42、43と温測用パッド45、48とを露出させる。以上でセンサ12が完成する。
【0037】
次に、微小熱量測定装置1を用いて熱量測定を行う微小熱量測定方法について説明する。種々の細胞は代謝によりおよそ0.1~60pW/cellの極微小な発熱を行う。この代謝熱を細胞49を含む培養液65の僅かな温度上昇として測定するため、以下の(1)~(3)を組み合わせた総合的な微小熱量測定方法を行う。
【0038】
(1)微小なブリッジ流路32と低熱伝導率ガス11(図1参照)の雰囲気とを用い、発熱により温度が上昇するブリッジ流路32と環境との間の熱抵抗を高め、発熱により温度が上昇するブリッジ流路32の温度上昇量を大きくする。
【0039】
(2)温度測定部35、36に高感度薄膜サーモパイルを用いて、発熱により温度が上昇するブリッジ流路32の温度上昇を高い変換率で温度計測信号(電圧信号)へ変換する。
【0040】
(3)低雑音増幅器4が有するローパスフィルタ5と電圧計Vを用いてノイズの低減と温度計測信号の測定を行う。S/N比が低くノイズが大きい場合、低雑音増幅器4が有するローパスフィルタ5、ロックインアンプ3とポンプ7、8を用いて、細胞49を周期的にブリッジ流路32へ出し入れし同周期の信号成分のみを抽出するロックイン法でさらにノイズを低減し、発熱に対応した温度計測信号を計測する。
【0041】
(1)~(3)のそれぞれについてさらに詳細に説明する。
まず、(1)の実現には、熱抵抗を大きくし、細胞の代謝熱を測定するための構造として、ブリッジ流路32を用い、ブリッジ流路32の周囲の雰囲気を低熱伝導性ガス11、例えばキセノン(Xe)で置換する。
【0042】
ブリッジ流路32は、図4と図5に示すように、微小な管が両端で基板31に支えられ空中に橋渡しされた構造である。ブリッジ流路32は、下層膜51と上層膜52とからなり、長さ2mm、流路断面は縦横30μmの正方形、流路壁の厚さは5μm、材質は酸化シリコン(SiO)である。ブリッジ流路32の両側には、下層膜51による厚さ5μm、幅50μm、長さ2mmの酸化シリコン板があり、この板の上にサーモパイルが配置されている。また、ブリッジ流路32の中央に、微小な薄膜の電気抵抗を較正用ヒータ41として形成してある。代謝熱の測定に先立って、較正用ヒータ41の発熱量とサーモパイル35、36の出力電圧の関係を予め調べておく。この関係により、代謝熱の測定において、サーモパイル35、36の出力電圧から代謝熱の発熱量を求めることができる。
【0043】
ブリッジ流路32に連結した分岐路33、34と導入パイプIN1、IN2を通して内部に細胞49を含む培養液65や試薬等をいれる。図1の流動監視カメラ9により、ブリッジ流路32内の細胞49を監視しながらブリッジ流路32の中央に細胞49を配置する。
【0044】
ブリッジ流路32の中央に配置された細胞49の発熱が周囲環境へ伝わる経路としては、ブリッジ流路32の管壁と、ブリッジ流路32内の培養液65と、併設された温度測定部35、36のサーモパイルの第1材料線61、63と第2材料線62、64との金属薄膜とを通り管軸方向に伝わる経路があり、また、ブリッジ流路32の周囲の気体を介して主に管軸の法線方向に伝わる経路がある。管軸方向に伝わる経路の熱抵抗を大きくするためには、ブリッジ流路32を長く、ブリッジ流路32の径を小さく、ブリッジ流路32の管壁を薄くする必要がある。ブリッジ流路32の周囲の気体を通しての熱抵抗を大きくするには、低熱伝導性ガス11、例えば、キセノンで周囲の雰囲気を置換することが有効である。
【0045】
例えば、現在の半導体装置の製造方法に適したシリコンを基板31に選定し、シリコンと共に半導体装置によく用いられ、熱伝導率の小さな酸化シリコン(SiO)を用いてブリッジ流路32を作る。ブリッジ流路32は、内径30μm、管壁の厚さ5μm、長さ2mmの管とする。ブリッジ流路32の周囲をキセノンガスで置換することで、後述する温度測定部35、36のサーモパイルにおける熱抵抗の影響を含め、ブリッジ流路32の中央から周囲環境までの熱抵抗を50000K/W以上にできる。10pWの発熱により、ブリッジ流路32の中央の温度上昇は約0.5μKとなる。
【0046】
(2)のブリッジ流路32の中央の温度上昇を温度計測信号に変換する温度測定部35、36には、高い熱起電力が得られることと、熱抵抗が高いことと、ノイズを発生させる電気抵抗が小さいこととが求められる。
【0047】
例えば、第1材料線61、63がニッケルであり第2材料線62、64がクロムの組み合わせの熱電対を用いるとする。第1材料線61、63の形状と、第2材料線62、64の形状とを共に、膜厚0.5μm、線幅2.5μm、長さ1mmとする。温度測定部35、36のそれぞれにおいて、この熱電対を10対直列に接続したサーモパイルは、ブリッジ流路32の右側と左側とに沿って接するように設けられた厚さ5μm、幅50μm、長さ2mmの酸化シリコン膜の下層膜51上に形成されている。これらのことから、温度測定部35と36の2つを合わせた熱抵抗は50000K/Wになり、熱起電力は800μV/Kになり、電気抵抗は3520Ωになる。この条件下で、細胞が10pWの発熱をすると、温度測定部35と36とを合わせた起電力は約400pVになる。
【0048】
(3)の信号計測では、微小な温度計測信号を温度計測部35、36や測定系で発生するノイズと分離するため、測定するバンド幅を狭めノイズを低減する測定方法が必要である。
信号計測では、温度測定部35、36の電気抵抗3520Ωにより発生するサーマルノイズ((4kTRB)0.5、k:ボルツマン定数、T:温度、R:抵抗、B:バンド幅)と、ロックインアンプ3や低雑音増幅器4等の電気計測系の入力換算ノイズを合わせたものが、ノイズとなる。ノイズは計測バンド幅B[Hz]の平方根に比例するため、バンド幅を狭めるとノイズが低減されS/N比が改善される。温度測定部35、36の電気抵抗は3520Ωであるので、サーマルノイズに起因する熱雑音電圧密度は7.6nVrms(Hz)1/2となり、低雑音増幅器4の入力換算ノイズに起因する入力換算雑音電圧密度は3nVrms(Hz)1/2となる。
【0049】
0.1Hz以上のバンド幅で温度計測信号がノイズと分離できる場合、温度計測信号を低雑音増幅器4の低雑音直流増幅器により増幅し、ローパスフィルタ5で計測バンド幅を狭めてノイズを低減することで、一般的な電圧計Vで温度計測信号を測定させることができる。
【0050】
温度計測信号とノイズの分離に0.1Hz以下の狭いバンド幅が必要な場合、ブリッジ流路32中の細胞49を含む培養液65を、微小熱量測定装置1の熱応答周波数以下の周波数で往復駆動し、測温接点37の温度を周期的に変動させ、温度計測信号から同周波数の信号のみをロックインアンプ3で抽出するロックイン法が有効である。例えば0.1Hz程度で往復させ、ロックインアンプ3の時定数を250秒とすることで、バンド幅を0.001Hzとした低ノイズ計測ができる。電気抵抗が3250Ωの温度測定部35と36が発生する熱雑音電圧密度7.6nVrms(Hz)1/2のサーマルノイズと、入力換算雑音電圧密度3nV(Hz)1/2の性能を持つロックインアンプ3と低雑音増幅器4を用いた場合、バンド幅0.001Hzでノイズは約400pVになる。ノイズが約400pVであるので、(2)より、温度測定部35、36でノイズと等しい約400pVの起電力が得られる細胞49の発熱10pWが検出限界になる。
【0051】
このように、(1)~(3)の実現により、10pW以上の細胞49の代謝熱を測定可能である。代謝熱が60pW/cell程度のガン細胞であれば1個の代謝熱が直接測定できることになる。代謝熱が0.1~10pW/cell程度の細胞49では1000~10個程度の細胞群の代謝が直接測定できる。そして、逆に、バンド幅の逆数の時間が、測定可能な時間分解能になる。例えば、バンド幅が0.001Hzであれば、時間分解能は1000秒になる。バンド幅が0.1Hzであれば、時間分解能は10秒になる。
【0052】
次に、測定において、細胞49を往復駆動させる方法を含め、細胞49と培養液65を移動させるさまざまな方法について説明する。
【0053】
まず、図8(a)に示すように、導入パイプIN1から培養液65、試薬等と共に細胞49をブリッジ流路32の中央まで送る。細胞49の位置は流動監視カメラ9で取得することができる。細胞49に先行する培養液65は廃棄パイプOUT2へ送られる。
【0054】
ブリッジ流路32の中央にある細胞49へ新鮮な培養液65や試薬を供給するには、まず、廃棄パイプOUT2と導入パイプIN2とを閉じるなどして培養液65が流れないようにする。そして、導入パイプIN1から廃棄パイプOUT1へ培養液65や試薬を流し、新鮮な培養液65が分岐路34に入ったとこで流れを止める。同様に、廃棄パイプOUT1と導入パイプIN1とを閉じるなどして培養液65が流れないようにする。そして、導入パイプIN2から廃棄パイプOUT2へ培養液65や試薬を流し、新鮮な培養液65が分岐路33に入ったとこで流れを止める。図8(b)に示すように、廃棄パイプOUT1と導入パイプIN2とを閉じるなどして培養液65が流れないようにする。そして、導入パイプIN1から培養液65や試薬を入れ、細胞49を分岐路33の分岐手前の基準接点39の近傍に移動させる。細胞49の右側にあった古い培養液65は廃棄パイプOUT2へ送り出される。図8(c)に示すように、廃棄パイプOUT2と導入パイプIN1とを閉じるなどして培養液65が流れないようにする。そして、導入パイプIN2から培養液65や試薬を入れ、細胞49を分岐路34の分岐手前の基準接点38の近傍に移動させる。細胞49の左側にあった古い培養液65は廃棄パイプOUT1へ送り出される。再び、 図8(a)に示すように、廃棄パイプOUT1と導入パイプIN2を閉じて導入パイプIN1から培養液65や試薬を入れ、細胞49をブリッジ流路32の中央へ移動させる。以上により新鮮な培養液65や所望の試薬に囲まれた細胞49がブリッジ流路32の中央に位置することになる。
【0055】
また、定常的な細胞49の代謝熱を測定するために、細胞49を移動させずに測定するには、新鮮な培養液65や所望の試薬を、定常的に、導入パイプIN1から廃棄パイプOUT1へ流し、同時に、導入パイプIN2から廃棄パイプOUT2へも定常的に流す。この操作により、ブリッジ流路32両端は新鮮な培養液65に維持され、新鮮な培養液65中の化学種がブリッジ流路32の両端から細胞49まで拡散により輸送される。細胞49を移動させることなく、与えた環境に対する定常的な細胞49の代謝熱測定を行うことができる。
【0056】
細胞(群)49の発熱が十分大きい場合は、細胞49をブリッジ流路32の中央に配置した状態で、温度計測信号を低雑音増幅器4で増幅し、電圧計Vで計測する。
【0057】
発熱が小さく温度計測信号が小さい場合、ブリッジ流路32内の細胞49を培養液65と共にポンプ8により、図8(a)のブリッジ流路32の中央から図8(b)の右の周辺部へ、また、図8(a)の中央に戻り、図8(c)の左の周辺部へ、そして、図8(a)の中央に戻るという往復運動を一定の周波数で行う。具体的には、廃棄パイプOUT1と導入パイプIN2を閉じ、導入パイプIN1と廃棄パイプOUT2とは開けて移動可能にして、培養液65と細胞49が周期的に移動するようにポンプ8で培養液65の吐出と吸入を交互に繰り返すポンプ動作を一定の周期で行う。このとき、温度計測信号には発熱した細胞49の移動に伴う周期的な温度計測信号が含まれ、ロックインアンプ3により細胞49の移動と同じ周波数成分のみを抽出して計測する。
【0058】
微小熱量測定装置1によれば、単一細胞から1000個程度の細胞群49の代謝熱を10~1000秒程度の時間分解能で計測可能である。これにより、微生物や生体細胞の詳細な活動特性を細胞49にダメージを与えずに観察することが可能となる。また、細胞49の活動が高い時間分解能で計測できるため、細胞49の形態変化と代謝の関係を調べる等、従来行われていない細胞研究用の装置となる。ガン細胞への薬剤の効果を調べる検査、アレルギー検査などが単一または少数細胞で行えるため、細胞培養にかかる時間を短縮できる。活性の高い細胞49の選別、薬剤耐性による細胞49の選別など、細胞49の個体差を正常活動範囲内で見分けることが出来る新しい計測装置が出来る。
【実施例1】
【0059】
実施例1では、微小熱量測定装置1と等価の装置を用いて、微小熱量測定装置1の効果(実現性)を確認した。
【0060】
図9(a)に示すように、微小熱量測定装置1と等価の装置は、内側チャンバ17と、内側チャンバ17に入れられた較正用ヒータ41と、内側チャンバ17に入れられ測温接点37が接着剤66で較正用ヒータ41に接着された温度測定部(熱電対)35と、較正用ヒータ41に発熱用に電力を供給しその電力が一定周期で発振するヒータ電源Eを有し温度計測信号から一定周期に同期する成分信号を抽出するロックインアンプ3と、温度測定部35からの温度計測信号にローパスフィルタをかけまた温度計測信号を増幅する低雑音増幅器4とを有している。また、温度測定部35の基準接点38、39は内側チャンバ17の近傍に設けられている。
【0061】
図9(b)に示すように、ヒータ電源Eから較正用ヒータ41に印加したヒータ電圧に対して、温度測定部35から出力された温度計測信号の電圧を測定した。なお、菱形印は、低雑音増幅器4の使用を省略し、ロックインアンプ3を使用し較正用ヒータ41を2.1Hzの一定周期で加熱した場合である。四角印は、菱形印と同じ条件であり、再現性を確認するためのものである。三角印は、低雑音増幅器4の使用を省略し、ロックインアンプ3を使用し較正用ヒータ41を6.1Hzの一定周期で加熱した場合である。丸印は、低雑音増幅器4とロックインアンプ3とを使用し較正用ヒータ41を6.1Hzの一定周期で加熱した場合である。測定では、設定したヒータ電圧に対して複数回温度計測信号の電圧を測定した。ヒータ41の発熱量の低下に対応した測定値の低下が見られず、ノイズが温度計測信号より大きくなるときを測定限界と定めた。
【0062】
菱形印、四角印、三角印によれば、ロックインアンプ3を使うことにより、測定限界は17nVrmsまで低減できることがわかる。
【0063】
また、丸印によれば、低雑音増幅器4とロックインアンプ3とを使うことにより、測定限界は300pVまで低減できることがわかった。細胞49の代謝熱の10pWを測定するためには、400pVの温度計測信号が測定できればよいので、低雑音増幅器4とロックインアンプ3とを使うことにより、10pWの代謝熱が測定できることがわかる。
【実施例2】
【0064】
実施例2でも、微小熱量測定装置1と等価の装置を用いて、微小熱量測定装置1の効果を確認した。
【0065】
図10(a)に示すように、実施例2の微小熱量測定装置1と等価の装置は、図9(a)の実施例1の微小熱量測定装置1と等価の装置と比較して、低雑音増幅器4に接続するフーリエ変換解析器67をさらに有する点が異なっている。
【0066】
図10(b)に示すように、温度測定部35から出力された温度計測信号の電圧密度の周波数スペクトル(パワースペクトル)を測定した。なお、6本の点線の群は、低雑音増幅器4の使用を省略し、ロックインアンプ3を使用し較正用ヒータ41に1.0Hzの一定周波数の電圧を印加することにより較正用ヒータ41を2.0Hzの一定周期で加熱した場合である。較正用ヒータ41には、それぞれ、3.0V、1.5V、0.8V、0.4V、0.2V、0.1Vを印加した。実線は、低雑音増幅器4とロックインアンプ3とを使用し較正用ヒータ41に3.05Hzの一定周波数の電圧を印加することにより較正用ヒータ41を6.1Hzの一定周期で加熱した場合である。較正用ヒータ41には、0.5Vを印加した。
【0067】
実線を点線群と比較すると、ノイズのレベル、いわゆるベースラインが、実線の方が点線群より低くなっていることがわかる。具体的には、周波数1Hzにおいて、ノイズレベルが10分の1に低減できている。また、周波数0.1Hzにおいて、ノイズレベルを40分の1に低減できている。このように、ロックインアンプ3と合わせて低雑音増幅器4を用いることにより、ノイズレベルを低減できることがわかった。低雑音増幅器4とロックインアンプ3とを使うことにより、ノイズレベルを低減できるので、10pWのような微小熱量の測定に有効であると考えられる。
【図面の簡単な説明】
【0068】
【図1】実施形態に係る微小熱量測定装置の構成図である。
【図2】実施形態に係る微小熱量測定装置のセンサの平面図である。
【図3】図2のIII-III方向の断面図である。
【図4】センサのブリッジ流路とその周辺の平面図である。
【図5】図4のV-V方向の断面図である。
【図6】実施形態に係る微小熱量測定装置の製造途中の図4のV-V方向の断面図である。
【図7】実施形態に係る微小熱量測定装置の製造途中の図2のIII-III方向の断面図である。
【図8】ブリッジ流路内の細胞の移動方法を説明するための図である。
【図9】(a)は実施例1の微小熱量測定装置と等価の装置の構成図であり、(b)はローパスフィルタを含む低雑音増幅器の有無による抵抗に印加される交流のヒータ電圧に対する熱電対から出力される出力電圧(温度計測信号)の依存性を示すグラフである。
【図10】(a)は実施例2の微小熱量測定装置と等価の装置の構成図であり、(b)はローパスフィルタを含む低雑音増幅器の有無による抵抗に印加される交流電圧毎の熱電対から出力される電圧の周波数スペクトルである。
【符号の説明】
【0069】
1 微小熱量測定装置
2 制御部
3 ロックインアンプ
4 低雑音増幅器
5 ローパスフィルタ
7、8 ポンプ
9 流動監視カメラ
11 低熱伝導率ガス
12 センサ
17 内側チャンバ
18 中間チャンバ
19 外側チャンバ
27 台座
31 基板
31a 開口部
32 ブリッジ流路
33、34 分岐路
35、36 温度測定部
37 測温接点
38、39 基準接点
41 較正用ヒータ
42、43 ヒータ用パッド
45、46、47、48 温測用パッド
49 細胞
51 下層膜
52 上層膜
53、54、55、56、57、58、58 配線
61、63 第1材料線
62、64 第2材料線
65 培養液
66 接着剤
67 フーリエ変換解析器
69 犠牲層
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9