TOP > 国内特許検索 > 表面電荷量計測装置及び表面電荷量計測方法 > 明細書

明細書 :表面電荷量計測装置及び表面電荷量計測方法

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第4910132号 (P4910132)
公開番号 特開2008-014832 (P2008-014832A)
登録日 平成24年1月27日(2012.1.27)
発行日 平成24年4月4日(2012.4.4)
公開日 平成20年1月24日(2008.1.24)
発明の名称または考案の名称 表面電荷量計測装置及び表面電荷量計測方法
国際特許分類 G01R  29/24        (2006.01)
FI G01R 29/24 J
請求項の数または発明の数 10
全頁数 25
出願番号 特願2006-187105 (P2006-187105)
出願日 平成18年7月6日(2006.7.6)
審査請求日 平成21年6月24日(2009.6.24)
特許権者または実用新案権者 【識別番号】305060567
【氏名又は名称】国立大学法人富山大学
発明者または考案者 【氏名】篠原 寛明
【氏名】伊藤 研策
【氏名】冨田 勝彦
個別代理人の代理人 【識別番号】100088155、【弁理士】、【氏名又は名称】長谷川 芳樹
【識別番号】100092657、【弁理士】、【氏名又は名称】寺崎 史朗
【識別番号】100132090、【弁理士】、【氏名又は名称】飯塚 敬子
審査官 【審査官】関根 洋之
参考文献・文献 特開平9-178791(JP,A)
特開2004-245637(JP,A)
調査した分野 G01R 29/12
G01R 29/24
特許請求の範囲 【請求項1】
荷電した複数のプローブ粒子を上方に浮遊させて荷電試料の表面での電荷量を計測する表面電荷量計測装置であって、
前記複数のプローブ粒子の位置分布を算出する位置分布算出手段と、
前記位置分布に基づいて前記試料表面での電荷量を算出する電荷量算出手段と、を備えることを特徴とする表面電荷量計測装置。
【請求項2】
前記プローブ粒子の像を撮像して得られたプローブ画像に基づいて、前記試料の表面での前記電荷量を計測する請求項1記載の表面電荷量計測装置であって、
前記プローブ粒子の像を撮像して得られたプローブ画像における前記プローブ粒子の大きさを規定する測定値を求める大きさ規定値特定手段をさらに備え、
前記位置分布算出手段は、前記プローブ画像における前記プローブ粒子の大きさを規定する値と基準面からの前記プローブ粒子の距離との関係を示す校正データと、前記大きさ規定値特定手段で求められた前記測定値と、に基づいて、前記複数のプローブ粒子の前記位置分布を算出することを特徴とする表面電荷量計測装置。
【請求項3】
光の強度を測定する強度測定手段をさらに備え、前記表面と交差する前記試料の第1の側面に斜めに入射光を入射させることにより前記試料の表面での前記電荷量を計測する請求項1記載の表面電荷量計測装置であって、
前記入射光は、前記試料表面において全反射しながら前記試料内を伝播した後、前記表面とは交差する前記試料の第2の側面から出射光として出射していくよう前記第1の側面に入射され、
前記位置分布算出手段は、前記入射光の強度と前記出射光の強度との強度差に基づいて、前記複数のプローブ粒子の前記位置分布を算出することを特徴とする表面電荷量計測装置。
【請求項4】
前記プローブ粒子が球体であることを特徴とする請求項1~3の何れか一項記載の表面電荷量計測装置。
【請求項5】
前記試料は、荷電物質が前記表面に固定されることによって荷電されることを特徴とする請求項1~4の何れか一項記載の表面電荷量計測装置。
【請求項6】
荷電した複数のプローブ粒子を上方に浮遊させて荷電試料の表面での電荷量を計測する表面電荷量計測方法であって、
前記複数のプローブ粒子の位置分布を算出する位置分布算出ステップと、
前記位置分布に基づいて前記試料表面での電荷量を算出する電荷量算出ステップと、を備えることを特徴とする表面電荷量計測方法。
【請求項7】
前記プローブ画像における前記プローブ粒子の大きさを規定する値と基準面からの前記プローブ粒子の距離との関係を示す校正データを用意する校正データ準備ステップと、
前記プローブ粒子の像を撮像して得られたプローブ画像における前記プローブ粒子の大きさを規定する測定値を求める大きさ規定値特定ステップと、をさらに備え、
前記位置分布算出ステップは、前記校正データと前記大きさ規定値特定手段で求められた前記測定値とに基づいて、前記複数のプローブ粒子の位置分布を算出することを特徴とする請求項6記載の表面電荷量計測方法。
【請求項8】
前記試料表面で全反射しながら前記試料内を伝播する強度の測定された入射光を、前記表面と交差する前記試料の第1の側面に斜めに入射させる光入射ステップと、
前記入射光として入射し前記試料内を伝播した後、前記表面と交差する前記試料の第2の側面から出射する出射光の強度を測定する出射光強度測定ステップと、をさらに備え、
前記位置分布算出ステップは、前記入射光の強度と前記出射光の強度との強度差に基づいて、前記複数のプローブ粒子の位置分布を算出することを特徴とする請求項6記載の表面電荷量計測方法。
【請求項9】
前記プローブ粒子が球体であることを特徴とする請求項6~8の何れか一項記載の表面電荷量計測方法。
【請求項10】
前記試料は、荷電物質が前記表面に固定されることによって荷電されることを特徴とする請求項6~9の何れか一項記載の表面電荷量計測方法。
発明の詳細な説明 【技術分野】
【0001】
本発明は、表面電荷量計測装置及び表面電荷量計測方法に関するものである。
【背景技術】
【0002】
従来、化学的反応や生物学的反応を検出する方法として、反応に伴う電気信号(例えば電位)の変化を検出する方法が知られている。例えば、特異性の高い生体分子について、当該生体分子と親和性の高い標的分子を検出する場合、この生体分子を半導体基板に固定し標的分子との結合を当該半導体基板から出力される電気信号の変化によって検出する方法が検討されている(特許文献1参照)。

【特許文献1】特開平10-332423号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
本発明は、試料の表面における電荷量を簡便に計測することが可能な表面電荷量計測装置及び表面電荷量計測方法を提供することを目的とする。
【課題を解決するための手段】
【0004】
ところで、検出の対象が電気信号だけでは、結合反応を検証するのに十分ではない。すなわち、例えば電位の変化等を検出できたとしても、それだけでは反応を定量的に分析することができず、さらには当該電位変化が実際に結合反応によってもたらされたものであることの実証もできない。
【0005】
通常、結合反応を特定するために、蛍光色素等で測定の対象物質を標識して直接観察されている。しかし、この場合標識操作が非常に煩雑となってしまうという問題があった。
【0006】
こうした問題に対し、本願発明者等は、基板等の表面における電荷量を測定することで、基板表面での生体反応等を特定することができる上、定量的な分析も可能となることを見出した。そこで、本願発明者等は生物学的反応あるいは化学的反応等についての分析のさらなる発展に貢献すべく、試料表面での電荷量を簡便に計測することができる装置及び方法について鋭意研究を重ねた結果、ついに本願発明に想到するに至った。
【0007】
かかる研究結果を踏まえ、本発明に係る表面電荷量計測装置は、荷電した複数のプローブ粒子を上方に浮遊させて荷電試料の表面での電荷量を計測する表面電荷量計測装置であって、複数のプローブ粒子の位置分布を算出する位置分布算出手段と、位置分布に基づいて試料表面での電荷量を算出する電荷量算出手段と、を備えることを特徴とする。
【0008】
上記の表面電荷量計測装置では、荷電された試料の表面上方に荷電プローブ粒子を分布させている。荷電されたプローブ粒子は、荷電された試料との間の静電的相互作用による影響を受けて分布する。そのため、プローブ粒子の位置分布を求めることにより、荷電された試料表面の電荷量を算出することが可能となる。また、荷電されたプローブ粒子の位置分布を求めるだけであるため、簡便に且つ低コストで試料表面の電荷量を計測することが可能となる。また、試料表面上に液体あるいは気体が存在し当該液体等が流動している場合であっても、プローブ粒子は浮遊しているため、流動によって妨げられることなく試料表面での電荷量を計測することが可能となる。また、プローブ粒子の大きさを変えることで所望の分解能で電荷量を計測することが可能となる。
【0009】
プローブ粒子の像を撮像して得られたプローブ画像に基づいて、試料の表面での電荷量を計測する上記の表面電荷量計測装置であって、プローブ粒子の像を撮像して得られたプローブ画像におけるプローブ粒子の大きさを規定する測定値を求める大きさ規定値特定手段をさらに備え、位置分布算出手段は、プローブ画像におけるプローブ粒子の大きさを規定する値と基準面からのプローブ粒子の距離との関係を示す校正データと、大きさ規定値特定手段で求められた測定値と、に基づいて、複数のプローブ粒子の位置分布を算出することが好ましい。
【0010】
この表面電荷量計測装置では、プローブ画像における各プローブ粒子の大きさを規定する測定値さえ求められればそのプローブ粒子の位置分布が算出できる。そのため、プローブ画像に撮像されたプローブ粒子の数が複数であっても、当該撮像された複数のプローブ粒子の位置分布を算出することが可能であり、表面での電荷量の計測に要する時間を短縮することが可能となる。
【0011】
あるいは、光の強度を測定する強度測定手段をさらに備え、表面と交差する試料の第1の側面に斜めに入射光を入射させることにより試料の表面での電荷量を計測する上記の表面電荷量計測装置であって、入射光は、試料表面において全反射しながら試料内を伝播した後、表面とは交差する試料の第2の側面から出射光として出射していくよう第1の側面に入射され、位置分布算出手段は、入射光の強度と出射光の強度との強度差に基づいて、複数のプローブ粒子の位置分布を算出することが好ましい。
【0012】
この表面電荷量計測装置では、入射光が表面において全反射しながら試料内を伝播するため、試料表面近傍の試料外側にエバネッセント光が浸透する。エバネッセント光の強度Eは、界面(試料表面)での光強度をEとすると、式(1)で表される。
【数1】
JP0004910132B2_000002t.gif


X:界面からの距離
dp:エバネッセント光の強度が界面での強度の1/eになるときの界面からの距離
【0013】
式(1)から理解されるように、エバネッセント光の強度Eは、界面から離れるにしたがって指数関数的に減衰する。エバネッセント光の到達距離dpは略波長オーダーとされ、以下の式(2)で表される。
【数2】
JP0004910132B2_000003t.gif


λ:入射光の波長
:試料の屈折率
:試料と界面で接する媒質の屈折率
θ:試料表面の法線に対する入射光の角度
【0014】
例えば、波長400nmの光を入射光とし、石英ガラス(n=1.47)を試料として用い、水(n2=1.33)を試料と界面で接する媒質として用意し、試料表面の法線に対する入射光の角度を70°(試料内では66.8°を用いる。)を用いた場合、式(2)から約270nmがエバネッセント光の到達距離dpとして得られる。実際に、吸収に寄与するエバネッセント光の最高到達距離は3dpとされているので、光の吸収は約810nmまで起こると考えられる。上記の表面電荷量計測装置は、このエバネッセント光を用いてプローブ粒子の位置分布を算出するため、非常に小さいスケールで試料表面を計測することができる。また、通常、荷電された抗体蛋白質を試料表面に固定化した場合、標的抗原の検出及びその定量分析が可能となる。
【0015】
プローブ粒子が球体であることが好ましい。この場合、プローブ粒子の扱いが容易となるため、上記表面電荷量計測装置はより一層簡便に試料表面での電荷量を計測することが可能となる。
【0016】
試料は、荷電物質が表面に固定されることによって荷電されることが好ましい。例えば荷電されたDNA分子が試料の表面に固定された場合、標的分子の検出だけでなく結合反応の定量的な分析も可能となる。
【0017】
一方、本発明に係る表面電荷量計測方法は、荷電した複数のプローブ粒子を上方に浮遊させて荷電試料の表面での電荷量を計測する表面電荷量計測方法であって、複数のプローブ粒子の位置分布を算出する位置分布算出ステップと、位置分布に基づいて試料表面での電荷量を算出する電荷量算出ステップと、を備えることを特徴とする。
【0018】
上記の表面電荷量計測方法では、荷電された試料の表面上方に荷電プローブ粒子を分布させている。荷電されたプローブ粒子は、荷電された試料との間の静電的相互作用による影響を受けて分布する。そのため、プローブ粒子の位置分布を求めることにより、荷電された試料表面の電荷量を算出することが可能となる。また、荷電されたプローブ粒子の位置分布を求めるだけであるため、簡便に且つ低コストで試料表面の電荷量を計測することが可能となる。また、試料表面上に液体あるいは気体が存在し当該液体等が流動している場合であっても、プローブ粒子は浮遊しているため、流動によって妨げられることなく試料表面での電荷量を計測することが可能となる。また、プローブ粒子の大きさを変えることで所望の分解能で電荷量を計測することが可能となる。
【0019】
プローブ画像におけるプローブ粒子の大きさを規定する値と基準面からのプローブ粒子の距離との関係を示す校正データを用意する校正データ準備ステップと、プローブ粒子の像を撮像して得られたプローブ画像におけるプローブ粒子の大きさを規定する測定値を求める大きさ規定値特定ステップと、をさらに備え、位置分布算出ステップは、校正データと大きさ規定値特定手段で求められた測定値とに基づいて、複数のプローブ粒子の位置分布を算出することが好ましい。
【0020】
上記表面電荷量計測方法では、プローブ画像における各プローブ粒子の大きさを規定する測定値さえ求められればそのプローブ粒子の位置分布が算出できる。そのため、プローブ画像に撮像されたプローブ粒子の数が複数であっても、当該撮像された複数のプローブ粒子の位置分布を算出することが可能であり、表面での電荷量の計測に要する時間を短縮することが可能となる。
【0021】
あるいは、試料表面で全反射しながら試料内を伝播する強度の測定された入射光を、表面と交差する試料の第1の側面に斜めに入射させる光入射ステップと、入射光として入射し試料内を伝播した後、表面と交差する試料の第2の側面から出射する出射光の強度を測定する出射光強度測定ステップと、をさらに備え、位置分布算出ステップは、入射光の強度と出射光の強度との強度差に基づいて、複数のプローブ粒子の位置分布を算出することが好ましい。
【0022】
上記表面電荷量計測方法では、入射光が表面において全反射しながら試料内を伝播するため、試料表面近傍の試料外側にエバネッセント光が浸透する。上記の表面電荷量計測方法は、このエバネッセント光を用いてプローブ粒子の位置分布を算出するため、非常に小さいスケールで試料表面を計測することができる。
【0023】
プローブ粒子が球体であることが好ましい。この場合、プローブ粒子の扱いが容易となるため、上記表面電荷量計測方法はより一層簡便に試料表面での電荷量を計測することが可能となる。
【0024】
試料は、荷電物質が表面に固定されることによって荷電されることが好ましい。例えば荷電されたDNA分子が試料の表面に固定された場合、標的分子の検出だけでなく結合反応の定量的な分析も可能となる。
【発明の効果】
【0025】
本発明によれば、試料の表面における電荷量を簡便に計測することが可能な表面電荷量計測装置及び表面電荷量計測方法を提供することができる。
【発明を実施するための最良の形態】
【0026】
以下、添付図面を参照して、好適な実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
【0027】
(第1実施形態)
図1は第1実施形態に係る表面電荷量計測装置1Aの構成を示す図である。図1に示すように表面電荷量計測装置1Aは、光源2と、水槽20と、結像光学系(結像手段)3と、撮像装置(撮像手段)4と、画像処理装置(画像処理手段)10と、表示装置(表示手段)5とを備える。表面電荷量計測装置1Aは、透明な基板22と、当該透明基板22の表面に固定された固定化DNA分子23とで構成される試料21の表面21aの電荷量を計測する。
【0028】
水槽20は、一面が開口した透明材質からなる容器である。水槽20内には、例えば純水25が満たされている。水槽20の底面上には、試料21が、固定化DNA分子23が固定されていない面が水槽20の底面と接するように載置されている。水槽20内では、試料21の表面21a上方において球体のプローブ粒子Pが複数浮遊している。必要に応じて、検出DNA分子24も水槽20内に浮遊させてもよい。プローブ粒子Pとして例えば、径が約1μmのポリスチレンラテックス微粒子を用いる。試料21、検出DNA分子24、及びプローブ粒子Pは、同符号で荷電している。試料21は、荷電物質である固定化DNA分子23がその表面に固定されることによって荷電する。
【0029】
光源2は、水槽20の上方に、すなわち水槽20の試料21が載置されている底面とは反対側に位置する。光源2は、試料21及びプローブ粒子Pを照射する光lを出力する。表面電荷量計測装置1Aは、光源2に対してさらに集光レンズ2Aを備えている。集光レンズ2Aは、光源2から出力された光lを集光して、水槽20内に入射させる。
【0030】
結像光学系3は、水槽20の下方に、すなわち水槽20の底面側に位置する。結像光学系3は、光源2から出力された光lによって照射されたプローブ粒子Pの像(プローブ像)を撮像装置4の受光面上に結ぶ。試料21は後述の結像光学系3の焦点面Fとは一致せず、本実施形態では試料21は結像光学系3の焦点面Fが水槽20内に位置するように配置される。
【0031】
撮像装置4は、結像光学系3によって結像されたプローブ像を撮像するCCDカメラである。撮像装置4は、プローブ像を撮像して得られたプローブ画像を画像処理装置10に出力する。
【0032】
画像処理装置10は、撮像されたプローブ画像を撮像装置4から入力する。画像処理装置10は、撮像装置4から出力されたプローブ画像からプローブ粒子Pの位置分布を算出し、当該位置分布から試料21の表面21aでの電荷量を算出する。画像処理装置10は、算出した試料21の表面21aでの電荷量を表示装置5へ出力する。なお、画像処理装置10は、必要に応じてプローブ画像も表示装置5へ出力してもよい。
【0033】
表示装置5は、画像処理装置10から入力された試料21の表面21aでの電荷量あるいはプローブ画像を表示する。この表示装置5としては、例えば、CRTモニタや、液晶ディスプレイなどを用いることができる。
【0034】
次に、図2を参照して画像処理装置10の機能について説明する。図2に示すように、画像処理装置10は、校正データ格納部11と、大きさ規定値特定部12と、位置分布算出部13と、電荷量算出部14とを有する。
【0035】
校正データ格納部11には、プローブ画像におけるプローブ粒子Pの大きさを規定する値とプローブ粒子Pの試料21の表面21aからの距離との関係を示す校正データが格納されている。本実施形態ではプローブ粒子Pは球体であるため、プローブ粒子Pの大きさを規定する値を、画像上におけるプローブ粒子Pの直径とする。
【0036】
図3に校正データによって得られるグラフを示す。図3のグラフの横軸は試料21の表面21aに直交する方向(以下、z方向という)での結像光学系3の焦点面Fからの距離Z(μm)を表し、縦軸はプローブ画像におけるプローブ粒子Pの直径の大きさd(μm)を表す。結像光学系3の焦点面Fは、プローブ粒子の位置を特定するための基準面として機能する。図3のグラフにおける円は実際の測定データを表し、曲線はこれらの測定データに対してフィッティングを行った結果である。校正データ格納部11は、例えばフィッティングによって得られた関係式を校正データとして格納する。あるいは、校正データ格納部11は、例えば実際の測定データを校正データとして格納する。図4に、校正データ格納部11が実際の測定データを校正データとして格納する場合における校正データの表を示す。
【0037】
試料21の表面21aからの結像光学系3の焦点面Fの位置は既知である。したがって図3のグラフから理解されるように、校正データによれば、プローブ粒子Pの直径の大きさdを得ることによって、試料21の表面21aからのプローブ粒子Pの距離Zを求めることができる。ここで、焦点面Fからそれぞれ距離Z、Z、Zだけ離れているプローブ粒子P、P、Pの、距離Z、Z、Zとプローブ画像における直径d、d、dとの関係を説明する。説明に際し、図5~6を参照する。
【0038】
図5は、プローブ粒子P、P、Pと焦点面Fとの関係を説明するための図である。図5に示されているように、プローブ粒子Pは焦点面Fに位置し、焦点面FからZ(Z=0)だけ離れている。プローブ粒子Pは焦点面Fに対しZ(<Z)の位置にある。プローブ粒子Pは焦点面Fに対しZ(>Z)の位置にある。
【0039】
図6は、撮像されたプローブ画像におけるプローブ粒子P、P、Pの画像である。図6(a)はプローブ粒子Pの、図6(b)はプローブ粒子Pの、図6(c)はプローブ粒子Pの画像である。図6に示されるように、焦点面Fに位置するプローブ粒子Pの画像(図6(b))における円の大きさ(直径の大きさ)は、他のプローブ粒子P、Pの画像(図6(a)、(c))における円(直径)に比べて小さくなる。図6(a)に示された二点鎖線T、図6(b)に示された二点鎖線T、図6(c)に示された二点鎖線Tはそれぞれプローブ画像におけるプローブ粒子の中心点を通り、各プローブ粒子の画像を横断する線である。また、図6(a)に示された直径d12、図6(b)に示された直径d10、図6(c)に示された直径d11はそれぞれプローブ画像におけるプローブ粒子の白い輪で表される像の直径である。図6(a)に示された直径d22、図6(b)に示された直径d20、図6(c)に示された直径d21はそれぞれプローブ画像におけるプローブ粒子の黒い輪で表される像の直径である。
【0040】
図7は、プローブ画像における各プローブ粒子P、P、Pの強度を示すグラフである。図7(a)はプローブ粒子Pの、図7(b)はプローブ粒子Pの、図7(c)はプローブ粒子Pのグラフである。各グラフの横軸は図6(a)、(b)、(c)に示された横断線T、T、T上の位置T、縦軸はプローブ画像における強度I(T)を表す。各グラフにおける強度Iは、背景画像の平均強度に相当する。プローブ画像における各プローブ粒子P、P、Pの直径d、d、dは、例えば各横断線上であって画像上のプローブ粒子の円内に位置する強度I(T)の0次のピーク(凸部)の両脇にある1次のピーク(凸部)の頂点間の距離(図6(a)~(c)の各画像における白い輪の直径)d10、d11、d12とする。あるいは、プローブ画像における各プローブ粒子P、P、Pの直径d、d、dは、例えば各横断線上であって画像上のプローブ粒子の円内に位置する強度I(T)の0次のピーク(凸部)の両脇にある凹部の頂点間の距離(図6(a)~(c)の各画像における黒い輪の直径)d20、d21、d22であってもよい。
【0041】
また、0次のピークの強度が平均強度Iより小さい場合というのはプローブ粒子が焦点面Fより上に位置することを意味する。一方、0次のピークの強度I(T=0)が平均強度Iより大きい場合というのはプローブ粒子が焦点面Fより下に位置することを意味する。したがって、図7(a)~(c)より、プローブ粒子Pが焦点面Fより上に位置し、プローブ粒子P、Pが焦点面Fより下に位置することが示される。
【0042】
再び図2を参照して画像情報処理装置10の機能についての説明を続ける。大きさ規定値特定部12は、撮像されたプローブ画像を撮像装置4から入力し、プローブ画像における複数のプローブ粒子Pそれぞれの大きさを規定する値の測定値である直径dを求める。すなわち、直径dは、図6に示したような画像に基づいて得られるグラフ(図7参照)に基づき、1次ピーク間の距離として求められる。大きさ規定値特定部12は、直径dを位置分布算出部13に出力する。
【0043】
位置分布算出部13は、大きさ規定値特定部12からプローブ粒子Pの直径dを入力する。位置分布算出部13は、校正データ格納部11に格納された校正データとプローブ粒子Pの直径dとに基づいて、試料21の表面21aからのプローブ粒子Pの位置情報を算出する。すなわち、位置分布算出部13は、校正データ格納部11から得た図3に示す校正データに基づき、大きさ規定値特定部12で求められたプローブ粒子Pの直径の大きさがdの時の焦点面Fからの距離(位置情報)Zを求める。また、焦点面Fの試料21の表面21aからの距離をZFとすると、ZFは既知であるから、位置分布算出部13は必要に応じて、ZFをこうして求められたZに加えることにより試料21の表面21aからのプローブ粒子Pの距離ZPを算出する。
【0044】
位置分布算出部13は、2次元のプローブ画像から各プローブ粒子の当該2次元上、すなわち試料21の表面21aに投影させた2次元座標(x、y)を得る。そして、位置分布算出部13は焦点面Fからの距離に基づき、所望の位置を原点にとり、各プローブ粒子Pの3次元座標(x、y、z)(例えば、z=Z、あるいはz=ZP)を得る。
【0045】
位置分布算出部13は、複数のプローブ粒子Pの3次元座標(x、y、z)から試料21の表面21a上方を浮遊している複数のプローブ粒子Pの位置分布n(x、y、z)を求める。本実施形態における位置分布n(x、y、z)は、試料21の表面21a上方であって、座標(x、y、z)の位置におけるプローブ粒子Pの個数の分布を表す関数であり、式(3)で表される。
【数3】
JP0004910132B2_000004t.gif


A:定数
φ(x、y、z):静電的相互作用
:φ(x、y、z)=0におけるプローブ粒子の個数(zが十分に大きいときに成立)
k:Boltzmann定数
T:絶対温度
【0046】
位置分布算出部13は、こうして得た各プローブ粒子Pの位置分布である位置分布n(x、y、z)を電荷量算出部14に出力する。
【0047】
電荷量算出部14は、位置分布算出部13からプローブ粒子Pの位置分布n(x、y、z)を入力する。電荷量算出部14は、プローブ粒子Pの位置分布に基づき、式(3)からプローブ粒子Pと試料21の表面21aとの間の静電的相互作用φ(x、y、z)を求める。
【0048】
電荷量算出部14は、式(3)から求めた静電的相互作用に基づいて、試料21の表面21aでの表面電位を(4)式により求める。
【数4】
JP0004910132B2_000005t.gif


【0049】
電荷量算出部14は、さらに、式(4)から求めた試料21の表面電位に基づいて、試料21の表面21aでの単位面積当たりの電荷量σを(5)式により求める。
【数5】
JP0004910132B2_000006t.gif


【0050】
次に、図8及び図9を参照して、本実施形態に係る表面電荷量計測装置1Aを用いる表面電荷量計測方法について説明し、併せて表面電荷量計測装置1Aの動作についても説明する。図8は、表面電荷量計測方法の手順を示す図である。
【0051】
まず、撮像装置4によって撮像された画像におけるプローブ粒子Pの大きさを規定する値である直径dと、基準面である結像光学系3の焦点面Fからのプローブ粒子Pの距離Zとの関係を示す校正データ(図3及び図4参照)を用意する(校正データ準備ステップS01)。図9は、校正データを求めることについて説明するための図である。校正データは以下の手順で取得される。
【0052】
すなわち、図9に示されるように、2枚のカバーガラスG1、G2の間に挟まれたプローブ粒子Pをz方向に移動する。すなわち、焦点面Fと一致する場合を基準(Z=0)とし、当該基準に対して上下方向(Z<0、Z>0)にカバーガラスG1、G2に挟まれたプローブ粒子Pを移動する。その際、各位置でのプローブ粒子Pのプローブ像が撮像装置4によって撮像され、プローブ画像におけるプローブ粒子Pの直径dが求められる。こうして、焦点面Fからの距離Zに対するプローブ画像におけるプローブ粒子Pの直径dが求められ、校正データが得られる。得られた校正データは、画像処理装置10の校正データ格納部11に格納される。
【0053】
再び図8に戻って、表面電荷量計測方法について説明を続ける。次に、基板22の一方の表面に固定化DNA分子23を固定して試料21を用意する。固定化DNA分子23は荷電しているため、固定化DNA分子23が基板22表面に固定されることによって試料21は荷電される。
【0054】
さらに、純水25で満たされた水槽20を用意し、固定化DNA分子23が固定された表面と反対側の面が水槽20の底面と接するように、試料21を水槽20の底面上に載置する。試料21を水槽20内に入れた後、複数の荷電されたプローブ粒子Pを水槽20の純水25内に浮遊させる。これにより、試料21の表面21a上方をプローブ粒子Pが浮遊するように、試料21及びプローブ粒子Pが配置される(プローブ粒子準備ステップS02)。また、必要に応じて、水槽20内に検出DNA分子24を浮遊させてもよい。
【0055】
続いて、結像光学系3によって結ばれた複数のプローブ粒子Pの像が、撮像装置4によって撮像される(撮像ステップS03)。プローブ画像には様々な位置座表を有する複数のプローブ粒子Pが撮像されていてもよい。撮像されたプローブ画像は、撮像装置4から画像処理装置10の大きさ規定値特定部12へ出力される。
【0056】
プローブ画像が入力された大きさ規定値特定部12では、撮像装置4で撮像されたプローブ画像におけるプローブ粒子Pの大きさを規定する測定値である直径dが求められる(大きさ規定値特定ステップS04)。複数のプローブ粒子Pが撮像されている場合には、それらについての直径dが求められる。こうして求められた直径の大きさdは、大きさ規定値特定部12から位置分布算出部13へ出力される。
【0057】
直径dが入力された位置分布算出部13では、校正データ格納部11に格納された校正データと、大きさ規定値特定ステップS04で求められたプローブ粒子Pの直径dと、に基づいて、基準面である焦点面Fからのプローブ粒子Pの3次元座標(x、y、z)が算出される。位置情算出部13は、こうして求められた各プローブ粒子Pの3次元座標(x、y、z)に基づいて、プローブ粒子Pの個数分布である位置分布n(x、y、z)を算出する(位置分布算出ステップS05)。こうして求められた各プローブ粒子Pの位置分布n(x、y、z)は、位置分布算出部13から電荷量算出部14へ出力される。
【0058】
プローブ粒子Pの位置分布n(x、y、z)が入力された電荷量算出部14では、位置分布n(x、y、z)に基づいて試料21の表面21aでの電荷量が算出される(電荷量算出ステップS06)。電荷量算出部14では、プローブ粒子Pの位置分布n(x、y、z)から、式(3)によりプローブ粒子Pと試料21の表面21aとの間の静電的相互作用φ(x、y、z)が算出される。さらに、静電的相互作用φ(x、y、z)から、式(4)により試料21の表面21aでの表面電位が算出される。さらに、表面21aでの表面電位から、式(5)により、試料21の表面21aの単位面積当たりの電荷量σが算出され、表面21aでの電荷量が算出される。
【0059】
本実施形態に係る電荷量算出装置1A及び電荷量算出方法では、こうして水槽20内に複数のプローブ粒子Pが浮遊しているときの固定化DNA分子23が固定された基板22から構成される試料21の表面21aでの電荷量が算出される。
【0060】
次いで、例えば固定化DNA分子23と相補的な親和性を有するDNA分子の検出する場合には、この計測系での校正データは既に取得されているため、校正データ準備ステップS01を省略することができる。そして、水槽20内の溶液を廃棄し、上述のプローブ粒子準備ステップS02~電荷量算出ステップS06を繰り返す。すなわち、まず再度試料21を底面に載置し、水槽20内を純水25で満たす。その後、水槽20内に先ほどと同数のプローブ粒子P及び検出DNA分子24を浮遊させ(プローブ粒子準備ステップS02)、撮像ステップS03、大きさ既定値特定ステップS04、位置分布算出ステップS05、及び電荷量算出ステップS06を実行する。こうしてプローブ粒子準備ステップS02~電荷量算出ステップS06を繰り返すことにより、様々なDNA分子の検出を行うことができる。
【0061】
本実施形態に係る表面電荷量計測装置1A及び表面電荷量計測方法では、プローブ粒子P及び試料21はいずれも荷電しており、互いに静電的相互作用を及ぼし合っている。したがって、プローブ粒子Pはこの静電的相互作用の影響を受けて分布することとなり、プローブ粒子Pの位置分布n(x、y、z)を求めるこで、電荷量算出部14では、試料21の表面21a電位を求めることが可能となる(式(3)及び(4)参照)。電荷量算出部14ではさらに、式(5)から、表面電位に基づき試料21の表面21aでの電荷量を算出することができる。このように、本実施形態に係る表面電荷量計測装置1A及び表面電荷量計測方法では、プローブ粒子Pの位置分布n(x、y、z)から試料21の表面21での電荷量を算出することが可能となる。
【0062】
また、試料21表面での電荷量が計測可能である本実施形態に係る表面電荷量計測装置1B及び表面電荷量計測方法は、バイオセンシング分野への応用において非常に有用であると考えられる。
【0063】
すなわち、試料21の基板22に固定された固定化DNA分子23と検出DNA分子24とが結合した場合、当該結合により試料21の表面21aでの電荷量が変化する。これに伴い、結合箇所における試料21の表面電位も変化する。そのため、固定化DNA分子23と検出DNA分子24とが結合されている箇所の上方では、結合していない場合に比べプローブ粒子Pが試料21から遠ざかる方向に移動する。したがって、結合が起こっている場合と起こっていない場合とでは、プローブ粒子Pの位置分布が変化し、電荷量にも変化が現れる。その結果、プローブ粒子Pのみであって検出DNA分子24が水槽20内に浮遊していない場合における試料21の表面21aでの電荷量と、プローブ粒子及び検出DNA分子24が水槽20内に浮遊している場合における試料21の表面21aでの電荷量とを比較検討することで反応を特定でき、さらには反応を定量的に分析することが可能となる。
【0064】
特に、本実施形態に係る表面電荷量計測装置1B及び表面電荷量計測方法では、プローブ粒子準備ステップS02~電荷量算出ステップS06を繰り返すことで、検出DNA分子24が水槽20内に浮遊していない場合における試料21の表面21aでの電荷量、及び検出DNA分子24が水槽20内に浮遊している場合における試料21の表面21aでの電荷量をそれぞれ非常に簡単に計測することができる。そのため、本実施形態に係る表面電荷量計測装置1A及び表面電荷量計測方法では、非常に簡便な方法で反応を特定でき、且つ定量的に分析することが可能となる。
【0065】
このように、本実施形態に係る表面電荷量計測装置1A及び表面電荷量計測方法で計測しているのは、試料21の表面21aにおける電気信号(例えば、電位等)ではなく、電荷量である。そのため、試料21の表面21aにおいて固定化DNA分子23と検出DNA分子24とが結合したことを特定することが可能となる。さらに、結合反応によって得られる電荷量を特定することもでき、これにより反応についての定量的な分析も可能となる。そのため、本実施形態に係る表面電荷量計測装置1A及び表面電荷量計測方法は、バイオセンシング分野への応用において非常に有用である。
【0066】
また、本実施形態では荷電されたプローブ粒子Pの位置分布n(x、y、z)を求めるだけで電荷量が計測される。そのため、本実施形態に係る表面電荷量計測装置1A及び表面電荷量計測方法では、簡便且つ低コストで電荷量を計測することができる。
【0067】
試料21は純水25内に配置される。しかし、浮遊しているプローブ粒子Pによって計測がなされるため、当該純水25が流動している場合であっても、流動によって計測が妨げられることはない。
【0068】
また、本実施形態に係る表面電荷量計測装置1A及び表面電荷量計測方法では、流動体(この場合、純水25)に浮遊しているプローブ粒子Pを利用して計測がなされるため、血液中、尿中、あるいは脳などの組織液中の生体物質に対して適用できる。そのため、極微量の特定遺伝子や特定蛋白質の検出、さらには細胞の化学物質に対する応答評価や脳を主とする生体組織の機能評価などのライフサイエンス研究及び医療計測、あるいは農・水産物などの食品分析等に極めて役立つと考えられる。そして、その結果、従来に比べ迅速且つ簡便な標的遺伝子・蛋白質のセンシングシステムの開発につながり、ライフサイエンス研究、医療診断等に大きく寄与するほか、新規薬剤や環境汚染物質のハイスループットスクリーニングなどにも応用が期待される。
【0069】
また、プローブ粒子Pの大きさを変えることで、例えばより局所的な領域での電荷量を計測することも可能となる。
【0070】
また、本実施形態に係る表面電荷量計測装置1A及び表面電荷量計測方法それぞれでは、プローブ画像における各プローブ粒子Pの直径dさえ求められればそのプローブ粒子Pの位置分布n(x、y、z)が算出できる。そのため、プローブ画像に撮像されたプローブ粒子Pの数が複数であっても、当該撮像された複数のプローブ粒子Pの位置分布n(x、y、z)を算出することが可能であり、電荷量の計測に要する時間を短縮することが可能となる。
【0071】
本実施形態では、プローブ粒子Pは球体であるため、プローブ画像によって得られるプローブ粒子Pの直径(プローブ粒子Pの大きさを規定する値)はプローブ粒子Pを撮像する方向に依存しない。その結果、プローブ粒子Pを如何なる方向からも撮像でき、電荷量の計測が容易になる。
【0072】
本実施形態では、プローブ粒子Pを照射する光lを出力する光源2を備えているため、自身で光を発しないプローブ粒子Pを用いて電荷量を計測することが可能となる。
【0073】
(第2実施形態)
図10は第2実施形態に係る表面電荷量計測装置1Bの構成を示す図である。図10に示すように表面電荷量計測装置1Bは、光源2と、水槽20と、強度測定装置(強度測定手段)6と、演算処理装置(演算処理手段)30と、表示装置(表示手段)5とを備える。表面電荷量計測装置1Bは、透明な基板22と、当該透明基板22の表面に固定された固定化DNA分子23とで構成される試料21の表面21aの電荷量を計測する。
【0074】
水槽20の底面上には、試料21が載置されている。水槽20内では、試料21の表面21a上方において球体のプローブ粒子Pが複数浮遊している。必要に応じて、検出DNA分子24も水槽20内に浮遊させてもよい。プローブ粒子Pとして例えば、径が約40nmの金のコロイド粒子を用いる。試料21、検出DNA分子24、及びプローブ粒子Pは、同符号で荷電している。また、基板22の屈折率は、基板22と接する純水25及び水槽20のいずれの屈折率よりも高い。
【0075】
光源2は、試料21の表面21aと交差する試料21の第1の側面21bに斜めに入射光lを入射する。入射光lは、試料21の表面21a及び当該表面21aに対向する面において全反射しながら試料21の基板22内を伝播する。すなわち、基板22は入射光lに対し光導波路として機能する。基板22内を伝播した入射光lは、表面21aとは交差する試料21の第2の側面21cから出射光lとして出射し、強度測定装置6に入射する。また、光源2は、入射光lの強度を測定し、測定された強度を演算処理装置30へ出力する。
【0076】
強度測定装置6は、試料21の基板22から出射された出射光lを入力とする。強度測定装置6は、出射光lの強度を測定し、測定された強度を演算処理装置30へ出力する。
【0077】
演算処理装置30は、光源2から出力された入射光lの強度を、さらに強度測定装置6から出力された出射光lの強度をそれぞれ入力とする。演算処理装置30は、入射光lの強度と出射光lの強度との強度差からプローブ粒子Pの位置分布を算出し、当該位置分布から試料21の表面21aでの電荷量を算出する。演算処理装置30は、算出した試料21の表面21aでの電荷量を表示装置5へ出力する。
【0078】
表示装置5は、演算処理装置30から入力された試料21の表面21aでの電荷量を表示する。この表示装置5としては、例えば、CRTモニタや、液晶ディスプレイなどを用いることができる。
【0079】
次に、図11を参照して演算処理装置30の機能について説明する。図11に示すように、演算処理装置30は、位置分布算出部(位置分布算出手段)31と、電荷量算出部(電荷量算出手段)32とを有する。
【0080】
位置分布算出部31は、光源2から入射光lの強度を、強度測定装置6から出射光lの強度を入力する。位置分布算出部31は、入射光lの強度と出射光lの強度との強度差に基づいて、式(6)より、複数のプローブ粒子Pの位置分布n(x、y、z)を算出する。
【数6】
JP0004910132B2_000007t.gif


:入射光lの強度
:出射光lの強度
ε:試料表面(界面)からの距離zにおけるプローブ粒子の吸光係数
C:プローブ粒子の数密度(濃度)
:全反射光の試料表面(界面)からの距離zにおける光路長
n(x、y、z):試料表面(界面)からの距離zに分布するプローブ粒子の数
:全プローブ粒子数
n(x、y、z)/n:界面からの距離zにおけるプローブ粒子の分布関数
【0081】
電荷量算出部14は、位置分布算出部13からプローブ粒子Pの位置分布n(x、y、z)を入力する。電荷量算出部14は、プローブ粒子Pの位置分布に基づき、式(3)からプローブ粒子Pと試料21の表面21aとの間の静電的相互作用φ(x、y、z)を求める。
【0082】
電荷量算出部14は、式(3)から求めた静電的相互作用に基づいて、試料21の表面21aでの表面電位を(4)式により求める。電荷量算出部14は、さらに、式(4)から求めた試料21の表面電位に基づいて、試料21の表面21aでの電荷量を(5)式により求める。
【0083】
こうして、電荷量算出部14が、試料21の表面21aでの電荷量を算出することで、表面電荷量計測装置1Bでは試料21の表面21aでの電荷量が計測される。
【0084】
次に、図12を参照して、本実施形態に係る表面電荷量計測装置1Bを用いる表面電荷量計測方法について説明し、併せて表面電荷量計測装置1Bの動作についても説明する。図12は、表面電荷量計測方法の手順を示す図である。
【0085】
まず、基板22の一方の表面に固定化DNA分子23を固定して試料21を用意する。 さらに、純水25で満たされた水槽20を用意し、固定化DNA分子23が固定された表面と反対側の面が水槽20の底面と接するように、試料21を水槽20の底面上に載置する。試料21を水槽20内に入れた後、複数の荷電されたプローブ粒子Pを水槽20の純水25内に浮遊させる。これにより、試料21の表面21a上方をプローブ粒子Pが浮遊するように、試料21及びプローブ粒子Pが配置される(プローブ粒子準備ステップS12)。
【0086】
次に、試料21の表面21aで全反射しながら試料21の基板22内を伝播する入射光lを、表面21aと交差する試料21の第1の側面21bに斜めに入射させる(光入射ステップS12)。基板22の屈折率は、基板22が接している純水25及び水槽20の何れよりも屈折率が高い。そのため、入射光を斜めに入れることで、試料21の表面、すなわち基板22の表面において入射光lが全反射を起こしながら、第2の側面21cに向かって伝播する。
【0087】
入射光lが基板22の表面で全反射を起こすとき、その表面から外側にはエバネッセント光が浸みだしている。固定化DNA分子23の厚さは、エバネッセント光が浸みだす範囲(例えば、基板22の外側に向かって約200nmの範囲)に比較して極めて薄い。また、プローブ粒子Pの径も例えば約40nmと非常に小さい。そのため、エバネッセント光が浸みだす範囲内にプローブ粒子Pは十分分布している。
【0088】
プローブ粒子Pは、浸みだしたエバネッセント光を吸収する。そのため、入射光lが全反射を起こしながら、基板22内を第2の側面21cに向かって伝播している間にプローブ粒子Pに吸収された分だけ光の強度が減少している。
【0089】
続いて、強度測定装置6において、表面21aと交差する試料21の第2の側面21cから出射する出射光lの強度が測定される(出射光強度測定ステップS13)。光源2で測定された入射光lの強度及び強度測定装置6において測定された出射光lの強度が、演算処理装置30に出力される。
【0090】
入射光lの強度及び出射光lの強度が入力された演算処理装置30の位置分布算出部31では、入射光lの強度と出射光lの強度との強度差に基づいて複数のプローブ粒子Pの位置分布が算出される(位置分布算出ステップS14)。式(6)に基づき算出されたプローブ粒子Pの位置分布n(x、y、z)は、位置分布算出部31から電荷量算出部32へ出力される。
【0091】
プローブ粒子Pの位置分布n(x、y、z)が入力された電荷量算出部32では、位置分布n(x、y、z)に基づいて試料21の表面21aでの電荷量が算出される(電荷量算出ステップS15)。電荷量算出部32では、プローブ粒子Pの位置分布n(x、y、z)に基づき、式(3)~(5)によって、試料21の表面21aでの電荷量が算出される。
【0092】
次いで、例えば固定化DNA分子23と相補的な親和性を有するDNA分子の検出する場合には、水槽20内の溶液を廃棄し、上述のプローブ粒子準備ステップS11~電荷量算出ステップS15を繰り返す。すなわち、まず再度試料21を底面に載置し、水槽20内を純水25で満たす。その後、水槽20内に先ほどと同数のプローブ粒子P及び検出DNA分子24を浮遊させ(プローブ粒子準備ステップS11)、光入射ステップS12、位置分布算出ステップS13、及び電荷量算出ステップS14を実行する。こうしてプローブ粒子準備ステップS12~電荷量算出ステップS16を繰り返すことにより、様々なDNA分子の検出を行うことができる。
【0093】
本実施形態に係る表面電荷量計測装置1B及び表面電荷量計測方法では、プローブ粒子P及び試料21はいずれも荷電しており、互いに静電的相互作用を及ぼし合っている。したがって、プローブ粒子Pはこの静電的相互作用の影響を受けて分布することとなり、プローブ粒子Pの位置分布n(x、y、z)を求めることで、式(3)~(5)から、試料21の表面21aでの電荷量を算出することができる。このように、本実施形態に係る表面電荷量計測装置1B及び表面電荷量計測方法では、プローブ粒子Pの位置分布から試料21の表面21での電荷量を算出することが可能となる。
【0094】
また、試料21表面での電荷量が計測可能である本実施形態に係る表面電荷量計測装置1B及び表面電荷量計測方法も、第1実施形態に係る表面電荷量計測装置1A及び表面電荷量計測方法同様、バイオセンシング分野への応用において非常に有用であると考えられる。
【0095】
また、本実施形態では荷電されたプローブ粒子Pの位置分布n(x、y、z)を求めるだけで電荷量が計測される。そのため、本実施形態に係る表面電荷量計測装置1A及び表面電荷量計測方法では、簡便且つ低コストで電荷量を計測することができる。
【0096】
試料21は純水25内に載置されている。しかし、浮遊しているプローブ粒子Pによって計測がなされるため、当該純水25が流動している場合であっても、流動によって計測が妨げられることはない。
【0097】
また、プローブ粒子Pの大きさを変えることで、例えばより局所的な領域での電荷量を計測することも可能となる。特に、本実施形態ではプローブ粒子Pとして非常に径の小さいもの(例えば約40nm)を用い、さらに試料21を光導波路として利用して計測にエバネッセント光を用いている。そのため、非常にミクロのスケールでの反応も検出することが可能となる。
【0098】
また、本実施形態に係る表面電荷量計測装置1B及び表面電荷量計測方法それぞれでは、入射光lの強度と出射光lの強度との強度差さえ求められれば、そのプローブ粒子Pの位置分布(x、y、z)が算出できる。そのため、プローブ粒子Pを複数用いる場合であっても、位置分布n(x、y、z)の算出に要する時間は非常に短いものとなる。その結果、電荷量の計測に要する時間を短縮することが可能となる。
【0099】
ここで、エバネッセント光が浸みだす範囲にプローブ粒子が存在する場合に、プローブ粒子Pがエバネッセント光を吸収することを実証するための実施例をデータとともに示す。厚みの薄いガラス基板を光導波路として用い、径が40nmの金コロイド粒子(負電荷に荷電)をプローブ粒子Pとして利用した。
【0100】
まず、図17に、未処理のガラス基板(表面が負電荷に荷電)及び表面をアミノ化処理されたガラス基板(表面が正電荷に荷電)それぞれを金コロイド粒子が浮遊している純水中に配置し、ガラス基板への入射光と出射光との強度差を測定したグラフを示す。図17のグラフAが未処理のガラス基板の結果を表し、グラフBがアミノ化処理されたガラス基板の結果を表す。図17のグラフの横軸は吸収スペクトル(λ/nm)を表し、縦軸は入射光と出射光との強度差(A.U.)、すなわちエバネッセント光の吸収量を表す。図17のグラフから、未処理のガラス基板では、エバネッセント光の吸収量がアミノ化処理されたガラス基板に比べ少ないことがわかる。これは、未処理のガラス基板表面がもつ負電荷と金コロイド粒子がもつ負電荷とが反発しあい、金コロイド粒子がガラス表面に近づきにくいことを示す。さらには、アミノ化処理されたガラス基板では、金コロイド粒子との間に静電的引力が働き、金コロイド粒子がガラス表面近傍に近づきやすくなることも理解される。
【0101】
図18に、金コロイド粒子が浮遊しているイオン交換蒸留水中及び金コロイド粒子が浮遊しているリン酸緩衝液中それぞれに、未処理のガラス基板(表面が負電荷に荷電)を配置し、ガラス基板への入射光と出射光との強度差を測定したグラフを示す。図18のグラフCがイオン交換蒸留水中に配置された結果を表し、グラフDがリン酸緩衝液中に配置された結果を表す。図18のグラフの横軸は吸収スペクトル(λ/nm)を表し、縦軸は入射光と出射光との強度差(A.U.)、すなわちエバネッセント光の吸収量を表す。図18のグラスから、リン酸緩衝液中の方がイオン交換蒸留水中に比べ、金コロイド粒子がガラス基板に近づきやすくなることが理解される。
【0102】
図17のグラフから、ガラス基板表面の荷電状態を反映して入射光の強度に対する出射光の強度の比が変化する(プローブ粒子と基板表面に静電的引力が働く場合、この比は低下する)ことが実証された。また、図18のグラフから、ガラス基板を配置する溶液によって、プローブ粒子である金コロイド粒子をガラス基板に近づきやすくさせることができることが実証された。これらの結果から、ガラス基板を光導波路として用い、エバネッセント光を利用した計測により、電荷量の測定をより一層簡便に行うことが可能なことが理解される。
【0103】
(第3実施形態)
図13を参照して、第3実施形態に係る表面電荷量計測装置1Cの構成について説明する。図11は第3実施形態に係る表面電荷量計測装置1Cの構成を示す図である。第3実施形態に係る表面電荷量計測装置1Cは、試料21の基板22が不透明な基板22Aであって、当該不透明基板22Aに対する反射型の顕微鏡として構成されている点で第1実施形態に係る表面電荷量計測装置1Aと異なる。
【0104】
不透明な基板22Aは、例えば半導体デバイス、あるいは着色されたガラス基板等である。
【0105】
光源2は、水槽20の斜め上方に位置する。光源2は、試料21及びプローブ粒子Pを照射する光lを、その光軸が基板22Aに対して傾きを有するように出力する。
【0106】
一方、結像光学系3も、水槽20の斜め上方に位置する。結像光学系3は、基板22A表面で反射された光の像を撮像装置4の受光面上に結ぶように、基板22Aに対して傾きを有して配置される。このように、表面電荷量計測装置1Cは、限外照明系を採用する。また、限外照明系を用いる場合、例えば作動距離の長い高倍率対物レンズを用いる方法、あるいは低倍率対物レンズにズーム光学系を組み合わせる方法、あるいは暗視野対物レンズを用いる方法などがある。
【0107】
本実施形態に係る表面電荷量算出装置1Cを用いる表面電荷量算出方法も、表面電荷量算出装置1Aを用いる表面電荷量算出方法と同様、図8に示すような校正データ準備ステップS01、プローブ粒子準備ステップS02、撮像ステップS03、大きさ規定値特定ステップS04、位置分布算出ステップS05、及び表面電荷量算出ステップS06を備える。
【0108】
反射型の顕微鏡に同軸(明視野)照明系を用いると背景反射が対物レンズに入射されてしまいプローブ粒子の像が不明瞭となってしまう。表面電荷量算出装置1Cでは、限外(暗視野)照明系を用いているため、不透明な基板22から構成される試料21を計測する場合であっても、プローブ粒子Pの像を撮像することができる。これにより、プローブ画像におけるプローブ粒子Pの直径を特定することが可能となるため、試料21の表面21aでの電荷量を計測することが可能となる。このように、本実施形態に係る表面電荷量算出装置1C及び表面電荷量算出方法では不透明な試料21に対しても表面21aでの電荷量を計測することが可能となる。
【0109】
本実施形態に係る表面電荷量計測装置1C及び表面電荷量計測方法では、プローブ粒子P及び試料21はいずれも荷電しており、互いに静電的相互作用を及ぼし合っている。したがって、プローブ粒子Pはこの静電的相互作用の影響を受けて分布することとなり、プローブ粒子Pの位置分布n(x、y、z)を求めることで、式(3)~(5)から、試料21の表面21aでの電荷量を算出することができる。このように、本実施形態に係る表面電荷量計測装置1C及び表面電荷量計測方法では、プローブ粒子Pの位置分布から試料21の表面21での電荷量を算出することが可能となる。
【0110】
また、試料21表面での電荷量が計測可能である本実施形態に係る表面電荷量計測装置1C及び表面電荷量計測方法も、第1実施形態に係る表面電荷量計測装置1A及び表面電荷量計測方法同様、バイオセンシング分野への応用において非常に有用であると考えられる。
【0111】
また、本実施形態では荷電されたプローブ粒子Pの位置分布n(x、y、z)を求めるだけで電荷量が計測される。そのため、本実施形態に係る表面電荷量計測装置1C及び表面電荷量計測方法では、簡便且つ低コストで電荷量を計測することができる。
【0112】
試料21は純水25内に載置されている。しかし、浮遊しているプローブ粒子Pによって計測がなされるため、当該純水25が流動している場合であっても、流動によって計測が妨げられることはない。
【0113】
また、プローブ粒子Pの大きさを変えることで、例えばより局所的な領域での電荷量を計測することも可能となる。
【0114】
また、一度の撮像で複数のプローブ粒子について位置を算出することができるため、実際の計測が容易となり、電荷量の計測に要する時間を短縮することが可能となる。
【0115】
本実施形態では、プローブ粒子Pは球体であるため、プローブ粒子Pを如何なる方向からも撮像でき、実際の計測が容易になる。その結果、電荷量の計測が容易になる。
【0116】
本実施形態では、プローブ粒子Pを照射する光lを出力する光源2を備えているため、自身で光を発しないプローブ粒子Pを用いて電荷量を算出することが可能となる。
【0117】
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、様々なリアルタイムセンシング測定システムに応用することが可能である。例えば、図14に示す測定システムのように、第1実施形態に係る表面電荷量計測装置1Aと電気化学的測定装置40とをともに備えていてもよい。すなわち、図14に示す測定システムでは、表面電荷量計測装置1Aにより試料21の表面21aでの電荷量を計測し、同時に電気化学的測定装置40により試料21で発生する電気信号を検出することができる。電気化学的測定装置40は、参照電極41、対向電極42、ポテンシオスタット43、及び電気信号表示装置44を備える。基板22上には、透明電極層(図示を省略)が形成されており、当該透明電極層が電気化学的測定装置40の作用電極として機能する。
【0118】
あるいは、例えば、図15に示す測定システムのように、第1実施形態に係る表面電荷量計測装置1Aと物理的現象あるいは化学的現象を測定する半導体測定装置50とをともに備えていてもよい。すなわち、図15に示す測定システムでは、表面電荷量計測装置1Aにより試料21の表面21aでの電荷量を計測し、同時に半導体測定装置50により試料21で発生する電気信号を検出することができる。半導体測定装置50は、参照電極61、半導体装置SC、及び電気信号表示装置62を備える。半導体装置SCは、n層51aを有するSi基板51と、SiO層52と、Si層53と、Poly-Si層54と、Si/SiO層55と、Al導体部56と、Au/Ti層57とを有する。また、半導体装置SCは、拡張ゲート型(Extended Gate型)の電極部63を有する。半導体装置SCの電極部63は、基板22上に形成された透明電極層として形成される。電極部63は、Au/Ti層57と導線によって接続されている。
【0119】
図16を参照して、半導体測定装置50の半導体装置SCの測定動作を説明する。図16は、半導体測定装置50の半導体装置SCの測定動作を説明するための図である。半導体装置SCは、機能的に、電荷供給部71、電荷注入調節部72、センシング部(電荷変換部)73、障壁部74、フローティングディフュージョン部75、リセットゲート76、及びリセットドレイン77を備える。測定に際し、電荷供給部71、障壁部74およびリセットゲート76にパルス電圧が印加され、フローティングディフュージョン部75を除く他の電極に直流電圧が印加される。
【0120】
まず、図16(a)に示すように、電荷供給部71の電位を高く設定する。次に図16(b)に示すように、電荷供給部71の電位を下げ、センシング部73に電荷78が注入されるようにする。続いて図16(c)に示すように、電荷供給部71の電位を再び高く設定する。これにより、電荷78は電荷注入調節部72によってすりきられ、センシング部73に蓄積される。
【0121】
続いて図16(d)に示すように、障壁部74の電位を上げる。これにより、センシング部73に蓄積されていた電荷78がフローティングディフュージョン部75に転送される。センシング部73に蓄積されていた電荷78が全てフローティングディフュージョン部75に転送された後、図16(e)に示すように、障壁部74の電位を下げて、電荷78の転送を止める。フローティングディフュージョン部75の電位は、転送されてきた電荷78の量で決まり、この電位を出力として測定がなされる。
【0122】
その後、図16(f)に示すように、リセットゲート76をオンし、リセットドレイン77の電位にリセットし、図16(a)に戻る。図16(a)~(f)に示される動作を繰り返すことにより、電荷が外に出力され、測定がなされる。
【0123】
また、本発明は上記実施形態及び応用例に限定されるものではなく、様々な変形が可能である。例えば、上記実施形態では、生物学的反応であるDNA反応に適用した場合を例示したが、様々な分野に適用可能である。例えば、DNA反応以外であっても、抗体や受容体、結合性蛋白質を用いることによる標的となる蛋白質、糖類等のバイオ分子の検出にも応用できる。さらには、生物学的反応に限らず、例えば化学的反応に適用してもよい。
【0124】
また、プローブ粒子Pの形状は球状に限らず、例えば棒状であってもよい。棒状プローブ粒子を用いた場合における、プローブ画像におけるプローブ粒子Pの大きさを規定する値というのは、プローブ粒子の長手方向の両端での短手方向の長さとなる。すなわち、例えば、プローブ画像においてプローブ粒子の長手方向の両端での短手方向の長さが同じである場合には、棒状のプローブ粒子は、長手方向と試料表面とが平行になるように分布している。一方、プローブ画像においてプローブ粒子の長手方向の両端での短手方向の長さが異なる場合には、棒状のプローブ粒子は、長手方向が試料表面に対して角度を有して分布している。したがって、プローブ画像におけるプローブ粒子の長手方向の両端での短手方向の長さを求めることによって、プローブ粒子Pの試料表面に対する位置情報としてプローブ粒子Pの試料表面に対する傾きが得られる。棒状のプローブ粒子Pは、試料表面と有機的に関連することによりその傾きが決定する。したがって、プローブ粒子Pの試料表面に対する傾きに基づいて、表面電位を算出することができる。
【0125】
また、プローブ粒子Pはポリスチレンラテックスあるいは金に限らず、他の材料からなるものであってもよい。また、プローブ粒子は液体に限らず、例えば気体中に浮遊していても、あるいは真空中に浮遊していてもよい。
【0126】
また、光源を有さず、例えばプローブ粒子P自身が蛍光を発光し、その像を撮像して試料21の表面での電荷量を計測してもよい。光源に限定はなく、可視光、紫外線、赤外線、X線、電子線、あるいは中性子線など、どのような波長の光を出す光源であってもよい。
【図面の簡単な説明】
【0127】
【図1】第1実施形態に係る表面電荷量算出装置の構成を示す図である。
【図2】画像処理部の機能について説明するための図である。
【図3】校正データによって得られるグラフの図である。
【図4】実際の測定データを校正データとする場合における校正データの表を示す。
【図5】プローブ粒子と結像光学系の焦点面との関係を説明するための図である。
【図6】撮像されたプローブ画像におけるプローブ粒子の画像を表す図である。
【図7】プローブ画像における各プローブ粒子の強度を示すグラフの図である。
【図8】第1実施形態に係る表面電荷量算出方法の手順を示す図である。
【図9】校正データを求めることについて説明するための図である。
【図10】第2実施形態に係る表面電荷量算出装置の構成を示す図である。
【図11】演算処理部の機能について説明するための図である。
【図12】第2実施形態に係る表面電荷量算出方法の手順を示す図である。
【図13】第3実施形態に係る表面電荷量算出装置の構成を示す図である。
【図14】第1実施形態に係る表面電荷量算出装置を応用した測定システムの構成を示す図である。
【図15】第1実施形態に係る表面電荷量算出装置を応用した測定システムの構成を示す図である。
【図16】半導体測定装置の半導体装置の測定動作を説明するための図である。
【図17】ガラス基板への入射光とガラス基板からの出射光との強度差を測定したグラフを示す。
【図18】ガラス基板への入射光とガラス基板からの出射光との強度差を測定したグラフを示す。
【符号の説明】
【0128】
1A、1B、1C…表面電荷量計測装置、P…プローブ粒子、2…光源、3…結像光学系、4…撮像装置、5…表示装置、6…強度測定装置、10…画像処理装置、11…校正データ格納部、12…大きさ規定値特定部、13、31…位置分布算出部、14、32…電荷量算出部、30…演算処理装置、40…電気化学的測定装置、41…参照電極、42…対向電極、43…ポテンシオスタット、44、62…電気信号表示装置、50…半導体測定装置、SC…半導体装置、61…参照電極
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11
【図13】
12
【図14】
13
【図15】
14
【図16】
15
【図17】
16
【図18】
17