TOP > 国内特許検索 > 3次元繊維強化複合材ラグの製造方法 > 明細書

明細書 :3次元繊維強化複合材ラグの製造方法

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第4069202号 (P4069202)
公開番号 特開2004-099648 (P2004-099648A)
登録日 平成20年1月25日(2008.1.25)
発行日 平成20年4月2日(2008.4.2)
公開日 平成16年4月2日(2004.4.2)
発明の名称または考案の名称 3次元繊維強化複合材ラグの製造方法
国際特許分類 C08J   5/04        (2006.01)
D03D  25/00        (2006.01)
C08L 101/00        (2006.01)
FI C08J 5/04 CER
C08J 5/04 CEZ
D03D 25/00
C08L 101:00
請求項の数または発明の数 5
全頁数 25
出願番号 特願2002-259769 (P2002-259769)
出願日 平成14年9月5日(2002.9.5)
審判番号 不服 2005-009501(P2005-009501/J1)
審査請求日 平成14年9月5日(2002.9.5)
審判請求日 平成17年5月19日(2005.5.19)
特許権者または実用新案権者 【識別番号】390014306
【氏名又は名称】防衛省技術研究本部長
発明者または考案者 【氏名】伊藤 真
【氏名】小野原 薫
【氏名】安居 義治
【氏名】堀 藤夫
個別代理人の代理人 【識別番号】100067323、【弁理士】、【氏名又は名称】西村 教光
参考文献・文献 特開平04-300344(JP,A)
特開平11-093032(JP,A)
特許第(JP,B2)2878259
国際公開第00/34031(WO,A1)
調査した分野 C08J5/00-5/24,B29B11/00-11/16,B29B15/00-15/14
特許請求の範囲 【請求項1】
仮想一平面上で、長手方向に平行に張架される経糸と、長手方向に垂直な幅方向に平行に張架される緯糸と、長手方向または幅方向に関して交差するバイアス方向に平行に張架されるバイアス糸とを、前記仮想一平面に垂直な厚み方向に挿入される垂直糸によって結合して3次元織物が形成され、この3次元織物にマトリックスを充填して一体化させた3次元繊維強化複合材ラグの製造方法において、
前記仮想一平面上で経糸、緯糸およびバイアス糸のいずれかを、予め定める複数の応力分担領域毎に、各応力分担領域に隣接する他の応力分担領域にわたって主たる発生応力に抗する方向に張架して、相互に異なる配向パターンを有する複数の2次元配列糸層が形成され、各2次元配列糸層は、各応力分担領域の前記発生応力に抗する必要強度に応じ、かつ各応力分担領域の繊維体積含有率が相互に均等になるように選択的に積重して3次元織物を形成し、この3次元織物にマトリックスを充填して加熱加圧して硬化させる方法であって、
前記予め定める複数の応力分担領域は、厚み方向に貫通する透孔を形成してブッシングが嵌着される面圧部と、面圧部の幅方向両側に連なり、長手方向に延びる一対の軸力部と、面圧部および各軸力部の長手方向一端部に連なる端末部と、各軸力部間で、各軸力部に幅方向に連なりかつ面圧部の長手方向他端部に連なって長手方向に延びる中間部とに分割されることを特徴とする3次元繊維強化複合材ラグの製造方法。
【請求項2】
面圧部は、経糸、緯糸、バイアス糸および垂直糸の総繊維が占める繊維体積含有量に対して、少なくとも70%のバイアス糸を含有することを特徴とする請求項記載の3次元繊維強化複合材ラグの製造方法。
【請求項3】
軸力部は、経糸、緯糸、バイアス糸および垂直糸の総繊維が占める繊維体積量に対して、45~70%の経糸と、30~55%のバイアス糸とを含有することを特徴とする請求項1または2記載の3次元繊維強化複合材ラグの製造方法。
【請求項4】
端末部は、経糸、緯糸、バイアス糸および垂直糸の総繊維が占める繊維体積含有量に対して、50~80%のバイアス糸と、20~50%の経糸および緯糸とを含有することを特徴とする請求項1~3のいずれかに記載の3次元繊維強化複合材ラグの製造方法。
【請求項5】
中間部は、経糸、緯糸、バイアス糸および垂直糸の総繊維が占める繊維体積含有量に対して、少なくとも70%のバイアス糸を含有することを特徴とする請求項1~4のいずれかに記載の3次元繊維強化複合材ラグの製造方法。
発明の詳細な説明
【0001】
【発明の属する技術分野】
本発明は、航空機、宇宙機、自動車、船舶、建築物および製造加工装置などの構造用部材として好適に実施することができる3次元繊維強化複合材ラグの製造方法に関する。
【0002】
【従来の技術】
基材であるマトリックス相と、強化材として繊維を用いる分散相とから成る繊維強化複合材料は、航空機を始め、各種の分野で構造用部材として用いられている。特に、航空機の翼胴結合に用いられるラグジョイントなどと呼ばれる繊維強化複合材ラグは、ボルトの軸部またはピンが挿通する面圧部に集中的に大きな力が作用するため、一般構造用部材よりも高い機械的強度特性が要求され、この機械的強度特性の改善に大きな影響を与える1つの要因として、強化繊維の組織構成が重要視されている。
【0003】
図30は、第1の従来技術の3次元繊維強化複合材ラグ1の繊維配向状態を簡略化して示す一部の正面図であり、この従来技術は特公平7-81225号公報に示されている。ラップラウンドフィッティグ用の3次元繊維強化複合材ラグ(以下、単に「複合材ラグ」と略記する場合がある)1は、図30の紙面に平行な仮想一平面上で複合材ラグ1の長手方向Xに平行に張架される経糸2と、長手方向Xに垂直な幅方向Yに平行に張架される緯糸3と、長手方向Xに関して±45°でそれぞれ交差する各バイアス方向B1,B2に張架されるバイアス糸4,5と、前記仮想一平面に垂直な厚み方向Zに交互に折返した状態で挿入される垂直糸とによって3次元織物を形成し、この3次元織物とマトリックスとを一体化させた複合材である。このような3次元織物は、図30に示されるように垂直に立設された複数のピン12を有する3次元織物製作治具6の各ピン12に経糸2、緯糸3および各バイアス糸4,5を巻掛け、最後にピン12を垂直糸と交換して織りあげられる。
【0004】
複合材ラグ1の長手方向Xの一端部の端末部10には、複合材ラグ1を厚み方向Zに挿通する金属製のブッシング9が嵌着され、このブッシング9の周囲には、前記経糸2が同心円上に巻掛けられるとともに、緯糸3が放射状に張架される。なお、複合材ラグ1は図30では長手方向X一方側のみ示してあり、他方側も一方側と同様の構成を備える。以下の図においても同様である。
【0005】
このような複合材ラグ1のブッシング9にはボルトまたはピンが挿通され、このボルトまたはピンを介して複合材ラグ1に長手方向Xに引張荷重Faが作用すると、図31(a)に示されるように複合材ラグ1に応力が発生する。すなわち、端末部10でブッシング9の周囲に巻掛けられ、中間部11で長手方向Xに延びる経糸2によって、中間部11および端末部10から中間部11にわたって長手方向Xに引張応力S1,S2が生じるとともに、端末部10で周方向に引張応力S3が生じる。また経糸2が引張られることによって、端末部10には放射状に圧縮応力P1が作用する。
【0006】
また前記ボルトを介して複合材ラグ1に長手方向Xに圧縮荷重Fbが作用すると、図31(b)に示されるように複合材ラグ1に応力が発生する。すなわち、中間部11に、ブッシング9を中心として放射状に圧縮応力P2が生じるとともに、長手方向Xに圧縮応力P3が生じる。
【0007】
このような第1の従来技術では、端末部10でブッシング9の周囲に同心円上に張架され、かつ中間部11で長手方向Xに張架される経糸2によって、引張力Faに抗する大きな強度を達成し得るが、端末部10では経糸2が同心円状に張架されるので、端末部10のブッシング9周縁部での繊維体積含有率Vf が局所的に高くなり、そのために複合材ラグ1全体の繊維体積含有率Vf を高くすることが困難となり、部材全体として比強度も高くできない。
【0008】
また中間部11では、3次元織物製作治具6のピン12が長手方向Xおよび幅方向Yに平行な格子状配列でよいのに比べて端末部10では、経糸2および緯糸3を巻掛けるためのピン12を円弧状ないしは放射状に配列しなければならないため、中間部11とは異なるピン配列を必要とし、3次元織物製作治具6の製造に手間がかかり、3次元織物製作治具6の製造コストも高価になってしまう。また3次元織物製作治具6の汎用性も低くなる。このような位置によって繊維体積含有率Vf が異なる複合材ラグ1に対して、繊維体積含有率Vf の均一な複合材ラグを次に示す。
【0009】
図32は、第2の従来技術の複合材ラグ29の繊維配向状態を簡略化して示す一部の正面図である。複合材ラグ29は、予め強化繊維に合成樹脂を含浸させて半硬化状態にした形成材料であるプリプレグ43~46を積重させて形成される2次元繊維複合材である。プリプレグ43は、図33(1)に示され、バイアス方向B1に複数のバイアス糸32が一様に張架され、プリプレグ44は、図33(2)に示され、バイアス方向B2に複数のバイアス糸33が一様に張架され、プリプレグ45は、図33(3)に示され、長手方向Xに複数の経糸30が一様に張架され、プリプレグ46は、図33(4)に示され、複数の緯糸31が幅方向Yに一様に張架される。このような各プリプレグ43~46は、長手方向に一様に張架された強化繊維に合成樹脂を含浸させた帯状のプリプレグテープを切って幅方向に並べて形成される。たとえばプリプレグ44の場合には、強化繊維が所定領域全面にわたってバイアス方向B2に一様に張架されるように複数のプリプレグテープを幅方向に並べて形成される。他のプリプレグ43,45,46の場合も同様である。このような各プリプレグの積重順序の一例を参照符で最上層から示すと、43/44/45/46/46/45/44/43となり、この状態は図34に示される。このように積重した後、加熱硬化させ、透孔47を形成し、ブッシング36が嵌着されて複合材ラグ29は形成される。このような複合材ラグ29では図28に示される複合材ラグ1と異なり、部材全体で繊維体積含有率Vf が均一となる。
【0010】
複合材ラグ29に引張荷重Faが作用すると、複合材ラグ29には図35(a)に示されるように応力が発生する。すなわち中間部35には長手方向Xに引張応力S4が発生し、端末部34にはブッシング36を中心としてバイアス方向B1,B2および幅方向Yに引張応力S5,S6,S7が発生するとともに、これらの引張応力S5,S6に交差する方向に圧縮応力P3,P4,P5が発生する。また、複合材ラグ29に圧縮荷重Fbが作用すると、図35(b)に示されるように、中間部35で長手方向Xに圧縮応力P6が生じ、ブッシング36を中心として放射状に圧縮応力P7が発生する。
【0011】
このような複合材ラグ29では、引張荷重Faが作用したとき、経糸30が多い場合には、端末部34に図32の参照符41で示されるように剪断破壊が生じ、また経糸30が少ない場合には、ブッシング36の幅方向Y両側で参照符42で示されるように、引張破壊が生じる。前記剪断破壊を防止するためには、端末部34の長手方向Xの長さL1を大きくして引張荷重Faをうけもつ面積を大きくすればよいが、複合材ラグ29が大形化してしまう。また前記引張破壊を防止するためには、複合材ラグ29のブッシング36の幅方向Y両側の幅L2,L3を大きくして経糸30を多くすればよいが、この場合も複合材ラグ29が大形化してしまう。しかも前記剪断破壊および引張破壊は、破壊モードが脆性的であるため、機械要素として扱いにくく、適用部位が制限されるという問題がある。
【0012】
図36は、第3の従来技術の複合材ラグ13の一部を示す斜視図である。この複合材ラグ13は、厚み方向Zに挿通する金属製のブッシング21が嵌着される面圧部22と、面圧部22の幅方向Y両側に連なり、長手方向Xに延びる一対の軸力部23,24と、面圧部22および各軸力部23,24の長手方向Xの一端部に連なる端末部25とに応力分担領域が分割され、図37(a)~図37(m)に示される各プリプレグ13a~13mが選択的に積重されて形成される2次元繊維複合材である。各プリプレグ13a~13mは図37に示されるように、各応力分担領域が組合せられ、それぞれのプリプレグ13a~13mに経糸14、緯糸15またはバイアス糸16,17のうちのいずれか1つが一様に平行に張架される。複合材ラグ13は、厚み方向Zに上下対称であるので、プリプレグ13a~13mの積重の組合せの一例を最上層から中央まで、各プリプレグの参照符を省略し、アルファベットのみで順に示すと、h/i/h/i/k/j/(a+b)/(a+c)/(a+e+m)/(d+f)となり、中央から最下層までは上記の組合せの逆となる。このように各プリプレグ13a~13mを積重させた後、加熱硬化させ、面圧部22に透孔を形成してブッシング21を嵌着させて複合材ラグ13は形成される。
【0013】
このようにして形成された複合材ラグ13の面圧部22には、経糸14、緯糸15およびバイアス糸16,17の総繊維が占める繊維体積含有量に対して、バイアス糸16,17は80%、経糸14は10%、緯糸15は10%含有され、軸力部23,24には、前記繊維体積含有量に対して、経糸14は50%、緯糸15は10%、バイアス糸16,17は40%含有され、端末部25には、前記繊維体積含有量に対して、経糸14は20%、緯糸15は20%、バイアス糸16,17は60%含有される。
【0014】
このような複合材ラグ13に引張荷重Faが作用すると、図38(a)に示されるように、面圧部22に引張応力S11が発生するとともに、面圧部22から端末部25にわたってブッシング21を中心として圧縮応力P9が長手方向Xに発生するとともに、バイアス方向B1,B2に圧縮応力P10,P11が発生する。また端末部25内には、幅方向Yに引張応力S12が発生するとともに、バイアス方向B1,B2に引張応力S13,S14が発生し、端末部25から各軸力部23,24にわたって引張応力S15,S16が発生するとともに、軸力部23,24内で引張応力S17,S18が発生する。
【0015】
またブッシング21を介して複合材ラグ13に圧縮荷重Fbが作用すると、面圧部22内に圧縮応力P11が発生するとともに面圧部22から軸力部23にわたってバイアス方向B1に圧縮応力P12が発生し、面圧部22から軸力部24にわたってバイアス方向B2に圧縮応力P14が発生し、各軸力部23,24内に圧縮応力P15,P16が発生する。
【0016】
このような複合材ラグ13では、各応力分担領域22~25内の繊維体積含有率Vf が相互に均一で、かつ図32に示される複合材ラグ29に比べて端末部25で経糸14が選択的に少なく、軸力部23,24で経糸14が選択的に多く含有されるので、複合材ラグ13の構成が大形化することなく剪断破壊および引張破壊に抗することができる。
【0017】
【発明が解決しようとする課題】
しかしながら上述の複合材ラグ13では、たとえば図37に示されるプリプレグ13aとプリプレグ13b,13cまたは13mとの組合せにおいて、端末部25と各軸力部23,24との境界部で繊維が途切れ、不連続となる。したがって複合材ラグ13に引張荷重Faが作用すると、前記境界部ではマトリックスの強度までしか引張荷重Faに耐えることができず、複合材ラグ13全体としての強度が低くなる。
【0018】
本発明の目的は、繊維体積含有率が均一で強度が向上し、容易に製造することができるようにした3次元繊維強化複合材ラグの製造方法を提供することである。
【0019】
【課題を解決するための手段】
請求項1記載の本発明は、仮想一平面上で、長手方向に平行に張架される経糸と、長手方向に垂直な幅方向に平行に張架される緯糸と、長手方向または幅方向に関して交差するバイアス方向に平行に張架されるバイアス糸とを、前記仮想一平面に垂直な厚み方向に挿入される垂直糸によって結合して3次元織物が形成され、この3次元織物にマトリックスを充填して一体化させた3次元繊維強化複合材ラグの製造方法において、
前記仮想一平面上で経糸、緯糸およびバイアス糸のいずれかを、予め定める複数の応力分担領域毎に、各応力分担領域に隣接する他の応力分担領域にわたって主たる発生応力に抗する方向に張架して、相互に異なる配向パターンを有する複数の2次元配列糸層が形成され、各2次元配列糸層は、各応力分担領域の前記発生応力に抗する必要強度に応じ、かつ各応力分担領域の繊維体積含有率が相互に均等になるように選択的に積重して3次元織物を形成し、この3次元織物にマトリックスを充填して加熱加圧して硬化させることを特徴としている。
【0020】
本発明に従えば、経糸、緯糸およびバイアス糸によって相互に異なる配向パターンを有する複数の2次元配列糸層を積重し、垂直糸を厚み方向に挿入して各2次元配列糸層を結合して3次元織物が形成される。この3次元織物にマトリックスを充填して、3次元繊維強化複合材ラグが形成される。経糸、緯糸およびバイアス糸のいずれかは互いに隣接する応力分担領域にわたって、主たる発生応力に抗する方向に張架される。このように、応力分担領域間の境界部で繊維が途切れることなく連続しているので、複合材ラグに引張荷重が作用したとき、複合材ラグは繊維の強度まで引張荷重に耐えることができ、局所的に複合材ラグの強度が低下することが防がれる。このようにして複合材ラグは繊維の張架方向に作用する引張応力および圧縮応力に抗することができ、強度が向上する。
【0021】
また各2次元配列糸層は、各応力分担領域の発生応力に抗する必要強度に応じて選択的に積重されるので、所望の強度を有する部材を容易に製造することができ、さらに2次元配列糸層の組合せを変えることによって、容易に他の必要強度に応じた部材を製造することができ、高い汎用性を有する。
【0022】
また各2次元配列糸層は、各応力分担領域における繊維体積含有率が相互に均等になるように選択的に積重されるので、複合材ラグ全体での繊維体積含有率が均一になり、かつ高い繊維体積含有率の複合材ラグを容易に製造することができ、これによって複合材ラグの比強度を高めることができる。
【0023】
さらに、請求項1記載の本発明の前記予め定める複数の応力分担領域は、厚み方向に貫通する透孔を形成してブッシングが嵌着される面圧部と、面圧部の幅方向両側に連なり、長手方向に延びる一対の軸力部と、面圧部および各軸力部の長手方向に連なる端末部と、各軸力部間で、各軸力部に幅方向に連なりかつ面圧部の長手方向他端部に連なって長手方向に延びる中間部とに分割されることを特徴とする。
【0024】
本発明に従えば、面圧部には透孔が形成され、この透孔にブッシングが嵌着される。このブッシングにたとえばボルトなどが嵌まり込み、このボルトを介して複合材ラグの長手方向に引張荷重が作用すると、各軸力部および面圧部から中間部にわたって複合材ラグの長手方向に引張応力が発生するとともに、面圧部から端末部にわたり、ブッシングを中心として放射状に圧縮応力が発生し、端末部内でブッシングを中心として周方向に引張応力が発生する。このとき、端末部から軸力部にわたって繊維が途切れることなく張架されるので、端末部内の引張応力は繊維を介して各軸力部に有効に伝達する。これによって、複合材ラグの強度が向上する。面圧部から各軸力部にわたって張架される繊維によっても同様に、有効に引張応力および圧縮応力が各軸力部に伝達される。
【0025】
請求項記載の本発明の面圧部は、経糸、緯糸、バイアス糸および垂直糸の総繊維が占める繊維体積含有量に対して、少なくとも70%のバイアス糸を含有することを特徴とする。
【0026】
本発明に従えば、面圧部には少なくとも70%のバイアス糸が含有されるので、面圧部に発生する引張応力および圧縮応力は効果的に面圧部から軸力部へ伝達され、複合材ラグの強度が向上する。
【0027】
請求項記載の本発明の軸力部は、経糸、緯糸、バイアス糸および垂直糸の総繊維が占める繊維体積量に対して、45~70%の経糸と、30~55%のバイアス糸とを含有することを特徴とする。
【0028】
本発明に従えば、軸力部には30~55%のバイアス糸が含有されるので、面圧部および端末部に発生する引張応力および圧縮応力が有効に軸力部に伝達され、また軸力部全面に効率よく分散される。またこの軸力部には軸力部の長手方向に延びる経糸が45~70%含有されるので、複合材ラグに作用する引張および圧縮力に対して大きな強度を有する。このように軸力部に多くの経糸が含有されることにより、ブッシングを介して複合材ラグの長手方向に引張力が作用したときに生じる引張破壊を防止することができ、軸力部の幅を大きくして部材の形状を大形化することなく、長手方向への引張りに抗することができる。
【0029】
請求項記載の本発明の端末部は、経糸、緯糸、バイアス糸および垂直糸の総繊維が占める繊維体積含有量に対して、50~80%のバイアス糸と、20~50%の経糸および緯糸とを含有することを特徴とする。
【0030】
本発明に従えば、端末部には50~80%のバイアス糸と20~50%の経糸および緯糸が含有されるので、これによって面圧部に作用する荷重が端末部に伝達されたとき、この荷重を効果的に軸力部へ伝達することができ、複合材ラグの強度が向上する。またこの端末部には、50~80%のバイアス糸が含有されるので、ブッシングを介して複合材ラグに引張荷重が作用したとき端末部に発生する圧縮応力による剪断破壊を防止することができる。
【0031】
請求項記載の本発明の中間部は、経糸、緯糸、バイアス糸および垂直糸の総繊維が占める繊維体積含有量に対して、少なくとも70%のバイアス糸を含有することを特徴とする。
【0032】
本発明に従えば、中間部には少なくとも70%のバイアス糸が含有されるので、面圧部および各軸力部に発生する引張応力および圧縮応力が中間部に効果的に伝達され、複合材ラグの強度が向上する。
【0033】
【発明の実施の形態】
図1は本発明の実施の一形態の製造方法によって製造された3次元繊維強化複合材ラグ50を示す正面図であり、図2は図1の切断面線II-IIから見た断面図であり、図3は図1の切断面線III-IIIから見た断面図である。図1の紙面に平行な仮想一平面上で、複合材ラグ50の長手方向Xに平行に張架される経糸51と、長手方向Xに垂直な幅方向Yに平行に張架される緯糸52と、長手方向Xに関して±45°でそれぞれ交差する各バイアス方向B1,B2に張架されるバイアス糸53,54が、所定の配向パターンに張架されて2次元配列糸層が形成され、互いに異なる配向パターンを有する2次元配列糸層が必要強度に応じ、かつ繊維体積含有率Vf が相互に均等になるように、選択的に積重され、その後前記仮想一平面に垂直な厚み方向Zに交互に折返した状態で挿入される垂直糸62によって各2次元配列糸層が結合されて3次元織物が形成される。この3次元織物にマトリックス61を充填して一体化させて複合材ラグ50は形成される。2次元配列糸層は複数の応力分担領域に分割され、経糸51、緯糸52およびバイアス糸53,54のいずれかは、各応力分担領域に隣接する他の応力分担領域にわたって主たる発生応力に抗する方向に張架される。
【0034】
前記予め定める複数の応力分担領域は、厚み方向Zに貫通する透孔55を形成して金属製のブッシング56a,56bが嵌着され、複合材ラグ50の長手方向X一端部(図1の左方)および複合材ラグ50の長手方向X他端部付近にそれぞれ設けられる面圧部57a,57bと、面圧部57a,57bの幅方向Yの両側に連なり、長手方向Xに延びる一対の軸力部58a,58bと、面圧部57aおよび各軸力部58a,58bの長手方向X一端部に連なる端末部59aと、面圧部57bおよび各軸力部58a,58bの長手方向X他端部に連なる端末部59bと、各軸力部58a,58b間で、各軸力部58a,58bに幅方向Yに連なり、かつ各面圧部57a,57bの長手方向Xに連なって長手方向Xに延びる中間部60とに分割される。
【0035】
経糸51、緯糸52、バイアス糸53,54および垂直糸62は、たとえばガラス、炭素、ボロン、アルミナ、チタン酸カリウム、シリカまたはジルコニアなどの無機繊維、あるいは全芳香族ポリアミド(アラミド)、全芳香族ポリエステル、超高分子量ポリエチレン、高強度ビニロンまたは高強度アクリルなどの有機繊維、あるいは鋼またはステンレス鋼などの金属繊維などから成り、マトリックス61としてはフェノール樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ビスマレイミド(BMI)またはビニルエステル樹脂などの熱硬化性樹脂、あるいはポリアミド(PA)、ポリアセタール(POM)、ポリブチレンテレフタレート(PBT)、ポリカーボネート(PC)、ポリフェニレンサルファイド(PPS)、ポリエーテルスルホン(PES)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)またはポリアミドイミド(PAI)などの熱可塑性樹脂から成る。
【0036】
複合材ラグ50の中間部60の幅L4はたとえば40mmに選ばれ、各軸力部58a,58bの幅L5はたとえば15mmに選ばれ、ブッシング56a,56bが嵌着される透孔55の直径Dはたとえば30mmに選ばれる。
【0037】
次に図4~図26に、相互に異なる2次元配列糸層の各配向パターンA1~F2を図示する。各配向パターンA1~F2は、3次元織物製作治具65上に糸を張架させて形成される。この3次元織物製作治具65は、複合材ラグ50よりも大きい平面形状を有する基板66と、この基板66上に立設される複数の筒状のピン67とから成り、このピン67は格子状に一様に基板66上に立設される。各配向パターンA1~F2は、これらのピン67間に糸を張架させて形成される。
【0038】
図4は、パターンA1の配向パターンを示す正面図である。パターンA1では一本の糸70が折返されて、バイアス方向B1に平行に複合材ラグ50を覆うように全面に一様に張架される。このような糸70によって、面圧部57a,57bに発生する引張応力は、隣接する応力分担領域に伝達される。パターンA1では一本の糸70を折返して張架したが、一本に限らず二本以上の糸を折返して一様に張架してもよく、また複数の糸を折返さず一様に張架してもよい。これらは適宜選択して使い分けてよい。以下の配向パターンについても同様である。
【0039】
図5はパターンA2の配向パターンを示す正面図であり、パターンA2は図4のパターンA1を左右反転させたものであり、糸70がバイアス方向B2に平行に一様に張架される。
【0040】
図6はパターンA3の配向パターンを示す正面図であり、パターンA3は中間部60を避けて糸106,113が折返されてバイアス方向B1に一様に張架される。図7はパターンA4の配向パターンを示す正面図であり、パターンA4は図6のパターンA3を左右反転させたものであり、糸106,113がバイアス方向B2に一様に張架される。
【0041】
図8は、パターンB1の配向パターンを示す正面図である。パターンB1では、端末部59aでバイアス方向B1に張架される糸71が、軸力部58aとの境界線72で折返され、軸力部58a内で長手方向Xに張架され、さらに端末部59bとの境界線73で折返されて端末部59b内で再びバイアス方向B1に張架される。端末部59aから面圧部57aにバイアス方向B1に入る糸78は、各面圧部57a,57bおよび中間部60と、各軸力部58a,58bとの境界線76,77間で折返され、面圧部57a,57b、中間部60および各端末部59a,59b内でバイアス方向B1に一様に張架され、軸力部58b内で長手方向Xに一様に張架される。このような糸71,78によって、端末部59a,59b内のバイアス方向B1の引張応力は各軸力部58a,58bに伝達される。
【0042】
図9は、パターンB2の配向パターンを示す正面図である。パターンB2は、図8に示されるパターンB1に類似し、端末部59aにバイアス方向B1に入る糸83は、パターンB1の糸71と同様であり、パターンB2の糸84は、パターンB1の糸78と一部異なり、中間部60を避けて端末部59a,59bおよび面圧部57a,57b内でバイアス方向B1に一様に張架され、軸力部58bで長手方向Xに一様に張架される。
図10はパターンB3の配向パターンを示す正面図であり、パターンB3は、図8に示されるパターンB1の上下を反転したものである。図11はパターンB4の配向パターンを示す正面図であり、パターンB4は図9に示されるパターンB2の上下を反転したものである。図12はパターンB5の配向パターンを示す正面図であり、パターンB5は図11に示されるパターンB4を左右に反転したものである。図13はパターンB6の配向パターンを示す正面図であり、パターンB6は図9に示されるパターンB2を左右に反転したものである。
【0043】
軸力部58a,58bでは長手方向Xに張架し、それ以外ではバイアス方向B1,B2に張架する場合には、軸力部58a,58bで長手方向Xに張架され、それ以外では、バイアス方向B1に張架されるパターンB1と、軸力部58a,58b以外ではバイアス方向B2に張架されるパターンB3とを組合わせる。この際、軸力部58a,58bとの境界線76,77上の各ピン67上で折返される糸はパターンB1とパターンB3とでは互いに1ピッチずれているので、パターンB1とパターンB3とを組合わせたときに、境界線76,77のピン67に作用する荷重が分散される。
【0044】
中間部60には糸が張架されず、軸力部58a,58bでは長手方向Xに、それ以外ではバイアス方向B1,B2に張架される場合には、パターンB2とパターンB6とを、またはパターンB4とパターンB5とを組合わせる。この場合も前述と同様に境界線76,77上のピン67に作用する荷重が分散される。
【0045】
図14は、パターンC1の配向パターンを示す正面図である。端末部59aと軸力部58aとの境界線72寄りの端末部59aから幅方向Yに入る糸78は、複数回折返されて端末部59a内で幅方向Yに張架され、面圧部57a、中間部60および面圧部57b内で、境界線75,76上で複数回折返されてバイアス方向B1に一様に張架され、端末部59b内で複数回幅方向Yに折返されて幅方向Yに張架されて下方から出る。
【0046】
糸88は、軸力部58a内で複数回折返されて長手方向Xに一様に張架され、端末部59b内で複数回折返されて幅方向Yに一様に張架される。糸91は、前述の糸88と対称に張架され、軸力部58b内で複数回折返されて長手方向Xに一様に張架され、端末部59a内で幅方向Yに複数回折返されて、端末部59a内で幅方向Yに一様に張架される。
【0047】
図15は、パターンC2の配向パターンを示す正面図である。パターンC2は前述のパターンC1に類似し、糸92はパターンC1の糸88と同様に、軸力部58a内で長手方向Xに一様に張架され、端末部59b内で幅方向Yに一様に張架される。糸93は、パターンC1の糸91と同様に、軸力部58b内で長手方向Xに一様に張架され、端末部59a内で幅方向Yに一様に張架される。端末部59aに上方から面圧部57aの左端寄りから入る糸94は、端末部59a内で、幅方向Yに張架され、軸力部58a寄りの端部から面圧部57a内に入り、バイアス方向B1に折返されて、面圧部57a、中間部60および面圧部57b内で複数回折返されてバイアス方向B1に一様に張架され、面圧部57bの右端部に達すると幅方向Yに折返され、端末部59b内で複数回折返されて幅方向Yに張架され、端末部59bの軸力部58b寄りの端部から下方に出される。
【0048】
図14および図15に示されるパターンC1およびパターンC2は互いに類似した配列パターンであるが、境界線76,77上で折返され面圧部57a,57bおよび中間部60内で張架される糸78,94は、パターンC1とパターンC2とでは折返されるピン67が、境界線76,77上で互いに1ピッチずれているので、パターンC1とパターンC2の2次元配列糸層を組合せることによって、張架した糸78,94によって境界線76,77上のピン67に作用する荷重が分散される。
【0049】
図16は、パターンC3の配向パターンを示す正面図である。パターンC3は図14に示されるパターンC1に類似し、糸90はパターンC1の糸91に上下対称に張架され、軸力部58a内で長手方向Xに張架され、端末部59a内で幅方向Yに張架される。また糸95は、パターンC1の糸88に上下対称に張架され、軸力部58b内で長手方向Xに張架され、端末部59b内で幅方向Yに張架される。また端末部59bの左端部の上方から入る糸96は、パターンC1の糸78に左右対称に張架され、端末部59b内で幅方向Yに張架され、面圧部57b、中間部60および面圧部57a内でバイアス方向B2に一様に張架され、端末部59a内で幅方向Yに張架されて下方から出される。
【0050】
図17は、パターンC4の配向パターンを示す正面図である。パターンC4は図15に示されるパターンC2に類似し、糸97はパターンC2の糸93に上下対称に張架され、軸力部58a内で長手方向Xに張架され、端末部59a内で幅方向Yに張架される。また糸98は、パターンC2の糸92に上下対称に張架され、軸力部58b内で長手方向Xに張架され、端末部59b内で幅方向Yに張架される。また糸99は、パターンC2の糸94に左右対称に張架され、端末部59b内で幅方向Yに張架され、面圧部57b、中間部60および面圧部57a内でバイアス方向B2に一様に張架され、端末部59a内で幅方向Yに張架される。
【0051】
パターンC3とパターンC4とは類似しているが、境界線76,77上のピン67で折返される糸96,99は、互いに1ピッチずれているので、パターンC3とパターンC4とを組合せることによって、境界線75,76上のピン67に作用する荷重が分散される。
【0052】
同様に、軸力部58aと各端末部59a,59bとの境界線72,73および軸力部58bと各端末部59a,59bとの境界線74,75に関しても、パターンC1またはパターンC2と、パターンC3またはパターンC4とを組合せることによって、境界線72~75上のピン67に作用する荷重が分散される。
【0053】
図18はパターンC5の配向パターンを示す正面図であり、パターンC5は図14に示されるパターンC1に類似し、糸78が中間部60を避けて張架される点が異なる。図19はパターンC6の配向パターンを示す正面図であり、パターンC6は図15に示されるパターンC2に類似し、糸94が中間部60を避けて張架される点が異なる。図20はパターンC7の配向パターンを示す正面図であり、パターンC7は図16に示されるパターンC3に類似し、糸96が中間部60を避けて張架される点が異なる。図21はパターンC8の配向パターンを示す正面図であり、パターンC8は図17に示されるパターンC4に類似し、糸99が中間部60を避けて張架される点が異なる。これらのパターンC5~C8も、前述のパターンC1~C4と同様に、互いに組合せることによって境界線72~77上のピン67に作用する荷重を分散させることができる。
【0054】
図22は、パターンD1の配向パターンを示す正面図である。パターンD1では、一本の糸100が折返されるか、複数の糸が一様に長手方向Xに張架される。このような糸100によって、複合材ラグ50の長手方向Xへの引張荷重Faに大きな力で抗することができる。
【0055】
図23はパターンD2の配向パターンを示す正面図であり、パターンD2は図22に示されるパターンD1に類似し、糸107,108が中間部60を避けて張架される点が異なる。
【0056】
図24は、パターンEの配向パターンを示す正面図である。端末部59aの左方から入る糸108は、端末部59a、軸力部58aおよび端末部59b内で長手方向Xに張架され、端末部59bの右方から入る糸110は端末部59b、軸力部58bおよび端末部59a内で長手方向Xを一様に張架される。
【0057】
図25は、パターンF1の配向パターンを示す正面図である。軸力部58aの左端部へ上方から入る糸103は、面圧部57a寄りのピン104に巻掛けられて長手方向Xに張架され、軸力部58a内で複数回折返されて軸力部58a内で長手方向Xに一様に張架される。また軸力部58bの左端部から上方に入る糸105は、糸103に上下対象に張架され、面圧部57a寄りのピン106に巻掛けられて長手方向Xに張架され、軸力部58b内で複数回折返されて軸力部58b内で長手方向Xに一様に張架される。
【0058】
図26はパターンF2の配向パターンを示す正面図であり、パターンF2は図25に示されるパターンF1に類似し、軸力部58aの右端部から下方に入る糸107は、パターンF1の糸103に左右対称に張架され、軸力部58bの右端部から上方に入る糸108は、パターンF1の糸105に左右対称に張架される。
【0059】
このように図25に示されるパターンF1と図26に示されるパターンF2とは類似しているが、境界線72~75上に配置されるピン67に巻掛けられる糸が、パターンF1とパターンF2とでは1ピッチずれているので、パターンF1とパターンF2とを組合せることによって前記ピン67に作用する荷重を分散させることができる。このようなパターンF1,F2は、軸力部58a,58bから端末部59a,59bにわたって糸が張架されていないが、これらのパターンF1,F2の2次元配列糸層は、複合材ラグ50の各軸力部58a,58bの厚みを調整するために補足的に積重する2次元配列糸層である。
【0060】
以上のようなパターンA1~F2の配向パターンを有する2次元配列糸層を選択的に積重し、垂直糸62によって各2次元配列糸層を結合することによって3次元織物が形成される。
【0061】
3次元織物製織治具65は長手方向Xおよび幅方向Yに間隔pをあけて格子状にピン67が立設されるので、図27(a),(b)に示されるように、互いに隣接する経糸51および緯糸52の間隔W1,W2は、W1=W2=pとなる。しかしながら、長手方向Xに対して±45°の角度で張架される各バイアス糸53,54の間隔W3,W4は、図27(c),(d)に図示されるようにW3=W4=p/√2となる。このとき、マトリックス61および各糸51~54を含む複合材に対する繊維の体積の割合である繊維体積含有率Vf を一定とし、繊維として経糸51または緯糸52のみを含む複合材の厚みをtとすると、繊維としてバイアス糸53または54のみを含む複合材の厚みは√2tとなる。したがって経糸51または緯糸52を含む2次元織物複合材と、バイアス糸53または54を含む2次元織物複合材との厚さの比率はほぼ1:√2になる。本実施形態の3次元織物にマトリックス61を充填して複合材ラグ50を形成する場合にも同様に、繊維体積含有率Vf は一定となるので、各2次元配列糸層を組合せる場合に、各部位の厚さが均等になるように選択して積重する必要があり、たとえば経糸51の割合が比較的多い軸力部58a,58bには、前述のパターンF1またはF2を積重させて厚みを調整する必要がある。なお、本実施形態の3次元織物製織治具65の各ピン67の格子間隔pは3mmである。
【0062】
次に上記の点を考慮した2次元配列糸層の組合せの1例を示す。また複合材ラグ50は厚み方向Zに関して対称なので、2次元配列糸層の組合せの例は最上層から厚み方向Z中央の層までを示し、厚み方向Z下方の層に関しては上方の層を逆転させた組合せとなり、省略する。
【0063】
したがって2次元配列糸層の各パターンA1~F2の組合せの1例を、最上層から中央層まで参照符で順に示すと、A3/E/C8/B2/A4/C5/F1/B4/A3/B6/D2/A4/B5/A1/E/C3/B1/A2/C2/F2/B3/A1/B3/D1/A2/B1となる。なおこの組合せにおいて、最上層から13層目までは中間部60が形成されておらず、14層目から26層目までは中間部60を含んだ2次元配列糸層である。このような組合せの2次元配列糸層を、3次元織物製作治具65上に順次積重させ、その後3次元織物製作治具65の端部のピン67に垂直糸62を挿通させ、このピン67を抜き、次に隣接するピン67に垂直糸62を折返し挿通し、垂直糸62と隣接するピン67とを順次交換して、全てのピン67を垂直糸62と交換して、各2次元配列糸層を垂直糸62によって結合して3次元織物が形成される。
【0064】
このように形成された3次元織物の面圧部57a,57bには、経糸51、緯糸52、バイアス糸53,54および垂直糸62の総繊維が占める繊維体積含有量に対して、少なくとも70%のバイアス糸53,54を含有し、軸力部58a,58bには、繊維体積含有量に対して45~70%の経糸51と、30~55%のバイアス糸53,54とを含有し、端末部59a,59bには、繊維体積含有量に対して50~80%のバイアス糸53,54と、20~50%の経糸51および緯糸52とを含有し、中間部60には、繊維体積含有量に対して少なくとも70%のバイアス糸53,54を含有する。
【0065】
このように形成された3次元織物は、金型に置いてその上からマトリックス61が充填され、加熱加圧硬化され、その後、各透孔55a,55bが形成されて、この透孔55a,55bに金属性のブッシング56a,56bがそれぞれ嵌着され、外周が加工されて複合材ラグ50は製造される。
【0066】
このようにして製造された複合材ラグ50に、ブッシング56a,56bを介して互いに離反する方向に引張荷重Faが作用すると、図28(a)に示されるように応力が発生する。すなわち、面圧部57aおよび中間部60で引張応力S2が発生するとともに、ブッシング56aを中心とし、面圧部57aから端末部59aにわたって長手方向Xに圧縮応力P20が発生するとともに、バイアス方向B1,B2方向に圧縮応力P21,P22が発生する。さらに端末部59a内では、幅方向Yに引張応力S21が発生するとともに、バイアス方向B1,B2に引張応力S22,S23が発生し、さらに端末部59aから軸力部58aおよび58bにわたって引張応力S24,S25が発生し、軸力部58a,58b内で引張応力S26,S27が発生する。またブッシング56a,56bを介して互いに近接する方向に複合材ラグ50に圧縮荷重Fbが作用すると、図28(b)に示されるように面圧部57aおよび中間部60に圧縮応力P23が発生するとともに、面圧部57aから軸力部58aおよび58bにわたって圧縮応力P24,P25が発生し、軸力部58a,58b内で圧縮応力P26,P27が発生する。
【0067】
図28(a)に示されるように、複合材ラグ50に引張荷重Faが作用したとしても、端末部59aから軸力部58a,58bにわたって糸が張架されるので、端末部59aに発生する引張応力は前記糸によって軸力部58a,58bに有効に伝達される。プリプレグによって形成される第3の従来技術の複合材ラグ13のように、端末部25と軸力部23,24との境界部で糸が途切れていないので、本実施形態の複合材ラグ50では、端末部59aと軸力部58a,58bとの境界部で強度が低下することなく、糸の強度まで引張荷重Faに耐えることができる。
【0068】
また複合材ラグ50に引張荷重Faまたは圧縮荷重Fbが作用したとき、ブッシング56a,56b近傍の応力は軸力部58a,58bに伝達されるので、中間部60の応力分担が少なくなる。したがって図3に示されるように中間部60の厚みT1は、複合材ラグ50の厚みT2の約半分になっており、複合材ラグ50の重量がこれによって軽減される。また中間部60は、長手方向X両端部が、バイアス方向B1,B2に平行でブッシング56a,56bに向けて凸となるように形成されるので、面圧部57a,57bに作用する引張および圧縮荷重Fa,Fbが有効に軸力部58a,58bに伝達される。
【0069】
また複合材ラグを第3の従来技術のようにプリプレグによって形成するのではなく、仮に3次元織物製織治具によって図29に示されるように面圧部57aと軸力部58a,58bとの境界部で糸を折返して3次元織物を形成し、マトリックスを充填して複合材ラグを形成したとしても、前記境界部ではマトリックスの強度までしか引張荷重に耐えることができず、複合材ラグ全体としての強度が低下し、本発明の効果は達成できない。
【0070】
また本実施形態の複合材ラグ50では、軸力部58a,58b、面圧部57a,57b、端末部59a,59bおよび中間部60での繊維体積含有率Vf が相互に均等になるように各2次元配列糸層が選択的に積重され、複合材ラグ50全体の繊維体積含有率Vf が均一となるので、部分的に繊維体積含有率Vf が低下するといったことが防がれ、比強度が向上し、これによって引張荷重Faおよび圧縮荷重Fbに大きな力で抗することができ、図28で示される第1の従来技術のように比強度が低下すると言った問題が解消される。また各2次元配列糸層を、前述のようにパターンB1~B6、C1~C8およびパターンF1,F2を組合せることによって、境界線72~77上の各ピン67に作用する荷重が分散される。また、ピン67が3次元織物製作治具65上で一様に立設されるので、ブッシング56が挿通される透孔55の位置が変わるなど、複合材ラグ50の形状が変化したとしても、3次元織物製作治具65を新規に製作する必要なく、3次元織物製作治具65の汎用性が高くなる。
【0071】
また軸力部58a,58bには多くの経糸51が含まれるので、軸力部58a,58bの幅L5を大きくすることなく、引張荷重Faによる引張破壊に充分に抗することができ、複合材ラグ50の小形化を図ることができる。また端末部59a,59bには経糸51に比べて多くのバイアス糸53,54が含まれるので、端末部59a,59bの長手方向Xの長さを大きくすることなく剪断破壊に抗することができる。
【0072】
【発明の効果】
請求項1記載の本発明によれば、経糸、緯糸およびバイアス糸のいずれかは互いに隣接する応力分担領域にわたって、主たる発生応力に抗する方向に張架される。このように、応力分担領域間の境界部で繊維が途切れることなく連続しているので、複合材ラグに引張荷重が作用したとき、複合材ラグは繊維の強度まで引張荷重に耐えることができ、局所的に複合材ラグの強度が低下することが防がれる。このようにして複合材ラグは繊維の張架方向に作用する引張応力および圧縮応力に抗することができ、強度が向上する。
【0073】
また各2次元配列糸層は、各応力分担領域の発生応力に抗する必要強度に応じて選択的に積重されるので、所望の強度を有する部材を容易に製造することができ、さらに2次元配列糸層の組合せを変えることによって、容易に他の必要強度に応じた部材を製造することができ、高い汎用性を有する。
【0074】
また各2次元配列糸層は、各応力分担領域における繊維体積含有率が相互に均等になるように選択的に積重されるので、複合材ラグ全体での繊維体積含有率が均一になり、かつ高い繊維体積含有率の複合材ラグを容易に製造することができ、これによって複合材ラグの比強度を高めることができる。
【0075】
さらに、請求項1記載の本発明によれば、端末部から軸力部にわたって繊維が途切れることなく張架されるので、端末部内の引張応力は繊維を介して各軸力部に有効に伝達する。これによって、複合材ラグの強度が向上する。面圧部から各軸力部にわたって張架される繊維によっても同様に、有効に引張応力および圧縮応力が各軸力部に伝達される。
【0076】
請求項記載の本発明によれば、面圧部には少なくとも70%のバイアス糸が含有されるので、面圧部に発生する引張応力および圧縮応力は効果的に面圧部から軸力部へ伝達され、複合材ラグの強度が向上する。
【0077】
請求項記載の本発明によれば、軸力部には30~55%のバイアス糸が含有されるので、面圧部および端末部に発生する圧縮応力および引張応力が有効に軸力部に伝達され、また軸力部全面に効率よく分散される。またこの軸力部には軸力部の長手方向に延びる経糸が45~70%含有されるので、複合材ラグに作用する引張および圧縮力に対して大きな強度を有する。このように軸力部に多くの経糸が含有されることにより、ブッシングを介して複合材ラグの長手方向に引張力が作用したときに生じる引張破壊を防止することができ、軸力部の幅を大きくして部材の形状を大形化することなく、長手方向への引張りに抗することができる。
【0078】
請求項記載の本発明によれば、端末部には50~80%のバイアス糸と20~50%の経糸および緯糸が含有されるので、これによって面圧部に作用する荷重が端末部に伝達されたとき、この荷重を効果的に軸力部へ伝達することができ、複合材ラグの強度が向上する。またこの端末部には、50~80%のバイアス糸が含有されるので、ブッシングを介して複合材ラグに引張荷重が作用したとき端末部に発生する圧縮応力による剪断破壊を防止することができる。
【0079】
請求項記載の本発明によれば、中間部には少なくとも70%のバイアス糸が含有されるので、面圧部および各軸力部に発生する圧縮応力および引張応力が中間部に効果的に伝達され、複合材ラグの強度が向上する。
【図面の簡単な説明】
【図1】 本発明の実施の一形態の製造方法によって製造された3次元繊維強化複合材ラグ50を示す正面図である。
【図2】 図1の切断面線II-IIから見た断面図である。
【図3】 図1の切断面線III-IIIから見た断面図である。
【図4】 パターンA1の配向パターンを示す正面図である。
【図5】 パターンA2の配向パターンを示す正面図である。
【図6】 パターンA3の配向パターンを示す正面図である。
【図7】 パターンA4の配向パターンを示す正面図である。
【図8】 パターンB1の配向パターンを示す正面図である。
【図9】 パターンB2の配向パターンを示す正面図である。
【図10】 パターンB3の配向パターンを示す正面図である。
【図11】 パターンB4の配向パターンを示す正面図である。
【図12】 パターンB5の配向パターンを示す正面図である。
【図13】 パターンB6の配向パターンを示す正面図である。
【図14】 パターンC1の配向パターンを示す正面図である。
【図15】 パターンC2の配向パターンを示す正面図である。
【図16】 パターンC3の配向パターンを示す正面図である。
【図17】 パターンC4の配向パターンを示す正面図である。
【図18】 パターンC5の配向パターンを示す正面図である。
【図19】 パターンC6の配向パターンを示す正面図である。
【図20】 パターンC7の配向パターンを示す正面図である。
【図21】 パターンC8の配向パターンを示す正面図である。
【図22】 パターンD1の配向パターンを示す正面図である。
【図23】 パターンD2の配向パターンを示す正面図である。
【図24】 パターンEの配向パターンを示す正面図である。
【図25】 パターンF1の配向パターンを示す正面図である。
【図26】 パターンF2の配向パターンを示す正面図である。
【図27】 経糸51、緯糸52、バイアス糸53,54の間隔W1~W4を示す正面図である。
【図28】 複合材ラグ50に引張荷重Faおよび圧縮荷重Fbが作用したときの発生応力を示す模式図である。
【図29】 境界部で折返された2次元配列糸層の繊維配向状態を簡略化して示す一部の正面図である。
【図30】 第1の従来技術である複合材ラグ1の繊維配向状態を簡略化して示す一部の正面図である。
【図31】 複合材ラグ1に引張荷重Faおよび圧縮荷重Fbが作用したときの発生応力を示す模式図である。
【図32】 第2の従来技術である複合材ラグ29の繊維配向状態を簡略化して示す一部の正面図である。
【図33】 複合材ラグ29のプリプレグ43~46を示す正面図である。
【図34】 プリプレグ43~46の積重状態を示す分解斜視図である。
【図35】 複合材ラグ29に引張荷重Faおよび圧縮荷重Fbが作用したときの発生応力を示す模式図である。
【図36】 第3の従来技術である複合材ラグ13の一部を示す斜視図である。
【図37】 複合材ラグ13の各プリプレグ13a~13mを示す正面図である。
【図38】 複合材ラグ35に引張荷重Faおよび圧縮荷重Fbが作用したときの発生応力を示す模式図である。
【符号の説明】
50 3次元繊維強化複合材ラグ
51 経糸
52 緯糸
53,54 バイアス糸
55a,55b 透孔
56a,56b ブッシング
57a,57b 面圧部
58a,58b 軸力部
59a,59b 端末部
60 中間部
61 マトリックス
62 垂直糸
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11
【図13】
12
【図14】
13
【図15】
14
【図16】
15
【図17】
16
【図18】
17
【図19】
18
【図20】
19
【図21】
20
【図22】
21
【図23】
22
【図24】
23
【図25】
24
【図26】
25
【図27】
26
【図28】
27
【図29】
28
【図30】
29
【図31】
30
【図32】
31
【図33】
32
【図34】
33
【図35】
34
【図36】
35
【図37】
36
【図38】
37