TOP > 国内特許検索 > 照明制御装置および照明システム > 明細書

明細書 :照明制御装置および照明システム

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第5219016号 (P5219016)
公開番号 特開2008-243389 (P2008-243389A)
登録日 平成25年3月15日(2013.3.15)
発行日 平成25年6月26日(2013.6.26)
公開日 平成20年10月9日(2008.10.9)
発明の名称または考案の名称 照明制御装置および照明システム
国際特許分類 H05B  37/02        (2006.01)
FI H05B 37/02 D
H05B 37/02 B
H05B 37/02 G
請求項の数または発明の数 4
全頁数 29
出願番号 特願2007-078048 (P2007-078048)
出願日 平成19年3月26日(2007.3.26)
新規性喪失の例外の表示 特許法第30条第1項適用 2006年9月26日~27日 社団法人 日本機械学会主催の「第16回インテリジェント・システム・シンポジウム」の文書をもって発表
審査請求日 平成22年3月26日(2010.3.26)
特許権者または実用新案権者 【識別番号】503027931
【氏名又は名称】学校法人同志社
発明者または考案者 【氏名】三木 光範
【氏名】廣安 知之
【氏名】池田 聡
個別代理人の代理人 【識別番号】100068087、【弁理士】、【氏名又は名称】森本 義弘
【識別番号】100096437、【弁理士】、【氏名又は名称】笹原 敏司
【識別番号】100100000、【弁理士】、【氏名又は名称】原田 洋平
審査官 【審査官】谿花 正由輝
参考文献・文献 特開2004-288976(JP,A)
特開2005-183333(JP,A)
特開2006-302517(JP,A)
調査した分野 H05B 37/02
特許請求の範囲 【請求項1】
複数の照明機器の発光光度およびこれら照明機器の影響下に位置する照度測定装置からの測定照度および当該照度測定装置に設定された目標照度並びに照明機器の消費電力に基づき、測定照度が目標照度の設定許容範囲内に入るように制御する照明制御装置であって、
予め設定された複数の光度生成範囲のうち、所定の光度生成範囲内で変化される発光光度の変化量およびそれに対応して得られる測定照度の変化量に基づき、各照明機器が照度測定装置の測定照度に与える影響度合いを判断するための回帰係数を演算する回帰係数演算手段と、
この回帰係数演算手段で求められた回帰係数および目標照度に対する測定照度の偏差に基づき、次の発光光度を生成するための上記所定の光度生成範囲を選択する光度生成範囲選択手段と、
この光度生成範囲選択手段で選択された光度生成範囲内で変化される光度値でもって発光光度を生成する光度生成手段と、
この光度生成手段にて生成された発光光度、この発光光度での発光による測定照度、回帰係数、および照明機器の消費電力に基づき、上記生成された発光光度の良否を評価するための評価値を演算する評価値演算手段と、
照度測定装置が移動したことを検知し得る移動検知手段とを具備し、
さらに上記移動検知手段を、照度測定装置により取得した測定照度が目標照度の設定許容範囲内であるか否かを判断する照度値判断部と、この照度値判断部にて目標照度の設定許容範囲から外れていると判断された場合には、その継続回数をカウントするカウント部と、このカウント部からのカウント数を入力して設定回数と比較して超える場合には移動と判断する移動判断部と、この移動判断部にて移動中であると判断された場合に、回帰係数の演算をリセットするリセット部とから構成したことを特徴とする照明制御装置。
【請求項2】
回帰係数演算手段は、
回帰係数に対する補正値を求める推定誤差共分散の逐次演算と、この補正値を用いて推定値である回帰係数の逐次演算とを有し、入力値である光度変化量を基準としたときの観測値である照度変化量の観測予測誤差を最小とする推定値である回帰係数を再帰的に推定する逐次型最小二乗法を用いるもので、
下記(1)式に基づき、或る時刻(演算ステップに相当する)(k)における入力値x(k)、前の時刻(前回の演算ステップに相当する)(k-1)における推定値の誤差共分散P(k)および観測雑音wの共分散R(k)を用いて、観測値の予測誤差共分散S(k)を演算する観測予測誤差共分散演算部と、
下記(2)式に基づき、入力値x(k)、推定誤差共分散P(k-1)および観測予測誤差共分散S(k)を用いて、補正係数W(k)を演算する補正係数演算部と、
下記(3)式に基づき、推定誤差共分散P(k-1)、補正係数W(k)、観測予測誤差共分散S(k)を用いて、或る時刻(k)における推定誤差共分散P(k)を演算する推定誤差共分散演算部と、
下記(4)式に基づき、入力値x(k)および前の時刻における推定値β(k-1)を用いて、或る時刻における観測値の予測値*y(k)を演算する観測予測値演算部と(なお、記号「*」は、以下に示す式中において、この後に続く文字にハット記号が付されていることを示す、以下同じ)、
下記(5)式に基づき、或る時刻(k)における観測値y(k)および観測予測値*y(k)を用いて、観測値の予測誤差ε(k)を演算する観測予測誤差演算部と、
下記(6)式に基づき、前の時刻における回帰係数β(k-1)、補正係数W(k)および観測予測誤差ε(k)を用いて、或る時刻における推定値*β(k)を演算する推定値演算部と
を有することを特徴とする請求項1に記載の照明制御装置。
S(k)=x(k)P(k-1)S(k)+R(k) ・・・(1)
W(k)=P(k-1)x(k)S-1(k)+R(k) ・・・(2)
P(k)=P(k-1)-W(k)S(k)W(k) ・・・(3)
【数1】
JP0005219016B2_000015t.gif
【数2】
JP0005219016B2_000016t.gif
【数3】
JP0005219016B2_000017t.gif

【請求項3】
複数の照明機器と、これら各照明機器に対応して配置されて各照明機器で発光させる発光光度を制御する複数の照明制御装置と、上記各照明機器にて消費される消費電力を計測する電力計と、上記照明機器による照度を測定し得る照度測定装置と、上記各照明制御装置、電力計および照度測定装置との間で、所定データの受け渡しを行い得るデータ通信手段とを具備する照明システムであって、
上記照度測定装置は、
受光により照度値を検出し得る光センサ部と、目標照度を設定し得る目標照度設定部と、上記光センサ部にて測定された測定照度上記目標照度設定部で設定された目標照度、および当該照度測定装置の識別情報をデータ通信手段に出力するデータ出力部とから構成し、
上記照明制御装置は、
任意に変化される発光光度の変化量または所定の方法で変化される発光光度の変化量と測定照度の変化量とに基づき、各照明機器が照度測定装置の照度に与える影響度合いを判断するための回帰係数を演算する回帰係数演算手段と、
この回帰係数演算手段で求められた回帰係数および目標照度に対する測定照度の偏差に基づき、次に生成する光度範囲を選択する光度生成範囲選択手段と、
この光度生成範囲選択手段で選択された光度生成範囲内で任意に変化される光度値または所定の方法で変化される光度値でもって発光光度を生成する光度生成手段と、
この光度生成手段にて生成された発光光度、この発光光度での発光による測定照度、回帰係数、および照明機器の消費電力に基づき、当該生成された発光光度の良否を評価するための評価値を演算する評価値演算手段と、
上記照度測定装置の移動を検知し得る移動検知手段とを有し、
さらに上記移動検知手段を、照度測定装置により取得した測定照度が目標照度の設定許容範囲内であるか否かを判断する照度値判断部と、この照度値判断部にて目標照度の設定許容範囲から外れていると判断された場合には、その継続回数をカウントするカウント部と、このカウント部からのカウント数を入力して設定回数と比較して超える場合には移動と判断する移動判断部と、この移動判断部にて移動中であると判断された場合に、回帰係数の演算をリセットするリセット部とから構成したことを特徴とする照明システム。
【請求項4】
回帰係数演算手段は、
回帰係数に対する補正値を求める推定誤差共分散の逐次演算と、この補正値を用いて推定値である回帰係数の逐次演算とを有し、入力値である光度変化量を基準としたときの観測値である照度変化量の観測予測誤差を最小とする推定値である回帰係数を再帰的に推定する逐次型最小二乗法を用いるもので、
下記(1)式に基づき、或る時刻(演算ステップに相当する)(k)における入力値x(k)、前の時刻(前回の演算ステップに相当する)(k-1)における推定値の誤差共分散P(k)および観測雑音wの共分散R(k)を用いて、観測値の予測誤差共分散S(k)を演算する観測予測誤差共分散演算部と、
下記(2)式に基づき、入力値x(k)、推定誤差共分散P(k-1)および観測予測誤差共分散S(k)を用いて、補正係数W(k)を演算する補正係数演算部と、
下記(3)式に基づき、推定誤差共分散P(k-1)、補正係数W(k)、観測予測誤差共分散S(k)を用いて、或る時刻(k)における推定誤差共分散P(k)を演算する推定誤差共分散演算部と、
下記(4)式に基づき、入力値x(k)および前の時刻における推定値β(k-1)を用いて、或る時刻における観測値の予測値*y(k)を演算する観測予測値演算部と(なお、記号「*」は、以下に示す式中において、この後に続く文字にハット記号が付されていることを示す、以下同じ)、
下記(5)式に基づき、或る時刻(k)における観測値y(k)および観測予測値*y(k)を用いて、観測値の予測誤差ε(k)を演算する観測予測誤差演算部と、
下記(6)式に基づき、前の時刻における回帰係数β(k-1)、補正係数W(k)および観測予測誤差ε(k)を用いて、或る時刻における推定値*β(k)を演算する推定値演算部と
を有することを特徴とする請求項3に記載の照明システム。
S(k)=x(k)P(k-1)S(k)+R(k) ・・・(1)
W(k)=P(k-1)x(k)S-1(k)+R(k) ・・・(2)
P(k)=P(k-1)-W(k)S(k)W(k) ・・・(3)
【数4】
JP0005219016B2_000018t.gif
【数5】
JP0005219016B2_000019t.gif
【数6】
JP0005219016B2_000020t.gif
発明の詳細な説明 【技術分野】
【0001】
本発明は、任意の場所に適切な照度を提供し得る照明制御装置および照明システムに関するものである。
【背景技術】
【0002】
例えば、展示場、図書館、会議場などの広い部屋(空間室)の天井には、非常に多くの照明機器が配置されており、通常、各照明機器の発光光度は一定値にされている。
しかし、展示場、図書館などにあっては、物品の展示位置または利用者の好みにより、要求される照度が異なる場合があり、従来、このような要求に応じるものとして、個々の照明機器または小範囲のエリア毎の照明機器の光度を、手動にて調節するものがあったが、その調節作業は、非常に面倒であるという欠点があった。
【0003】
また、会議室などにあっては、照明機器の光度値が決められているが、経年変化などによりその光度が低下するため、やはり、定期的に照度を測定して調節する必要があり、やはり、その作業が非常に面倒であるという欠点があった。
【0004】
さらに、部屋に窓があると、差し込む日光により手元の照度が大きく変化するとともに、照明機器による発光をそれ程必要としない場合には、電力が無駄に消費されるという欠点があった。
【0005】
このような欠点に対処するものとして、照明機器からの発光光度による照度が目標照度に自動的に近づくように制御する照明システムが提案されている(例えば、特許文献1参照)。
【0006】
この照明システムは、少なくとも、制御部を有する照明機器と、照明箇所に配置されてその照度を測定するとともに各照明機器の制御部にその照度および利用者が設定した目標照度を送信するようにした照度測定装置つまり照度センサとが具備されたものである。
【0007】
例えば、図書館を例にして説明すると、利用者がその照度センサを持って或る場所に移動すると、その照度センサから目標照度および測定照度が制御部に送信され、この制御部にて、任意の照明機器に対する照度センサの位置関係を判断するとともに、照度センサからの目標照度に近づくように、その発光光度を制御するようにしたものである。
【0008】
そして、この位置関係を判断する際に、照明機器における光度の変化量と照度センサで測定された照度の変化量との類似度を考慮して行われており、具体的には、所定の光度範囲内でランダムに変化される光度の時系列データと、照度センサにより取得された照度の時系列データとの相関係数により、互いの類似度が判断されていた。
【0009】
すなわち、照度センサが複数ある場合、相関係数が1に近いほど、照明機器の光度による影響を最も受けており、言い換えれば、照明機器に近い位置に存在すると判断することにより、当該判断された照明機器について、その光度による照度が、目標照度に近づくように制御が行われるとともに、照明機器から遠いものについては、その光度を減らすように制御が行われている。

【特許文献1】特開2006-302517
【発明の開示】
【発明が解決しようとする課題】
【0010】
ところで、上述した照明システムの構成によると、照明機器に対する照度センサの位置関係を判断する際に相関係数が用いられているが、全ての判断が、精度良く行われるとは限らない。すなわち、相関係数は、2組のデータ列の傾向性が似ていることは判断できるが、照明機器と照度センサとの距離的な関係を常に正しく判断することができないという問題があった。
【0011】
そこで、本発明は、照明機器の発光光度を照度測定装置からの目標照度に制御するために、照明機器に対する照度測定装の距離的な位置関係を、常に、より正しく判断し得る照明制御装置および照明システムを提供することを目的とする。
【課題を解決するための手段】
【0012】
上記課題を解決するため、本発明の照明制御装置は、複数の照明機器の発光光度およびこれら照明機器の影響下に位置する照度測定装置からの測定照度および当該照度測定装置に設定された目標照度並びに照明機器の消費電力に基づき、測定照度が目標照度の設定許容範囲内に入るように制御する照明制御装置であって、
予め設定された複数の光度生成範囲のうち、所定の光度生成範囲内で変化される発光光度の変化量およびそれに対応して得られる測定照度の変化量に基づき、各照明機器が照度測定装置の測定照度に与える影響度合いを判断するための回帰係数を演算する回帰係数演算手段と、
この回帰係数演算手段で求められた回帰係数および目標照度に対する測定照度の偏差に基づき、次の発光光度を生成するための上記所定の光度生成範囲を選択する光度生成範囲選択手段と、
この光度生成範囲選択手段で選択された光度生成範囲内で変化される光度値でもって発光光度を生成する光度生成手段と、
この光度生成手段にて生成された発光光度、この発光光度での発光による測定照度、回帰係数、および照明機器の消費電力に基づき、上記生成された発光光度の良否を評価するための評価値を演算する評価値演算手段と、
照度測定装置が移動したことを検知し得る移動検知手段とを具備し、
さらに上記移動検知手段を、照度測定装置により取得した測定照度が目標照度の設定許容範囲内であるか否かを判断する照度値判断部と、この照度値判断部にて目標照度の設定許容範囲から外れていると判断された場合には、その継続回数をカウントするカウント部と、このカウント部からのカウント数を入力して設定回数と比較して超える場合には移動と判断する移動判断部と、この移動判断部にて移動中であると判断された場合に、回帰係数の演算をリセットするリセット部とから構成したものである。
【0014】
さらに、上記照明制御装置における回帰係数演算手段は、
回帰係数に対する補正値を求める推定誤差共分散の逐次演算と、この補正値を用いて推定値である回帰係数の逐次演算とを有し、入力値である光度変化量を基準としたときの観測値である照度変化量の観測予測誤差を最小とする推定値である回帰係数を再帰的に推定する逐次型最小二乗法を用いるもので、
下記(1)式に基づき、或る時刻(演算ステップに相当する)(k)における入力値x(k)、前の時刻(前回の演算ステップに相当する)(k-1)における推定値の誤差共分散P(k)および観測雑音wの共分散R(k)を用いて、観測値の予測誤差共分散S(k)を演算する観測予測誤差共分散演算部と、
下記(2)式に基づき、入力値x(k)、推定誤差共分散P(k-1)および観測予測誤差共分散S(k)を用いて、補正係数W(k)を演算する補正係数演算部と、
下記(3)式に基づき、推定誤差共分散P(k-1)、補正係数W(k)、観測予測誤差共分散S(k)を用いて、或る時刻(k)における推定誤差共分散P(k)を演算する推定誤差共分散演算部と、
下記(4)式に基づき、入力値x(k)および前の時刻における推定値β(k-1)を用いて、或る時刻における観測値の予測値*y(k)を演算する観測予測値演算部と(なお、記号「*」は、以下に示す式中において、この後に続く文字にハット記号が付されていることを示す、以下同じ)、
下記(5)式に基づき、或る時刻(k)における観測値y(k)および観測予測値*y(k)を用いて、観測値の予測誤差ε(k)を演算する観測予測誤差演算部と、
下記(6)式に基づき、前の時刻における回帰係数β(k-1)、補正係数W(k)および観測予測誤差ε(k)を用いて、或る時刻における推定値*β(k)を演算する推定値演算部とを有するものである。
【0015】
S(k)=x(k)P(k-1)S(k)+R(k) ・・・(1)
W(k)=P(k-1)x(k)S-1(k)+R(k) ・・・(2)
P(k)=P(k-1)-W(k)S(k)W(k) ・・・(3)
【0016】
【数1】
JP0005219016B2_000002t.gif

【0017】
【数2】
JP0005219016B2_000003t.gif

【0018】
【数3】
JP0005219016B2_000004t.gif

【0019】
また、本発明に係る照明システムは、複数の照明機器と、これら各照明機器に対応して配置されて各照明機器で発光させる発光光度を制御する複数の照明制御装置と、上記各照明機器にて消費される消費電力を計測する電力計と、上記照明機器による照度を測定し得る照度測定装置と、上記各照明制御装置、電力計および照度測定装置との間で、所定データの受け渡しを行い得るデータ通信手段とを具備する照明システムであって、
上記照度測定装置は、
受光により照度値を検出し得る光センサ部と、目標照度を設定し得る目標照度設定部と、上記光センサ部にて測定された測定照度上記目標照度設定部で設定された目標照度、および当該照度測定装置の識別情報をデータ通信手段に出力するデータ出力部とから構成し、
上記照明制御装置は、
任意に変化される発光光度の変化量または所定の方法で変化される発光光度の変化量と測定照度の変化量とに基づき、各照明機器が照度測定装置の照度に与える影響度合いを判断するための回帰係数を演算する回帰係数演算手段と、
この回帰係数演算手段で求められた回帰係数および目標照度に対する測定照度の偏差に基づき、次に生成する光度範囲を選択する光度生成範囲選択手段と、
この光度生成範囲選択手段で選択された光度生成範囲内で任意に変化される光度値または所定の方法で変化される光度値でもって発光光度を生成する光度生成手段と、
この光度生成手段にて生成された発光光度、この発光光度での発光による測定照度、回帰係数、および照明機器の消費電力に基づき、当該生成された発光光度の良否を評価するための評価値を演算する評価値演算手段と、
上記照度測定装置の移動を検知し得る移動検知手段とを有し、
さらに上記移動検知手段を、照度測定装置により取得した測定照度が目標照度の設定許容範囲内であるか否かを判断する照度値判断部と、この照度値判断部にて目標照度の設定許容範囲から外れていると判断された場合には、その継続回数をカウントするカウント部と、このカウント部からのカウント数を入力して設定回数と比較して超える場合には移動と判断する移動判断部と、この移動判断部にて移動中であると判断された場合に、回帰係数の演算をリセットするリセット部とから構成したものである。
【0020】
さらに、上記照明制御装置における回帰係数演算手段は、
回帰係数に対する補正値を求める推定誤差共分散の逐次演算と、この補正値を用いて推定値である回帰係数の逐次演算とを有し、入力値である光度変化量を基準としたときの観測値である照度変化量の観測予測誤差を最小とする推定値である回帰係数を再帰的に推定する逐次型最小二乗法を用いるもので、
下記(1)式に基づき、或る時刻(演算ステップに相当する)(k)における入力値x(k)、前の時刻(前回の演算ステップに相当する)(k-1)における推定値の誤差共分散P(k)および観測雑音wの共分散R(k)を用いて、観測値の予測誤差共分散S(k)を演算する観測予測誤差共分散演算部と、
下記(2)式に基づき、入力値x(k)、推定誤差共分散P(k-1)および観測予測誤差共分散S(k)を用いて、補正係数W(k)を演算する補正係数演算部と、
下記(3)式に基づき、推定誤差共分散P(k-1)、補正係数W(k)、観測予測誤差共分散S(k)を用いて、或る時刻(k)における推定誤差共分散P(k)を演算する推定誤差共分散演算部と、
下記(4)式に基づき、入力値x(k)および前の時刻における推定値β(k-1)を用いて、或る時刻における観測値の予測値*y(k)を演算する観測予測値演算部と(なお、記号「*」は、以下に示す式中において、この後に続く文字にハット記号が付されていることを示す、以下同じ)、
下記(5)式に基づき、或る時刻(k)における観測値y(k)および観測予測値*y(k)を用いて、観測値の予測誤差ε(k)を演算する観測予測誤差演算部と、
下記(6)式に基づき、前の時刻における回帰係数β(k-1)、補正係数W(k)および観測予測誤差ε(k)を用いて、或る時刻における推定値*β(k)を演算する推定値演算部とを有するものである。
【0021】
S(k)=x(k)P(k-1)S(k)+R(k) ・・・(1)
W(k)=P(k-1)x(k)S-1(k)+R(k) ・・・(2)
P(k)=P(k-1)-W(k)S(k)W(k) ・・・(3)
【0022】
【数4】
JP0005219016B2_000005t.gif

【0023】
【数5】
JP0005219016B2_000006t.gif

【0024】
【数6】
JP0005219016B2_000007t.gif

【発明の効果】
【0025】
記照明制御装置および照明システムによると、複数配置された照明機器に対して、照度測定装置に設定された目標照度となるように、自動的に、その発光光度を制御するようにした自律分散型の照明制御アルゴリズムにおいて、照明機器に対する照度測定装置の測定照度に影響を与える影響度合いとして、回帰係数を用いるようにしたので、例えば相関係数を用いる場合に比べて、互いの位置関係を精度良く把握することができ、すなわち照明機器の光度変化量と照度測定装置での照度変化量とを回帰分析することにより得られる回帰係数は、照明機器が照度測定装置に影響するかどうかだけでなく、その距離感まで表すことができ、したがって相関係数を用いる場合に比べて、より正確な位置関係の把握が可能となり、各照明機器を、照度測定装置での目標照度を満たし且つ省電力な状態へと素早く収束させることができる。
【発明を実施するための最良の形態】
【0026】
[実施の形態]
以下、本発明の実施の形態に係る照明制御装置および照明システムを、図1~図25に基づき説明する。
【0027】
本実施の形態においては、例えば図書室などの広い部屋の天井(空間室の上方位置)に多数配置された蛍光灯などの照明機器を、図書室の利用者が携帯する照度測定装置により、任意の位置で利用者が希望する照度が得られるように制御する場合について説明する。
【0028】
なお、以下の説明において、照明機器から発光される発光光度および照度測定装置により測定される測定照度については、単に、光度および照度と称したり、また必要に応じて、光度値および照度値と称する。また、電力計による測定される消費電力(使用電力でもある)についても、必要に応じて、消費電力値と称する。さらに、照明機器については、例えば蛍光灯(後述する)が用いられるが、以下においては、単に、「照明」と称して説明する場合があり、また照度測定装置についても、単に、「照度センサ」または「センサ」と称して説明する場合がある。
【0029】
この照明システムは、図1に示すように、大きく分けて、部屋の天井に配置されるとともに電力供給源(例えば、商用電力である)1に電気配線2を介して接続された複数の照明機器3と、これら各照明機器3に一体的に設けられて(勿論、別置きでもよい)当該照明機器3にて発光される光度(カンデラCdで表される)を制御する照明制御装置(例えば、マイクロチップなどで構成される)4と、利用者が携帯(保持)して現在位置で測定された照度(ルクスlxで表される)を検出し得る移動式の照度測定装置5と、上記各照明機器3における全消費電力を計測する電力計6とから構成されており、さらに上記照明制御装置4、照度測定装置5および電力計6は、ネットワーク回線(データ通信手段の一例で、有線LAN7aおよびブルートゥースなどの無線方式の無線LAN7bからなるものが用いられ、勿論、データ受信用の端末器7cが設けられている)7を介して接続されている。
【0030】
上記照明機器3としては、発光源である蛍光灯3aと、上記照明制御装置4から指示された光度値に基づき当該蛍光灯3aへの供給電圧を制御してその発光光度を調節する光度調節部(例えば、インバータなどが用いられる)3bとから構成されている。勿論、発光源として蛍光灯以外のもの、例えば白熱灯などを用いてもよい。
【0031】
上記照度測定装置5は、図2に示すように、例えば携帯し得るカード型のものであり、矩形状のカード本体部5aの表面に配置されて受光するとともにその照度を検出し得る光センサ部5bと、目標照度および当該照度測定装置5の識別情報(所謂、IDデータである)を設定し得る数字ボタンなどのデータ入力部5cと、これら入力された目標照度および識別情報を記憶するデータ記憶部5dと、上記光センサ部5bで得られた測定照度、設定された目標照度および識別情報を所定時間間隔(例えば、1秒間隔)でもってネットワーク回線7に出力するデータ出力部5eとから構成されている。勿論、データ出力部5eが無線LAN7bに接続されている。上記カード本体部5aには、データ入力部5cとしてのキーボードおよび目標照度、測定照度などを表示し得るデータ表示部5f、表示データを切り替えるための切替ボタン5gなどが設けられている。なお、上記データ入力部5cとデータ記憶部5dとにより、目標照度設定部が構成される。
【0032】
次に、照明制御装置4を図3に基づき説明する。
この照明制御装置4は、予め設定された複数の光度生成範囲(光度変化範囲ともいい、後述する)のうち、所定の光度生成範囲内で、照明機器3における光度をランダムに変化させて発光光度を生成するとともにこの変化された発光光度を順次出力し得る光度生成手段11と、ネットワーク回線7を介して送られる識別情報、目標照度、測定照度、消費電力などの各種データを取り込むデータ取込手段12と、このデータ取込手段12にて取り込まれたデータを所定回数分(少なくとも、演算に必要とする回数分を超える回数)を記憶(格納)し得るデータ記憶手段13と、このデータ記憶手段13に記憶されたデータを取り込むとともにこのデータに基づき照度測定装置5が移動しているか否か、つまり利用者が移動したか否か(移動中であるか否かも含む)を検知する移動検知手段14と、ランダムに変化される発光光度の変化量とそれに対応して得られた測定照度の変化量とに基づき、各照明機器3の照度測定装置5に対する照度の影響度合い(距離的位置関係ともいえる)を判断するための回帰係数を演算する回帰係数演算手段15と、この回帰係数演算手段15で求められた回帰係数および上記照度測定装置5により得られた照度状態(具体的には、目標照度に対する測定照度の偏差などである)に基づき、次に生成する発光光度(以下、次光度ともいう)の範囲を、予め設定されている複数の光度生成範囲から選択する光度生成範囲選択手段16と、上記光度生成手段11にて出力された次光度およびこの次光度に基づく発光による測定照度並びに照明機器3の消費電力に基づき、当該次光度の良否を評価するための評価値を評価式(目的関数ともいう)を用いて演算する評価値演算手段17とから構成されている。
【0033】
次に、回帰係数演算手段15を図4に基づき説明する。
この回帰係数演算手段15の機能を概略的に説明すると、照明機器3と照度測定装置5との因果関係を光度変化量[説明変数(入力値でもある)x]と照度変化量(観測値y)とで表される単回帰式を下記(1)式にて示すように定式化し、この単回帰式を説明する回帰係数(β)を求めることで、両者の影響度合いを得るようにしたものである。
【0034】
=ε+α+βx ・・・(1)
この回帰係数演算手段15は、回帰係数に対する補正値を求める推定誤差共分散の逐次演算と、この補正値を用いて推定値である回帰係数の逐次演算とを有し、入力値である光度変化量を基準としたときの観測値である照度変化量の観測予測誤差を最小とする推定値である回帰係数を、再帰的に推定する逐次型最小二乗法を用いるもので、
下記(2)式に基づき、或る時刻(演算ステップに相当する)(k)における入力値x(k)、前の時刻(前回の演算ステップに相当する)(k-1)における推定値の誤差共分散P(k)および観測雑音wの共分散R(k)を用いて、観測値の予測誤差共分散S(k)を演算する観測予測誤差共分散演算部21と、下記(3)式に基づき、入力値x(k)、推定誤差共分散P(k-1)および観測予測誤差共分散S(k)を用いて、補正値である補正係数W(k)を演算する補正係数演算部22と、下記(4)式に基づき、推定誤差共分散P(k-1)、補正係数W(k)および観測予測誤差共分散S(k)を用いて、或る時刻(k)における推定誤差共分散P(k)を演算する推定誤差共分散演算部23と、下記(5)式に基づき、入力値x(k)および前の時刻における推定値β(k-1)を用いて、或る時刻における観測値の予測値*y(k)を演算する観測予測値演算部24と(なお、記号「*」は、以下に示す式中において、この後に続く文字にハット記号が付されていることを示す、以下同じ)、下記(6)式に基づき、或る時刻(k)における観測値y(k)および観測予測値*y(k)を用いて、観測値の予測誤差ε(k)を演算する観測予測誤差演算部25と、下記(7)式に基づき、前の時刻における回帰係数β(k-1)、補正係数W(k)および観測予測誤差ε(k)を用いて、或る時刻における推定値*β(k)を演算する推定値演算部26とから構成されている。
【0035】
S(k)=x(k)P(k-1)S(k)+R(k) ・・・(2)
W(k)=P(k-1)x(k)S-1(k)+R(k) ・・・(3)
P(k)=P(k-1)-W(k)S(k)W(k) ・・・(4)
【0036】
【数7】
JP0005219016B2_000008t.gif

【0037】
【数8】
JP0005219016B2_000009t.gif

【0038】
【数9】
JP0005219016B2_000010t.gif

【0039】
以下、この回帰係数演算手段15での演算手順について詳しく説明する。
なお、以下の説明では、所定時間間隔おきに(つまり、所定周期毎に)データが取り込まれるとともに、これらデータおよび前回の回帰係数に基づき、次の回帰係数を推定値として求めるのであるが、この求める手順を「探索」と称して説明する。さらに、照度測定装置5を照度センサと称して説明する。
【0040】
すなわち、逐次型最小二乗法では、現在の探索(時刻k)において新たな観測値y(k)が得られると、まずその探索におけるシステムへの入力値x(k)、観測予測誤差共分散S(k)、補正係数であるフィルタゲインW(k)、および観測時に環境に生じる観測雑音Wの共分散であるR(k)を用いて推定値の誤差共分散P(k)を逐次に演算する。なお、時刻(k)における推定誤差共分散Pは、時刻(k)の入力値x(k)、時刻(k-1)における推定誤差共分散P(k-1)、およびR(k)により算出される観測予測誤差共分散S(k)と、その観測予測誤差共分散S(k)、x(k)、およびP(k-1)に基づき算出されるフィルタゲインW(k)を用いて再帰的に推定する。推定値β(k)の逐次演算では、時刻(k-1)における推定値β(k-1)およびx(k)を用いて演算した観測予測値y(k)を用いて観測予測誤差ε(k)を算出し、その観測予測誤差ε(k)と既に求められている上記フィルタゲインW(k)を用いて再帰的に推定する。なお、R(k)は、観測値y(k)に重み付けを行う。具体的には、観測雑音wの分散が小さい時は、R(k)も小さくなり観測値y(k)を重視するように働く。このため、R(k)を含む観測予測誤差共分散S(k)、およびS(k)を含むフィルタゲインW(k)も同様に重みの役割を担う。観測予測誤差共分散S(k)とフィルタゲインW(k)の間には、観測予測誤差ε(k)が大きくなるとS(k)は大きく、その影響を受けてW(k)が小さくなるという関係にある。これらの重みが補正値(フィルタ)として用いることで、観測予測誤差ε(k)を小さくし、そして探索毎に再帰的に推定値の補正を行うようにしているため、推定精度を向上させることができる。
【0041】
各照明機器3は、上述したアルゴリズムを探索毎、全ての照度センサ5に対して行う。探索開始時を時刻(k)とすると、探索開始時には、時刻(k-1)の推定値β(k-1)および推定誤差共分散P(k-1)が必要となる。探索開始時、この推定値には適当な値を与えるが、その推定値は全くの未知であるため理論値との誤差は大きいと考えられる。そのため、推定値に重きを置かないように、推定値の誤差共分散P(k-1)の初期値に十分に大きな値を与える。これにより、探索開始時における推定値の誤差に対処することができる。
【0042】
ここで、推定した推定値βについて考えると、上述したように、これは回帰式の傾きであり、光度変化量と照度変化量の因果関係を説明する回帰係数である。すなわち、回帰係数βの大きさが照明の光度変化による各照度センサの照度変化量の大きさ(感度)を表しており、照明機器の照度センサに対する影響度合いを表していると考えることができる。なぜなら、照度センサの照度と照明機器の光度との間には、逆二乗の法則が成り立つからである。すなわち、理論的に照度センサの照度は照明機器の光度に比例し、距離の二乗に逆比例するという関係にある。つまり、推定した回帰係数βは照明機器と照度センサの距離が近いほど大きくなり、遠いほど小さくなる。なお、照明機器の照射方向に指向性がある場合、または照明を遮るものが存在する場合には、回帰係数の値が小さくなるが、基本的には、距離的位置関係を表しているものといえる。
【0043】
ここで、回帰係数と、照明機器3および照度センサ5の位置関係とについて、図5に示す照明環境を用いて詳しく述べる。
図5に示される照明環境は、所定間隔おきに配置された3つの照明機器3(3A,3B,3C)のうち、2つの照明機器3A,3Bのそれぞれ下方に照度センサ5(5A,5B)が配置されたものである。
【0044】
図6に各照明機器3の各照度センサ5に対する回帰係数の探索結果の履歴を示す。図6の縦軸は回帰係数、横軸は探索回数である。図6(a)は各照度センサ5A,5Bに対する照明機器3Aの回帰係数を示したもので、照明機器3の真下にある照度センサ5Aの回帰係数が高く、離れた位置にある照度センサ5Bの回帰係数は低くなっている。しかし、図6(b)に示す照明機器3Bについては、照明機器3Aとは逆に照度センサ5Bの回帰係数が高く、照度センサ5Aの回帰係数が低くなっている。このように、照明機器3に、より近い照度センサ5の回帰係数の方が高くなっている。また、図6(c)より、照明機器3Cでは、両照度センサ5A,5Bに対する回帰係数は低いが、照明センサ5B、照明センサ5Aの順で低くなっていることが判る。図5の照明環境から、これは照明機器3と各照度センサ5との距離の順番(近い順)になっていることが判る。このように、回帰係数は照明機器3の光度変化に対する各照度センサ5の感度として捉えることができる。したがって、照明機器3が各照度センサ5に対してそれぞれ推定した回帰係数を、それ自身に対す各照度センサの距離的位置関係を表す指標として用いることができる。
【0045】
なお、回帰係数の演算には、光度変化量および照度変化量が用いられるが、勿論、各探索毎に、前回との発光光度の差、および測定照度の差が、それぞれ求められていることはいうまでもなく、図示しないが、これらの差を求める演算部が照明制御装置4に具備されている。
【0046】
次に、上記光度生成範囲選択手段16を図7~図9に基づき説明する。
この光度生成範囲選択手段16は、回帰係数を用いて、照明機器3と照度測定装置5との近傍度を検出するとともに、この近傍度と目標照度に対する測定照度の偏差の程度を示す照度状況とから得られる選択条件(以下、選択条件を決定することを近傍設計ともいう)により、予め、設定されている複数の光度生成範囲、例えば図8に示す7種類(A~G)から使用すべき、すなわち最適な次光度の生成範囲を選択するためのものである。
【0047】
この光度生成範囲選択手段16は、図7に示すように、求められた(推定された)回帰係数RCを、下記の第1表に示すように、3つの閾値T(high,mid,low)(実験にて求められた値である)を用いて、4段階(ランク1~3およびランク無し)にランク付けをするランク付け部31と、このランク付け部31で得られたランク値および照度測定装置5の照度状況[具体的には、目標照度、変動許容値(上限+6%、下限-8%)に対する偏差量]に基づき選択条件を求める選択条件決定部32とから構成されており、最終的には、ランク値と選択条件とに基づき、生成範囲(近傍)が決定される。つまり、近傍設計が行われる。
【0048】
【表1】
JP0005219016B2_000011t.gif

【0049】
近傍設計を詳しく説明すると、照度測定装置5に対する照明機器3の近傍度を示すランクとその照度状況から当該照明機器3が必要とする次光度生成の傾向(増光、減光、調節など)を決定した後に、さらにこの傾向に対して光度を微調整することをいう。近傍設計で決定される生成範囲(近傍範囲)は、下記の第2表に示すように6種類設けられており、図9に示すツリー構造の分類規則により、それぞれ照明機器3に対し、6種類のいずれかが対応付けされる(分類される)。
【0050】
【表2】
JP0005219016B2_000012t.gif

【0051】
ここで、上記光度生成範囲選択手段16での選択手順、すなわち近傍設計について詳しく説明する。なお、ここでも、照度測定装置を照度センサと称して説明する。
すなわち、図8に示すように、7種類の光度生成範囲つまり近傍範囲A~Gが次光度生成に用いられる。近傍範囲Aおよび近傍範囲Bは減光を重視した範囲であり、近傍範囲Aは現在の光度から急激に光度を下げることを重視した範囲、近傍範囲Bは近傍範囲Aよりは低速であるが減光を重視した範囲である。また、近傍範囲C、DおよびEは光度の調節を行う範囲であり、近傍範囲Cは減光傾向、近傍範囲Eは増光傾向、近傍範囲Dは現在の光度を維持するように光度調整を行う範囲である。また、近傍範囲FおよびGは近傍範囲AおよびBとは逆に増光を重視した範囲であり、近傍範囲Fは低速、近傍範囲Gは急激に増光するようにした範囲である。なお、図8中の数値は、照明機器3の最大点灯光度を100(%)とした際の光度変化量(%)であり、これらの値は実験的に求められたものである。数値的に説明すると、光度生成範囲は、許容可視変動範囲[人が知覚し得ない範囲であり、目標光度の1.06(+6%)~0.92(-8%)の範囲]が望ましいが、近傍範囲によっては、その範囲を少し超えるものもあるが、やはり、人の知覚では殆ど気が付くことがないため、支障は生じない。すなわち、図8にて示した光度の生成範囲を、拡大許容可視変動範囲ということができる。
【0052】
近傍範囲を決定する場合、回帰係数を用いて照明機器と各照度センサとの回帰係数RCを4段階(ランク1,2,3およびランク無し)でランク付けを行い、選択条件およびそのランクに従って7種類から適応的に1つ選択する。
【0053】
以下、近傍範囲の決定手順について説明する。
(1)回帰係数を用いて各照度センサに対して、その照度に基づきランク付けを行う。
(2)各照度センサの照度状況に応じて選択条件を決定する。
(3)照明機器は照度センサのランクと選択条件から近傍範囲を一意に決定する。
【0054】
まず、(1)項について説明すると、照明機器に対する照度センサのランク付けは、推定した回帰係数RCを、閾値Thigh、閾値Tmid、および閾値Tlowの3つの値で比較して行う。これらの閾値を用いたランク付けの判断基準は第1表に示す通りである。なお、「i」は照度センサの番号を示す。第1表より、最も高いランク1は、回帰係数RCが閾値Thighを超えた場合である。ランク2、ランク3およびランク無しについても、同様に、閾値Thigh、閾値Tmid、および閾値Tlowを用いて判断する。照度センサに影響が有る・無しの判断は、回帰係数RCが閾値Tlowを下回るか否かである。なお、これらの閾値は、予め、実験より求められた値である。
【0055】
次に、(2)項および(3)項について説明する。
(2)項において、各照明機器は各照度センサの照度状況、および(1)で得た自身のランクに基づき選択条件を決定する。その際には、図9に示すツリー構造が用いられる。図9の下部に、照度状況(分岐ルール)を示しておく。
【0056】
選択条件1は急速な減光を行う範囲である。この選択条件1は、ランク無し、つまり照度センサに影響のない照明機器に用いられる。選択条件2は減光傾向を有する減光近傍群、選択条件3は急速な減光傾向を有する急速減光近傍群の照明機器に用いられる。これら選択条件2および3は、照度センサが目標照度を上回る場合に用いられ、上回る程度によって使い分けられる。また、選択条件4は急速な増光傾向を有する急速増光近傍群、選択条件5は増光傾向を有する増光近傍群の照明機器に用いられる。これら選択条件4および5は、照度センサが目標照度を下回る場合に用いられ、下回る程度によって使い分けられる。目標照度を上回るまたは下回る程度は、上述した許容可視変動範囲の上限である1.06(+6%)および下限である0.92(-8%)を基準にして決定される。なお、目標照度を下回る場合には、下回る度合いが許容可視変動範囲の下限である0.92に達する前に対処する必要がある。そこで、目標照度を下回る前に増光動作を行うように許容可視変動範囲の下限よりも高い閾値(0.98)を用いて選択条件を決定する。また、目標照度を下回る場合には、人間が全く知覚できないほど微量に目標照度を下回ることが考えられる。この場合、その目標照度を下回る程度を誤差範囲と考えることができるが、選択条件4または5によって急速に増光されると略目標照度に収束している照度が荒れる危険性がある。そこで、選択条件6のような光度を調整するための近傍群が用意されている。選択条件6では、最も近いランク1の照明には、少しだけ増光傾向を持つ近傍範囲Dを与えて目標照度を満たすような動きをさせ、ランク2の照明には、調整する近傍範囲Bを与えて現状を維持するような動作をさせる。また、略目標照度を満たすような場合には、ランク3のような照明は、あまり必要でないと考えられるため、少し減光を行う近傍範囲Cを与え、電力の最小化を行うように動作させる。これにより急激な増光を避けることができ、目標照度付近での照度の安定を期待することができる。(3)項では、第2表に基づき(2)項で決定された選択条件からランクに応じて近傍範囲を一意に決定する。以下に、(2)項および(3)項の流れについて詳しく述べる。
【0057】
まず、(2)においては、各照度センサの照度データとランクとを用いて、図9に示すツリー構造のルート1(ルートノード)から条件分岐を辿り、選択条件を決定する。条件分岐は全部で7種類ある。ノード1は、照明の影響のある照度センサが存在するかの条件分岐である。ここで影響のある照度センサが存在しなければ、選択条件1(ランク無し)を選択するが、存在する場合は条件分岐2に進む。ノード2は、自身が影響する照度センサが複数存在するかの条件分岐である。ここで、複数の照度センサに影響しなければ条件分岐3へ、影響すれば条件分岐4へと進む。ノード3は、影響する照度センサが目標照度を満たしているかの条件分岐であり、目標照度を満たしていれば条件分岐5へ、満たしていなければ条件分岐6に進む。ノード5は、現在照度が許容可視変動範囲内か否かを判断する条件分岐で、すなわち目標照度収束範囲内であれば選択条件2を選択し、収束範囲外の場合は選択条件3を選択する。また、ノード6は、目標照度を満たさない度合いが誤差と見なせる範囲であるか否かを判断する条件分岐であり、誤差範囲であれば選択条件6を選択し、誤差範囲外であれば条件分岐7に進む。なお、誤差範囲は、殆どの人が明るさの変動を感じない範囲[例えば、目標照度から2%(下限)]までとする。ノード7は、現在照度が許容可視変動範囲の下限より以下であるか否かを判断する条件分岐であり、目標照度収束範囲外であれば選択条件4を選択、範囲内であれば選択条件5を選択する。このように、ノード2から分岐する左側のツリーは、影響する照度センサが1個の場合に選択され、目標照度を満たすか否かで増光傾向または減光傾向を持つ選択条件が選択される。
【0058】
次に、条件分岐4を進んだ場合について説明する。ノード4は、影響する全ての照度センサが目標照度を満たすか否かを判断する条件分岐である。ここで、全ての照度センサが目標照度を満たせば、条件分岐5へ進み、選択条件2または3が選択される。一方、影響する照度センサの中で1つでもその目標照度を満たさない場合は、条件分岐6へ進み、選択条件4,5または6が選択される。このように、ノード2から分岐する右側のツリーでは、影響する照度センサが複数の場合に選択され、その照度センサが目標照度を満たすか否かで増光傾向を持つまたは減光傾向を持つ選択条件が選択される。
【0059】
以上のように、各照明機器(正確には、照明制御装置)は、取得したランクに基づき選択条件を決定し、自身に最も近い、すなわちランクが最も高い照度センサの照度状況に合わせ、第2表から近傍範囲を一意に決定する。但し、複数の照度センサに影響し、その照度センサのいずれかが目標照度を下回っている場合には、目標照度を満たさない照度センサの中で最もランクが高い照度センサのランクに応じて近傍範囲を一意に決定する。これにより、目標照度を満たす必要がある照度センサのための次光度生成が可能となる。なお、各照明機器(照明制御装置)が全ての照度センサに対して上述した手順を適用し、それぞれ適切な近傍範囲を決定する。
【0060】
次に、上記評価値演算手段17を図10に基づき説明する。
この評価値演算手段17は、得られた次光度が良好であるか不良であるかを判断するもので、つまりシステム全体の消費電力量と、目標照度に対する各照度測定装置5で得られる測定照度の偏差(値の大小)とを考慮して判断するためのもので、下記(8)式にて得られる評価値fに基づき判断される。
【0061】
例えば、前回の回帰係数による評価値と、今回推定された回帰係数による評価値とを比較して、値が小さくなっていれば、システム全体の光度、言い換えれば各照明機器での光度が良好な方向に収束したことを意味しており、つまり、測定照度が目標照度に近づくとともに消費電力も少なくなるように制御されていることを示している。
【0062】
【数10】
JP0005219016B2_000013t.gif

【0063】
すなわち、上記(8)式から判るように、評価値fは、消費電力Pに、現在の測定照度Lcと目標照度Ltとの照度差である偏差に依存する照度依存量gを加算したものである。また、消費電力Pには、各照明機器3の発光光度Cdの合計値を用いる。このように光度値を用いるのは、蛍光灯の電源電圧特性上、光度と電力とが線形関係にあるからである。但し、通常、消費電力Pとしては、電力計6にて測定された値が用いられる。発光光度Cdの合計値は、電力計6による消費電力が得られない場合に用いられる。
【0064】
そして、照度依存量gは、照度差が負である場合、または照度差が現在照度の6%以上の場合に加算されるもので、ペナルティとしての役割を持つ。ここで、現在照度に加算される6%は、人間が明るさ変動を知覚するかどうかの閾値(許容可視変動範囲の上限)である。なお、ここでは、許容可視変動範囲の上限(6%)とその下限(-8%)との間を目標照度収束状態とする。
【0065】
このように、目標照度収束状態の上限値以上、または現在照度が目標照度を下回る場合は、ペナルティを与えることで評価値を上昇させ、急速に増光または減光させるようにしている。
【0066】
また、照度依存量gには、照度差に対して回帰係数RCが乗算される。なお、回帰係数RCが閾値以下である場合には、「0(ゼロ)」が乗算される。すなわち、測定照度が目標照度を満たさない場合でも、その照度センサに対する影響度合いが低ければ、評価値にペナルティを与えない。これにより、影響度合いが高い照度センサ、すなわちその近くに位置する照度センサに最適化の対象を絞ることができ、目標照度を満たす精度を向上させることができる。また、照度依存量gには、重み係数wが乗算されており、この値を変化させることにより、目標照度を満足させることを優先するか、電力の最小化を優先するかを選択することができる。
【0067】
したがって、上記上記評価値演算手段17は、図10に示すように、回帰係数RCを入力して閾値Tと比較して評価すべき照度測定装置(評価対象)を絞るための選択指標(ここでは、回帰係数に相当する)Rを出力する選択指標決定部41と、発光光度と測定照度との照度差に基づく照度依存量gを求める依存量演算部42と、この依存量演算部42で求められた値(照度測定装置が複数ある場合には、その合計値)を入力するとともにこの値に重み係数wを乗算したものに全ての照明機器の消費電力の合計値Pを加算する加算部43と、この加算部43にて得られた評価値fと前回の評価値(例えば、データ記憶手段に記憶されている)fとを比較して値が改善しているか否かを判断する、すなわち大きくなっているか否かを判断する評価値判断部44とから構成されている。
【0068】
そして、(8)式の但し書きの箇所で説明したように、選択指標Rは、得られた回帰係数RCの値が閾値Tと等しいかまたは超える場合には、回帰係数RCの値が用いられ、閾値未満である場合には「0(ゼロ)」が用いられる。
【0069】
また、照度依存量gについては、偏差(偏差量)が負の場合、または偏差が現在照度の6%以上の場合には、偏差の二乗に、選択指標(つまり、回帰係数の値)Rが乗算されたものが用いられ、偏差が上記以外の範囲である場合には、「0(ゼロ)」が用いられる。
【0070】
次に、照度測定装置5の移動の有無を検知する移動検知手段14について、図11および図12に基づき説明する。
この移動検知手段14は、図11に示すように、取得した測定照度が、図12に示す許容下限値以上で許容上限値以下の範囲(イ)、許容上限値超える範囲(ロ)、許容下限値未満の場合(ハ)の3つのいずれに属するか否かを判断する照度値判断部51と、この照度値判断部51にて上下限から外れていると[つまり(ロ)と(ハ)の場合]判断された場合には、その継続回数(継続探索回数)をカウントするカウント部52と、このカウント部52からのカウント数を入力して設定回数と比較して超える場合には移動と判断する移動判断部53と、この移動判断部53にて移動中であると判断された場合に、回帰係数および推定誤差共分散に外れ値を与えて回帰係数の推定演算をリセットするリセット部54とから構成されている。
【0071】
この移動検知手段14での検知手順について、詳しく説明する。
すなわち、本発明に係る回帰係数を用いた照明制御アルゴリズム(自律分散型適応的近傍アルゴリズムともいう)においては、照度測定装置5の移動を照明機器3自ら検知する必要がある。ここで、実際の照明環境下における照度測定装置5の移動について考えると、照度測定装置5の移動発生時には、その照度が一時的に大きく変化する。そこで、照明機器3は、移動検知のために、探索過程において、常に全ての照度測定装置5の照度状態を監視している。なお、照度状態の監視は、図12に示すように目標照度範囲内[照度範囲(イ)]および目標照度範囲を超えるおよび未満の2つの状態[照度範囲(ロ)および(ハ)]の3段階で行う。図12の縦軸は、目標照度を基準とした照度変動率であり、その上下限範囲内は目標照度収束状態を示している。また、照度範囲の監視には、環境雑音(ノイズである)すなわち外的要因で生じる照度変化に注意が必要となる。例えば、照度測定装置5の光センサ部5bに人影が入るといった外的要因が考えられる。そこで、大きく照度変化が起こったことを感知した後、数回の探索を移動検知期間として設け、移動の有・無を確認する。具体的には、移動検知期間中に目標照度を満たさない探索回数をカウントし、連続して照度範囲(ロ)または(ハ)の状態が続くようであれば、照度測定装置5が移動したと見なす。これにより、外的要因による照度変化については、すぐに反応(検知)しないようにする。なお、移動を検知した際には、上述したように、推定誤差共分散に外れ値を与えることによって推定をリセットし、移動後の環境においても、正しい推定を行い得るようにする。
【0072】
次に、目標照度を満たすのが、難しい環境への対処について説明する。
照明機器3が蛍光灯である場合、その構造により光の強さに指向性が存在するため、照度測定装置5の配置によっては、照明機器3と照度測定装置5との位置関係の把握が難しく、目標照度を下回る場合が生じる。目標照度を満たすのが難しい照明環境を、図13に示す。なお、図13の説明においては、照明機器を単に「照明」と称し、また照度測定装置を「センサ」と称し、またその後方の番号は、機器番号を示すものとする。
【0073】
この照明環境下において、目標照度を満たすためには、影響が強い照明2および7が最大点灯し、次に影響が強い照明1,3,6および8の4つの蛍光灯中、2つの蛍光灯が80%以上で点灯する必要がある。この図13において、回帰係数を推定した結果を図14に示す。この図14より、照明2および7の蛍光灯は高く、照明1,3,6および8の4つの蛍光灯は低く、回帰係数を推定しており、その位置関係および距離は把握できている。しかし、照明1,3,6および8の4つの蛍光灯の回帰係数では、閾値Tlowを超えない場合がある。この場合、センサAに対しランクを取得できず、近傍範囲Aにより減光される。そのため、目標照度を満たすために必要な照明1,3,6および8の蛍光灯がセンサAに対して光度を提供することができず、その他のランクを持つ照明だけでは目標照度を満たせない状態に陥る。
【0074】
そこで、このような照明環境下においても、常にランクが得られるよう閾値Tlowを可変にする。これは、上述したように、センサの配置により適切な閾値が異なると推測されるためである。具体的には、上記と同様に、照度範囲を図12の3段階で常に監視し、照度範囲(ハ)が連続して続く場合、閾値Tlowを下げる。また、閾値Tlowを下げた後に照度範囲(イ)で安定する場合は、閾値Tlowを元に戻す。これにより、必要な照明にランクを与えることができ、目標照度を満たすように増光し得る。
【0075】
以下、上述した照明システムにおける自律分散型の適応的近傍アルゴリズムを用いた照明制御方法を、図15のフローチャートに基づき簡単に説明する。なお、ここでの説明は全体的な流れについて簡単に行うものとし、詳細な手順については、上述した各構成手段にて説明しているため、省略する。
【0076】
また、この照明制御方法は、上述したように、照明機器に対する照度測定装置での照度に与える影響度合いを把握するために、照明機器での光度変化量(時系列データ)と照度測定装置での照度変化量(時系列データ)との関係を示す単回帰式の回帰係数を用いるとともに、この回帰係数を求めるに際し、逐次型最小二乗法を用いたものであり、したがって或る時刻におけるデータによる演算時、すなわち或る探索ステップにて回帰係数を求めるのに前回の探索ステップでの回帰係数を必要とするため、システム起動時においては、必要とされる前回の値については、初期値が与えられている。また、以下の説明においても、照度測定装置を照度センサとして説明する。
【0077】
システムが起動されると、初期光度、初期回帰係数などの初期パラメータが設定され(ステップ1)、そして各照明機器3は初期光度でもって点灯される(ステップ2)。
すなわち、このステップ2では、光度生成手段11により、初期設定により設定された初期光度が生成されて照明機器3が点灯されるとともに、所定の光度生成範囲(例えば、光度生成範囲D)で、且つ所定時間間隔(例えば、1秒間隔)でもって、ランダムにその光度が変化される。具体的には、コンピュータ装置の演算処理部(マイクロチップ)で乱数(正確には、擬似乱数)を発生させることにより行われる。ここで発生された光度は、他の照明機器とは全く無関係に決定される。
【0078】
なお、このとき、希望する目標照度を設定した移動式の照度測定装置(以下、照度センサと称す)5を携帯した利用者が照明機器(正確には、蛍光灯3aである)3の下方の任意の場所に移動し、例えば図書室の或る場所に着席しているものとして説明する。
【0079】
照明制御装置4は、ネットワーク回線7a,7bを介して、データ取込手段12により、電力計6からの消費電力、照度センサ5からの目標照度および測定照度を、所定時間間隔(例えば、1秒間隔)でもって取得し、データ記憶手段13に時系列データとして記憶する(ステップ3)。勿論、照明機器3に対する発光光度は、当該照明制御装置4にて把握されている。なお、少なくとも、回帰係数を演算する際に必要となる個数分のデータが記憶される。
【0080】
次に、取得したデータに基づき、移動検知手段14にて、照度センサ5が移動しているか否かが判断される(ステップ4)。
上記ステップ4で、照度センサ5の移動が検知されると、評価値を求めるために用いる回帰係数を、前回の回帰係数とするようにリセットされる(ステップ5)。
【0081】
一方、ステップ4で、移動していないと判断された場合には、ステップ6に進む。
次に、評価値演算手段17にて、取得した発光光度、照度センサの識別情報、目標照度、測定照度および消費電力を用いて評価値が演算される(ステップ6)。
【0082】
次に、光度生成範囲選択手段16にて、次に発光すべき光度生成範囲が選択されるとともに、この範囲内で、光度生成手段11により次光度が生成される(ステップ7)。
次に、次光度に基づく測定照度、消費電力などが取得され(ステップ8)、そして回帰係数演算手段15により新たに回帰係数が演算される(ステップ9)。
【0083】
次に、評価値演算手段17にて、再度、取得した発光光度、照度センサの識別情報、目標照度、測定照度および消費電力に基づき、次光度を評価するための評価値が演算される(ステップ10)。
【0084】
次に、ステップ10で演算された評価値に基づき、前回の評価値より改善されているか否かが、すなわち次光度を受理するか否かが判断される(ステップ11)。
そして、ステップ11で改善されていると判断された場合には、演算終了判断部(例えば、演算を強制的に終了させるもので、無くてもよい)を介して(ステップ13)、上記ステップ3に戻り、引き続き、上記各ステップ3~13が実行される。
【0085】
一方、ステップ11で改善されていないと判断された場合には、ステップ12に進み前回の値、すなわち前回の回帰係数を採用した後、上記ステップ3に戻り、引き続き、上記各ステップ3~13が実行される。
【0086】
ここで、上述した本発明に係る自律分散型で且つ回帰係数を用いた適応的近傍アルゴリズムを、実際に実験室に構築した照明システムに適用した場合について説明する。
図16に示すように、部屋の天井に、照明(以下、1~15の番号を付して説明する)を15個配置するとともに、3個の照度センサ5A,5B,5Cが配置されたものであり、照度センサ5Aの目標照度は750ルクスに、照度センサ5Bの目標照度は700ルクスに、照度センサ5Cの目標照度は800ルクスに設定されているものとする。このときのパラメータは、下記の第3表に示す通りである。なお、以下の説明では、15個の照明機器3を区別するのに、単に、「照明」という語句の後に、その番号を付すとともに、3個の照度センサについては、「センサ」という語句の後に、A~Cの文字を付す。
【0087】
【表3】
JP0005219016B2_000014t.gif

【0088】
実環境試験1(照明環境に変化がない場合)および実環境試験2(センサが移動した場合)を行った際の照度履歴を図17に、消費電力履歴を図18にそれぞれ示す。また、図19に移動前のセンサAに影響する照明7,8,9,12,13および14の、図20に移動後のセンサAに影響する照明1,2,6および7の光度履歴および回帰係数をそれぞれ示す。図21にセンサBに影響する照明3および4の、図22にセンサCに影響する照明13,14および15の、図23に全てのセンサに影響しない照明5,10および11の光度履歴および回帰係数をそれぞれ示す。
【0089】
図17(b)より、探索開始から各センサの照度は目標照度へと収束していき、探索回数33回で各センサA,BおよびCの照度は747,673および846ルクスになっている。例えば、相関係数を用いたものと比較すると、約1/2倍の探索回数で目標照度収束範囲へと到達していることが確認できる。また、相関係数を用いたものと比較して、照度の変動が少なく安定していることが確認できる。また、図18より、探索が進むにつれて消費電力が減少し、照度履歴と同様、相関係数を用いたものより安定して電力削減を図り得ることが判る。また、光度履歴は、実環境であるため少々荒れるが、数値実験を行った場合と似た軌跡を取っていることが判る。すなわち、各照明は、自身に近い照度センサを回帰係数により判断し、その照度状況に応じて次光度を生成している。例えば、実環境試験1においては、照度センサに近い照明(照明3,4,8,13および14)は非常に高い光度で点灯しており、照度センサから遠い照明(照明1,2,5,6,10および11)は略最小点灯光度となっている。なお、相関係数を用いた場合の光度履歴と比較すると、光度の荒れが少なかった。すなわち、回帰係数を用いることにより、照度センサとの距離感を得ることができており、その距離感および照度状況に応じて次光度を与えているためである。これに対して、相関係数を用いる場合には、相関があるか否かおよび相関がある照度センサの照度状況だけで次光度を与えているため、距離感を無視した大雑把な次光度生成しか行うことができない。例えば、移動前のセンサAおよびセンサCに影響する照明14では、真下に影響するセンサCがあるにも拘わらず、少し離れた場所にあるセンサAが目標照度を下回った場合には近傍範囲FやGのように急速な増光を行う近傍範囲を選択して急激に増光を行うといったように、従来の制御方式では、自身が光度を提供するのが最も適していない場合でも、相関が有るか無いかで一律の行動を取ることがある。このため、光度が荒れてしまう。
【0090】
また、図23において、照明10は、探索初期においてセンサAに対する回帰係数が誤って高くなっていると予想できる。このため、探索初期において、本来必要のない照明10が高い光度で点灯してしまう。しかし、探索回数200を超えるとセンサAに対する照明10の回帰係数は低くなり、減光する様子が確認できる。このように、推定の初期段階では十分な逐次推定がなされていないため誤差を多く含むことがあるが、探索が進むにつれ正しく推定できることが確認できる。
【0091】
次に、照度センサ(センサA)の移動時について説明する。
図17(c)より、探索回数1000回目のセンサAの移動により大幅に目標照度が下回るが、探索回数1054回でセンサA,BおよびCの照度は、744,743および803ルクスとなり、相関係数を用いた場合の約1/2倍の探索回数で全ての照度センサが目標照度収束範囲に達することが確認できる。すなわち、センサAの移動前に影響していた照明が即座に減光し、移動後に影響する照明が急速に増光している。これは、回帰係数の推定により、照度センサの照明機器に対する照度の影響度合い(距離的位置関係)が正しく把握できているためである。しかし、図23(a)より、照明5の光度が一時的に増光していることが確認できる。これは、図23(c)より、センサAの移動直後に行う推定値である回帰係数のリセットにより、一時的に誤ったランクを得てしまった結果である。勿論、探索を進めると、この誤りを訂正することができる。
【0092】
最後に、センサAの移動前の定常状態の点灯状況を図24に、センサAの移動後、十分に探索が進んだ定常状態における点灯状況を図25にそれぞれ示す。図24および図25より、各照度センサは目標照度収束範囲内の照度であり、各照度センサの近くにある照明が明るく点灯し、照度センサに影響のない照明が最小点灯光度付近で点灯していることが確認できる。
【0093】
上述した照明制御アルゴリズムによると、照明機器と照度センサの位置関係を、相関係数を用いた場合よりも、精度良く把握することができ、つまり、照明の光度変化量と照度センサの照度変化量とを回帰分析することによって得られる回帰係数は、照明が照度センサに影響するかどうかだけでなく、その距離感まで表すことができる。これにより相関係数より詳細な位置関係の把握が可能となり、目標照度を満たし省電力な状態へと素早く収束させることができる。
【0094】
ここで、上記照明システムにおける照明制御方法をステップ形式にて(主なステップに基づき)記載した場合について、以下に示しておく。
すなわち、この照明制御方法は、複数の照明機器と、これら各照明機器に対応して配置されて各照明機器で発光させる発光光度を制御する複数の照明制御装置と、上記各照明機器にて消費される消費電力を計測する電力計と、上記照明機器による照度を測定し得る照度測定装置と、上記各照明制御装置、電力計および照度測定装置との間で、所定データの受け渡しを行い得るデータ通信手段とを具備し、
且つ上記複数の照明機器の影響下に位置する照度測定装置からの測定照度および目標照度に基づき、少なくとも、当該照度測定装置の測定照度に影響を与える照明機器に対して、測定照度が目標照度に近づくように、その発光光度を制御する際に、上記測定照度に影響を与える照明機器を判断する指標として、所定の光度生成範囲内で変化されて照明機器に与えられる発光光度の変化量および照度測定装置にて測定される測定照度の変化量に基づき演算される回帰係数を用いるようにした照明システムにおける照明制御方法であって、
上記各照明機器を、所定の光度生成範囲内で発光光度を変化させて点灯させる第1のステップと、上記照明機器の影響下にある照度測定装置から測定照度および識別情報並びに消費電力を取得する第2のステップと、取得した測定照度に基づき照度測定装置が移動しているか否かを判断する第3のステップと、上記第3のステップにて照度測定装置の移動を検知すると現在の回帰係数をリセットする第4のステップと、取得した発光光度、照度測定装置の識別情報、測定照度および消費電力を用いて現在の発光光度の評価を行うための評価値を演算する第5のステップと、予め設定された複数の光度生成範囲から、次に発光すべき光度生成範囲を選択する第6のステップと、上記第6のステップで選択された光度範囲内で変化される光度値、照度値および消費電力を取得する第7のステップと、上記第7のステップで取得されたデータに基づき、新たに回帰係数を演算する第8のステップと、上記第8のステップで求められた回帰係数、および上記第7のステップで取得された発光光度、照度測定装置の識別情報、測定照度および消費電力に基づき評価値を演算する第9のステップと、上記第9のステップで求められた評価値と上記第5のステップで求められた前回の評価値とを比較して当該評価値が改善されているか否かを判断する第10のステップとを具備し、
且つ上記第10のステップにて改善されていると判断された場合に最初のステップに戻るようにするとともに、改善されていないと判断された場合に、第6のステップで求められた発光光度を破棄して最初のステップに戻るようにした制御方法である。
【0095】
ところで、上記実施の形態にて説明した各手段(例えば、光度生成手段、移動検知手段、回帰係数演算手段、光度生成範囲選択手段、評価値演算手段など)およびこれら各手段を構成する各構成部は、例えばプログラムにより実行されるものであり、それぞれ機能部と呼ぶこともでき、また場合によっては、それぞれの機能を発揮し得る回路部として構成することもできる。
【0096】
さらに、上記実施の形態においては、回帰係数を求めるのに、逐次型最小二乗法を用いたが、例えばバッチ型最小二乗法を用いることもできる。このバッチ型最小二乗法は、発光光度の変化量および測定照度の変化量の時系列データを用いて、回帰係数をバッチ形式にて求めるものである。
【0097】
また、上記実施の形態においては、回帰係数を求めるのに、照明機器の光度をランダム(任意に)に変化させたが、例えば各照明機器に対して互いに異なる所定の方法で変化させるようにしてもよい。すなわち、所定の変化パターンでしかも照明機器毎に異なる変化パターンでもって変化させるようにしてもよい。
【図面の簡単な説明】
【0098】
【図1】本発明の実施の形態に係る照明システムの概略全体構成を示す図である。
【図2】同照明システムにおける照度測定装置のカード本体部の平面図である。
【図3】同照明制御装置の概略構成を示すブロック図である。
【図4】同照明制御装置における回帰係数演算手段の構成を示すブロック図である。
【図5】同回帰係数演算手段を説明するための照明環境を示す機器配置図である。
【図6】同照明環境での回帰係数の有効性を説明するグラフである。
【図7】同照明制御装置における光度生成範囲選択手段の構成を示すブロック図である。
【図8】同光度生成範囲選択手段における光度生成範囲を示すグラフ図である。
【図9】同光度生成範囲選択手段における近傍設計を説明するためのツリー構造を示す図である。
【図10】同照明制御装置における評価値演算手段の構成を示すブロック図である。
【図11】同照明制御装置における移動検知手段の構成を示すブロック図である。
【図12】同移動検知手段における照度範囲を示す図である。
【図13】同移動検知手段での移動検知を説明する照明機器の配置図である。
【図14】同移動検知手段での移動検知時における光度の経過を示すグラフである。
【図15】同照明システムにおける照明制御方法を説明するフローチャートである。
【図16】同照明システムにおける実環境への適用実験を説明する機器配置図である。
【図17】同適用実験における照度の収束状態の経過を示すグラフである。
【図18】同適用実験における消費電力の経過を示すグラフである。
【図19】同適用実験における照明センサAの移動前における光度および回帰係数の経過を示すグラフである。
【図20】同適用実験における照明センサAの移動後における光度および回帰係数の経過を示すグラフである。
【図21】同適用実験における照明センサBにおける光度および回帰係数の経過を示すグラフである。
【図22】同適用実験における照明センサCにおける光度および回帰係数の経過を示すグラフである。
【図23】同適用実験における影響を受けない照明センサにおける光度および回帰係数の経過を示すグラフである。
【図24】同適用実験における定常状態での光度を示す機器配置図である。
【図25】同適用実験における定常状態での光度を示す機器配置図である。
【符号の説明】
【0099】
1 電力供給源
2 電気配線
3 照明機器
3a 蛍光灯
3b 光度調節部
4 照明制御装置
5 照度測定装置
5a カード本体部
5b 光センサ部
5c データ入力部
5d データ記憶部
5e データ出力部
6 電力計
7 ネットワーク回線
11 光度生成手段
12 データ取込手段
13 データ記憶手段
14 移動検知手段
15 回帰係数演算手段
16 光度生成範囲選択手段
17 評価値演算手段
21 観測予測誤差共分散演算部
22 フィルタゲイン演算部
23 推定値誤差共分散演算部
24 観測予測値演算部
25 観測予測誤差演算部
26 推定値演算部
31 ランク付け部
32 近傍選択部
41 選択指標決定部
42 依存値演算部
43 加算部
44 評価値判断部
51 照度値判断部
52 カウント部
53 移動判断部
54 リセット部
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11
【図13】
12
【図14】
13
【図15】
14
【図16】
15
【図17】
16
【図18】
17
【図19】
18
【図20】
19
【図21】
20
【図22】
21
【図23】
22
【図24】
23
【図25】
24