TOP > 国内特許検索 > 有機薄膜光電変換素子及びその製造方法 > 明細書

明細書 :有機薄膜光電変換素子及びその製造方法

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第5298308号 (P5298308)
公開番号 特開2007-273939 (P2007-273939A)
登録日 平成25年6月28日(2013.6.28)
発行日 平成25年9月25日(2013.9.25)
公開日 平成19年10月18日(2007.10.18)
発明の名称または考案の名称 有機薄膜光電変換素子及びその製造方法
国際特許分類 H01L  51/42        (2006.01)
FI H01L 31/04 D
請求項の数または発明の数 7
全頁数 11
出願番号 特願2006-242008 (P2006-242008)
出願日 平成18年9月6日(2006.9.6)
新規性喪失の例外の表示 特許法第30条第1項適用 『第53回応用物理学関係連合講演会講演予稿集』、第3分冊、平成18年3月22日、社団法人応用物理学会発行
優先権出願番号 2005258527
2006066674
優先日 平成17年9月6日(2005.9.6)
平成18年3月10日(2006.3.10)
優先権主張国 日本国(JP)
日本国(JP)
審査請求日 平成21年8月7日(2009.8.7)
特許権者または実用新案権者 【識別番号】504132272
【氏名又は名称】国立大学法人京都大学
発明者または考案者 【氏名】吉川 暹
【氏名】上原 赫
【氏名】早川 明伸
個別代理人の代理人 【識別番号】110001069、【氏名又は名称】特許業務法人京都国際特許事務所
審査官 【審査官】道祖土 新吾
参考文献・文献 米国特許出願公開第2004/0187911(US,A1)
米国特許出願公開第2004/0036067(US,A1)
特開2001-156321(JP,A)
特表2009-522828(JP,A)
特表2009-529792(JP,A)
特表2003-533034(JP,A)
特表2001-526466(JP,A)
特開2005-032793(JP,A)
調査した分野 H01L 51/42
H01L 31/04-31/078
特許請求の範囲 【請求項1】
大気下において、電極を有する基板上にバッファー層及び光電変換層を形成した後、加熱することなく湿式法によりTiO2ホールブロック層を設け、その上に対向電極を設けることを特徴とする有機薄膜光電変換素子の製造方法。
【請求項2】
前記TiO2ホールブロック層が、Tiアルコキシド溶液を塗布し、常温乾燥することにより形成されることを特徴とする請求項1に記載の有機薄膜光電変換素子の製造方法。
【請求項3】
TiO2アルコキシドを0.02~0.05mol/lの割合でエタノールに溶解させたTiO2アルコキシド溶液を用い、前記TiO2ホールブロック層を形成させることを特徴とする請求項2に記載の有機薄膜光電変換素子の製造方法。
【請求項4】
n型有機半導体成分に対して溶解性を有し、光電変換層形成時に使用する良溶媒よりも高沸点であるが室温において留去可能な貧溶媒を、光電変換層形成後、その表面に付着させ、貧溶媒を留去することにより、光電変換層にn型有機半導体成分とp型有機半導体成分の厚さ方向の濃度傾斜を設けることを特徴とする請求項1~3のいずれかに記載の有機薄膜光電変換素子の製造方法。
【請求項5】
n型有機半導体成分がPCBM、p型有機半導体成分がP3HT、良溶媒がクロロベンゼン、貧溶媒がNMP、ベンゾニトリル及びアニソールのいずれか1種又はその混合物であることを特徴とする請求項4に記載の有機薄膜光電変換素子の製造方法。
【請求項6】
n型有機半導体成分であるPCBM及びp型有機半導体成分であるP3HTを良溶媒であるクロロベンゼンと貧溶媒であるNMP、ベンゾニトリル及びアニソールのいずれか1種又はその混合物で溶解した溶液を用いて光電変換層を形成することを特徴とする請求項4又は5に記載の有機薄膜光電変換素子の製造方法。
【請求項7】
光電変換層を形成後、TiO2ホールブロック層を形成する前、及びTiO2ホールブロック層を形成した後の少なくとも一方でアニーリング処理を施すことを特徴とする請求項1~6のいずれかに記載の有機薄膜光電変換素子の製造方法。
発明の詳細な説明 【技術分野】
【0001】
本発明は、有機薄膜を発電層に用いる有機薄膜光電変換素子及びその製造方法に関する。本発明に係る光電変換素子はその光電変換効率が高いことから、太陽電池への応用に適している。
【背景技術】
【0002】
有機薄膜光電変換素子は、現在使用されている半導体(シリコン)光電変換素子と比較すると、フレキシブルであり、様々な形状、色のものを作ることができることから、多様な場所で用いることができるものとして、大きな期待がかけられている。また、活性層がスピンコート法やスクリーン印刷法等の湿式法により高効率で作製できることから、究極的にはロール・ツー・ロールの大量生産も可能となり、大幅なコストダウンが期待できるという点も大きな魅力となっている。
【0003】
しかし、現時点では、使用している有機材料が高価である上、真空下若しくは窒素雰囲気下で作製する必要があるが、大気下では耐久性に乏しく、また、高コストがその実用化に大きな妨げとなっている。
【0004】
有機光電変換素子には各種の方式が考案されているが、中でもバルクへテロジャンクションと呼ばれる構造を持ったものが、近年、その高い光電変換効率で注目されている。これは、導電性高分子とフラーレン誘導体の混合物からなるものであり、半導体光電変換素子と対比すると、前者がp型半導体、後者がn型半導体に対応する。両者が複雑に入り組んだヘテロジャンクション構造が、良好な電荷分離効率に結びついていると考えられている。なお、もう一つの構造として平面ヘテロ接合セルもある。ここでは前者を光電変換層の例として説明するが、後者についても同様の効果がある。
【0005】
セルの構造は、透明導電膜(電極)をコートした基板上に両者の複合体をスピンコートし、その上に対電極を載せるという非常に簡単なものである。
【0006】
バルクヘテロジャンクション構造では前記の通り電荷分離効率は良好であるものの、有機系であるため、電荷移動度が小さいという問題がある。従って、全体としての光電変換効率を上げるためには、その膜厚を薄くすることが効果的である。しかしあまりに薄くすると、今度は両電極間の短絡によるリークを招くこととなり、逆電荷輸送が起こることとなる。これを避けるために様々な工夫がなされている。
【0007】
従来、有機薄膜光電変換素子において、金属電極と活性層の間にホールブロック層(電子だけを通し、ホールを通さない層)を介挿することによって光電変換効率が向上することが知られている。これまでに報告されているホールブロック層はTiO2を素材とするものであるが、従来のTiO2ホールブロック層付有機薄膜光電変換素子は次のような方法で作製されている。酸素と水分を排除した真空室内で、電極上にTiO2を450℃程度で焼成し、メソポーラス状のTiO2ホールブロック層を形成する。そのホールブロック層付電極に、活性層を構成する色素層を塗布することで、有機薄膜光電変換素子を作成する。

【特許文献1】特開2004-319705号公報
【非特許文献1】T. Erb et al., Adv. Funct. Mater. 2005, 15, 1193-1196
【発明の開示】
【発明が解決しようとする課題】
【0008】
有機薄膜光電変換素子の特長は前記の通り、活性層がスピンコート法やスクリーン印刷法(湿式法)により、高効率で作製できるという点にある。しかし、上記のように一部に焼成工程が必要となると、製造工程を複雑化し、効率の良い有機薄膜光電変換素子の製造が妨げられる。また、製造コストを大きく押し上げる。
【0009】
一方、そのような層を介挿しない従来の湿式法で作製した有機薄膜光電変換素子では、一般に十分な光電変換効率が得られず、大気下では最適化しても0.5~1.0%程度にとどまっていた。
【課題を解決するための手段】
【0010】
そこで本発明者らは、鋭意検討した結果、有機薄膜光電変換素子の光電変換層と電極の間に設けるTiO2ホールブロック層を、活性層と同様、大気下で湿式で作製することに想到した。これにより、有機薄膜光電変換素子の特長を活かしつつ、高い光電変換効率を得ることができるようになった。
【0011】
具体的には、前記TiO2ホールブロック層は、Tiアルコキシド溶液(ゾル・ゲル)を塗布(この「塗布」には、スピンコート法、ロール・ツー・ロール法、スクリーン印刷法等が含まれる)し、常温乾燥することにより形成される。
【0012】
ホールブロック層としては、チタニア(TiO2)以外に、ニオベイト(Nb2O5)、ジルコニア(ZrO2)、酸化錫(Sn02)、酸化タングステン(WO3)、酸化亜鉛(ZnO)、酸化インジウム(In2O3)、酸化アルミニウム(Al2O3)のいずれか又はその2以上の混合物を用いることができる。これらはいずれも安定な化合物であり、光電変換素子(特に太陽電池)として長期間使用する場合、その性能の安定に大きく寄与する。これらの化合物の中では、特に、Ti02に加えZnO、Nb2O5、SnO2が変換効率の点で効果が大きい。
【0013】
また、本発明に係る有機薄膜光電変換素子の製造工程において、光電変換層を設けた後に50℃~200℃で1分~5時間程度のアニーリング(加熱)を行うことにより、光電変換効率が更に向上する。
【発明の効果】
【0014】
有機薄膜太陽電池において、活性層と電極層の間に設けられ、光電変換効率を向上させるTiO2ホールブロック層を湿式で製造することができるため、製造工程において活性層とのなじみが良く、高い製造効率で有機薄膜光電変換素子全体を製造することができるようになる。しかも、得られる有機薄膜光電変換素子は、高い光電変換効率を有すると共に、耐久性が良好である。
【発明を実施するための最良の形態】
【0015】
TiO2は電子輸送材として知られているが、これは、TiO2の持つ導電体が重畳しており、多くのパスが重畳することにより電子のスムーズな流れが確保されるためと考えられている。TiO2のLUMO(Lowest Unoccupied Molecular Orbital)及びHOMO(Highest Occupied Molecular Orbital)はそれぞれ4.2 eVと7.4 eVであり、金属電極への電子輸送に好都合であると共に、ホール輸送を阻止する層として好都合である。
また、電極としてAlを用いた場合、有機薄膜太陽電池の活性層有機物とAlが反応してAlが腐食するという現象が生ずる。ホールブロック層として介挿されるTiO2層は、このAlの腐食を防止するという効果も有する。
【実施例】
【0016】
[第1実施例]
本発明の第1実施例である有機薄膜太陽電池の概略の構造を図1及び図2に示す。図3に、真空準位におけるITO、PEDOT:PSS、P3HT、PCBM、TiO2、Alの各層のHOMO-LUMOのエネルギー準位を示す。
【0017】
[製造方法]
洗浄したITO透明電極ガラス基板上にポリ(3,4-エチレンジオキシチオフェン):ポリ(スチレンスルホン酸)(PEDOT:PSS)をスピンコートし、110℃で10分間乾燥させた。そこに、n型有機半導体のフラーレン誘導体([6,6]-phenyl C61-butyric acid methyl ester:PCBM):p型有機半導体のポリ-3-ヘキシルチオフェン(P3HT)(1:1wt比)のクロロベンゼン溶液(PCBM 5.0mg/0.5ml:P3HT 5.0mg/0.5ml)をスピンコートで成膜し、10Pa以下の減圧下で1時間乾燥した。形成された活性層の厚さは約100nmであった。その上にTiアルコキシド(Ti(OC3H7)4)(TIPT)のエタノール溶液をスピンコートし、乾燥して厚さ約50nmのTiO2層を形成した。ここで、TiO2層の乾燥は、大気中にて、加熱することなく行った。これにより、TiO2層は大気中の水分によりアモルファス状態となる。最後に、対極として100nm厚のAlを蒸着した。
なお、透明電極にはITOの他、FTO等も用いることができるが、導電性と透明度の点より、ITOが最も良好である。
【0018】
[TiO2層の厚さ]
TiO2層の厚さはアルファステッパー及びUV-vis分光法により測定した。図4はTiO2層の吸光スペクトルを示している。層の厚さのコントロールは、チタニアプリカーサーであるTIPTの濃度を変えることにより、行った。また、ステッププロファイルからは、直接厚さと関係付けることが可能となった。例えば、吸光度-膜厚のキャリブレーションカーブより0.143mol/lと0.071mol/lの場合の厚さは、150~170nmと約100nmと推定される。これより、0.036mol/lでは約50nm、0.018mol/lでは約25nmと推定される。
【0019】
[TiO2層の変換効率に及ぼす効果]
図5には、TiO2層作製時の溶液濃度の変換効率に及ぼす効果を示している。TIPT濃度が0.02~0.05mol/lの時に最高の変換効率を示すことがわかる。ここでは、Denatron P-NHC(ナガセケムテックス)をPEDOT:PSS層に用いている。
【0020】
[他の金属酸化物層の効果]
Ti02以外に、一般的にMxOy層が同様の効果を有するかを調べるため、ZrO2、Nb2O5、SnO2、WO3、TiO2の各酸化物のLUMOを調べた。図6は、真空の準位に対するZrO2、Nb2O5、SnO2、WO3、TiO2のLUMO、及び比較のためにAl電極のフェルミ準位を示している。
これら金属酸化物ZrO2、Nb2O5、SnO2、WO3について、TiO2と同様、各種濃度のものをスピンコート法により光電変換層の上にコートし、光電変換効率を測定した。図7からわかるように、LUMO準位がアルミのフェルミ準位に近いものの改善効果が認められる。これより、その効果は同じくホールブロック層としてのものと考えられる。なお、バッファー層としてはDenatron #5002LA(ナガセケムテックス)を用いた。
図8は、この最高効率を示したセルのI-Vカーブである。このセルでは、変換効率は3%、開放電圧Vocは0.6 V、短絡電流Iscは14.2mA/cm2、フィルファクターFFは0.37である。
【0021】
[第2実施例]
図9に示すように、アセトン、エタノールで洗浄されたITO電極の付いたガラス基板に、PEDOT:PSS 150μLを5000rpmでスピンコートした。そして、P3HT:PCBM:クロロベンゼン(良溶媒):有機溶媒(貧溶媒)=14mg:6mg:1mL:xmL混合液(有機溶媒の量xは各種値に変化させた)50μLを2000rpmでスピンコートした。その上に、アルミニウムを真空蒸着法にて150nm厚となるように製膜し、有機薄膜光電変換素子を完成した。
【0022】
貧溶媒である有機溶媒として前記NMP(1-Methyl-2-pyrrolidone)を用い、良溶媒であるクロロベンゼンに対する貧溶媒の量を変化させたときの、上記有機薄膜光電変換素子の短絡電流密度Isc、開放端電圧Voc、フィルファクターFF及び変換効率Effのグラフを図10に示す。クロロベンゼンに対するNMPの量比が1.5~3%の範囲で、短絡電流密度Iscはいずれも6mA以上と高い値を示し、一部では10mAを超えるものも出ている。また、変換効率Effもいずれも1%以上であり、最大では2.4%の値が得られている。
【0023】
貧溶媒である有機溶媒としてベンゾニトリルを用いた場合、及びアニソールを用いた場合の、それらの良溶媒であるクロロベンゼンに対する量比が変換効率に及ぼす影響を調べた結果を図11に示す。これらの有機溶媒の場合も同様の結果が得られており、ベンゾニトリル又はアニソールが1~20%の範囲で変換効率Effが向上することが示されている。
【0024】
これらの有機薄膜光電変換素子に更にTiO2ホールブロック層を設けた場合と設けない場合の電圧-電流密度特性を図12に示す。TiO2ホールブロック層が光電変換効率の向上に良い効果を持つことが明瞭に示されている。
【0025】
第2実施例による光電変換効率の向上は次のようなメカニズムにより達成されていると考えられる。すなわち、クロロベンゼン等の良溶媒に溶解したP3HT:PCBM溶液にNMPなどの貧溶媒を添加することにより、図13に示すように、P3HTの結晶化が生じて変換効率が上昇するものと考えられる。
【0026】
それを確認するために、良溶媒(クロロベンゼン)にP3HTのみを溶解して塗布して作製した薄膜と、P3HT:PCBMを溶解して塗布した薄膜の吸収スペクトルを測定した。いずれも、貧溶媒であるNMPを添加した場合と添加しない場合について行った。その結果を図14に示す。P3HT:PCBMのスペクトルでは600nm付近(○印)にピークが認められるが、これがP3HTの結晶化を表すものと考えられる。
【0027】
[第3実施例]
次に、PCBM:P3HT層に対して傾斜構造を設けた実施例について説明する。本発明者らは、光電変換層であるPCBM:P3HT層に、その厚さ方向にPCBMとP3HTの濃度傾斜を設けることにより、光電変換効率が向上することも見いだした。その製造方法は次の通りである(図15)。まず、上記同様、洗浄したITO透明電極ガラス基板上にPEDOT:PSS層を形成し、そこに、PCBM:P3HT=3:7(wt比)のクロロベンゼン溶液(PCBM 3mg/0.5ml:P3HT 7mg/0.5ml)をスピンコートで成膜し、10Pa以下の減圧下で1時間乾燥してPCBM:P3HT層を形成した。厚さは約100nmであった。その上に、有機溶媒1-Methyl-2-pyrrolidone(NMP)を吹き付けた(塗布でも構わない)(図15(a))。NMPはPCBMに対して溶解性を有し、クロロベンゼンよりも高沸点であるが室温において真空下で留去可能な溶媒である。これにより、PCBM:P3HT層の表面付近においてPCBM成分のみがNMPに溶解し、PCBM:P3HT層の表面付近に両者の濃度差による傾斜構造が形成される。真空下で1時間から3日間保持することにより乾燥し、PCBM:P3HT層の傾斜構造を固定する(図15(b))。その後、上記同様、Tiアルコキシド(Ti(OC3H7)4)(TIPT)のエタノール溶液をスピンコート・乾燥して厚さ約50nmのTiO2層を形成し、最後に対極として100nm厚のAlを蒸着した(図15(c))。
【0028】
なお、PCBM:P3HT層を形成する際に、クロロベンゼン溶液の中にNMPを入れてもよい(クロロベンゼン溶液100μLに対しNMP1.5μL)。このようにして作製した光電変換素子の光電変換効率は、アニーリングを行わない状態で3.2%であった。
【0029】
本実施例の傾斜構造有機薄膜光電変換素子では、PCBM:P3HT層に、PCBMに対して溶解性を有するNMPを吹き付け(塗布し)たことにより、その近傍において、溶媒の揮散が2段階で行われる。すなわち、良溶媒であるクロロベンゼンが先に揮散し、その後、貧溶媒であるNMPが徐々に揮散する。その際、光電活性材料であるP3HTの微結晶化が促進される。これにより、その部分の電気抵抗が減少し、光電変換素子としての電流損が最小限に抑えられるという効果が得られる。また、TiO2ホールブロック層の近くにおいて導電性材料であるPCBMの濃度が高まることになるため、電子がTiO2層に流入しやすくなる。これらにより、本実施例の傾斜構造有機薄膜光電変換素子は高い光電変換効率を有するものと考えられる。
【0030】
上記実施例では、光電変換層と電極層の間にTiO2層を介挿したが、熱によるアニーリングを行っていない。光電変換層に傾斜構造を形成したものは、必ずしも熱によるアニーリングを行わなくても、高い光電変換効率を得ることができる。
【0031】
[第4実施例]
次の方法で光電変換素子を作製した。洗浄したITO透明電極ガラス基板上にポリ(3,4-エチレンジオキシチオフェン):ポリ(スチレンスルホン酸)(PEDOT:PSS)をスピンコートし、110℃で10分間乾燥させた。そこに、n型有機半導体のフラーレン誘導体([6,6]-phenyl C61-butyric acid methyl ester:PCBM):p型有機半導体のポリ-3-ヘキシルチオフェン(P3HT)(3:7wt比)のクロロベンゼン溶液(PCBM 3.0mg/0.5ml:P3HT 7.0mg/0.5ml)をスピンコートで成膜し、10Pa以下の減圧下で1時間乾燥した。形成された活性層の厚さは約100nmであった。このようにして形成した光電変換層を140℃で5分間熱処理した。その上にTiアルコキシド(Ti(OC3H7)4)(TIPT)のエタノール溶液(0.036mol/l)をスピンコートし、乾燥して厚さ約50nmのTiO2層を形成した。ここで、TiO2層の乾燥は、大気中にて、加熱することなく行った。これにより、TiO2層は大気中の水分によりアモルファス状態となる。最後に、対極として100nm厚のAlを蒸着した。
【0032】
このようにして作製した光電変換素子のIV特性を図16に示す。このグラフから分かるように、フィルファクターは0.7となり、光電変換効率は4.1%という値が得られた。
【0033】
また、その光電流減衰カーブを図17に示す。なお、比較のために、光電変換層と電極の間にTiO2層を介挿しない光電変換素子も作製し、同じ試験を行った。図に示される通り、TiO2層を挿入することにより、大気下でAM(エアマス)1.5で100mW/cm2の連続光照射に対し、シーリング無しでも、本発明に係る光電変換素子の減衰率は100時間で6%程度であるのに対し、TiO2層を介挿しない通常のPCBM:P3HTバルクへテロ光電変換素子では僅か8時間で17%も減衰し、80時間経過後には殆ど光電流が生成されなくなった。このように、本実施例の有機薄膜光電変換素子は従来のものよりも遙かに高い耐久性を有する。
【0034】
[TiO2 の役割]
図18は、TiO2層を持つセルと介挿しないセル(共にアニーリング有り)のIPCEスペクトル(光電流スペクトル)である。また、図19は、暗部における、TiO2層のある場合とない場合のI-Vカーブを示す。これらの図より、TiO2層は光を吸収せず、活性層とAl電極の間にあってホール電流を阻止(ブロック)し、逆電流バリアを上げていることがわかる。
【図面の簡単な説明】
【0035】
【図1】本発明の一実施例であるTiO2層を有する有機薄膜太陽電池セルの構造を示す断面図。
【図2】実施例の有機薄膜太陽電池の層構造を示す図。
【図3】真空準位に対する各層のLUMO及びHOMOのエネルギー準位のグラフ。
【図4】TiO2層の厚さを評価するための、TIPT濃度と吸光スペクトルのグラフ。
【図5】TIPT濃度と光電変換効率の関係を示すグラフ。
【図6】真空の準位に対するZrO2、Nb2O5、SnO2、WO3、TiO2のLUMO、及び比較のためのAl電極のフェルミ準位の図。
【図7】各種金属酸化物を活性層と電極の間に介挿した場合の光電変換効率のグラフ。
【図8】最高効率を示した光電変換セルのI-Vカーブ。
【図9】第2実施例の有機薄膜光電変換素子の構造を示す斜視図。
【図10】第2実施例の有機薄膜光電変換素子の短絡電流密度Isc、開放端電圧Voc、フィルファクターFF及び変換効率Effのグラフ。
【図11】貧溶媒としてベンゾニトリル及びアニソールを用いた場合の変換効率に及ぼす影響のグラフ。
【図12】TiO2ホールブロック層を設けた場合と設けない場合の電圧-電流密度特性のグラフ。
【図13】良溶媒に溶解したP3HT:PCBM溶液に貧溶媒を添加した場合のP3HTの結晶化の様子を示す模式図。
【図14】クロロベンゼンにP3HTのみを溶解して塗布して作製した薄膜と、P3HT:PCBMを溶解して塗布した薄膜の吸収スペクトル。
【図15】第3実施例におけるPCBM:P3HT層に対して傾斜構造を設けた有機薄膜光電変換素子の製造工程を示す断面構造図。
【図16】第4実施例である、TiO2層を有する有機薄膜太陽電池のIVカーブ。
【図17】TiO2層を有するセルとそれを有さないセルの、光電流の減衰カーブ。
【図18】TiO2層を持つセルと介挿しないセル(共にアニーリング有り)のIPCEスペクトル。
【図19】暗部における、TiO2層のある場合とない場合のI-Vカーブ。
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11
【図13】
12
【図14】
13
【図15】
14
【図16】
15
【図17】
16
【図18】
17
【図19】
18