TOP > 国内特許検索 > 電磁波制御素子、電磁波制御装置及び電磁波制御方法 > 明細書

明細書 :電磁波制御素子、電磁波制御装置及び電磁波制御方法

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第4613321号 (P4613321)
登録日 平成22年10月29日(2010.10.29)
発行日 平成23年1月19日(2011.1.19)
発明の名称または考案の名称 電磁波制御素子、電磁波制御装置及び電磁波制御方法
国際特許分類 H05H   1/46        (2006.01)
FI H05H 1/46 B
請求項の数または発明の数 12
全頁数 25
出願番号 特願2007-523949 (P2007-523949)
出願日 平成18年6月27日(2006.6.27)
国際出願番号 PCT/JP2006/312780
国際公開番号 WO2007/000989
国際公開日 平成19年1月4日(2007.1.4)
優先権出願番号 2005187354
優先日 平成17年6月27日(2005.6.27)
優先権主張国 日本国(JP)
審査請求日 平成21年6月19日(2009.6.19)
特許権者または実用新案権者 【識別番号】504132272
【氏名又は名称】国立大学法人京都大学
発明者または考案者 【氏名】橘 邦英
【氏名】酒井 道
個別代理人の代理人 【識別番号】110000338、【氏名又は名称】特許業務法人原謙三国際特許事務所
審査官 【審査官】林 靖
参考文献・文献 特開平09-035898(JP,A)
特開2005-072297(JP,A)
特開平11-273899(JP,A)
特開2004-352599(JP,A)
特開2002-004049(JP,A)
特開2003-234333(JP,A)
調査した分野 H05H 1/46
H05H 1/24
C23C 14/00
C23C 16/00
C23F 1/00
H01L 21/20
H01L 21/31
特許請求の範囲 【請求項1】
2次元又は3次元的に周期的に分布するプラズマを生成するプラズマ生成手段を備え、
前記プラズマに電磁波を通過させるとともに、前記プラズマの配置を調整することにより、前記電磁波の伝播状態を制御することを特徴とする電磁波制御素子。
【請求項2】
前記プラズマ生成手段は、前記プラズマを生成する電力を供給する電極と、前記プラズマを生成するために電離対象となるガスを内部に保持するとともに制御対象となる電磁波を透過するガス保持手段とを備えることを特徴とする請求項1に記載の電磁波制御素子。
【請求項3】
前記電極は周期的に配置されており、当該電極の周期的配置に応じて前記プラズマの周期的分布が形成されることを特徴とする請求項2に記載の電磁波制御素子。
【請求項4】
前記ガス保持手段は周期的に形成された複数の空孔を有しており、当該空孔内にプラズマが生成されることにより前記プラズマの周期的分布が形成されることを特徴とする請求項2に記載の電磁波制御素子。
【請求項5】
前記ガス保持手段は、前記複数の空孔が形成された誘電体からなっていることを特徴とする請求項4に記載の電磁波制御素子。
【請求項6】
前記プラズマ生成手段は、前記ガス保持手段の内部に露出し、周囲よりも2次電子放出係数の高い材質からなる電子放出手段をさらに備え、
前記電子放出手段は周期的に配置されており、当該電子放出手段の周期的配置に応じて前記プラズマの周期的分布が形成されることを特徴とする請求項2に記載の電磁波制御素子。
【請求項7】
前記プラズマ生成手段は、前記周期的なプラズマを取り囲み、かつ、当該プラズマとは電子密度の異なるプラズマをさらに生成することを特徴とする請求項1に記載の電磁波制御素子。
【請求項8】
前記プラズマ生成手段は、前記電極によって生成されたプラズマを引き出すための電圧を印加する引出電極を備えることを特徴とする請求項2に記載の電磁波制御素子。
【請求項9】
請求項1から8の何れか1項に記載の電磁波制御素子と、
前記プラズマ生成手段によってプラズマを生成するための電力を制御する電力制御手段とを備えることを特徴とする電磁波制御装置。
【請求項10】
請求項1から8の何れか1項に記載の電磁波制御素子と、
前記プラズマ生成手段によって生成されるプラズマの分布状態を制御するプラズマ分布制御手段とを備えることを特徴とする電磁波制御装置。
【請求項11】
請求項1から8の何れか1項に記載の電磁波制御素子と、
前記プラズマを生成するために電離対象となるガスの圧力を制御するガス圧力制御手段とを備えることを特徴とする電磁波制御装置。
【請求項12】
2次元又は3次元的に周期的に分布するプラズマを生成し、前記プラズマに電磁波を通過させるとともに、前記プラズマの配置を調整することにより、前記電磁波の伝播状態を制御することを特徴とする電磁波制御方法。
発明の詳細な説明 【技術分野】
【0001】
本発明は、電磁波を制御するための電磁波制御素子及びこれを備えた電磁波制御装置、並びに電磁波を制御するための電磁波制御プラズマ及び電磁波制御方法に関するものである。
【背景技術】
【0002】
電磁波は、情報通信分野での情報伝達媒体として、また各種物質の創成・改質手段として、その役割の数々は枚挙に暇がない。したがって、電磁波を制御する素子には、それら利用分野での必要性に応じて、常に様々な改良が加えられている。
【0003】
特に、マイクロ波からテラヘルツ帯にわたる電磁波は、まだ産業的に十分利用されておらず、しかも今後その技術的・市場的進展が広く見込まれる周波数帯であり、それに適した制御デバイスの研究開発が望まれている。
【0004】
電磁波の制御素子としては、分岐素子、減衰器、共振器、周波数フィルタ、レンズ等が様々な物質の様々な構造により実現されている。
【0005】
近年では、フォトニック結晶と呼ばれる屈折率変化の周期構造をもつ構造体が、電波~光波(テラヘルツ帯(波長0.1mm程度)及びこれよりも長波長の電磁波を「電波」と称し、電波よりも短波長の電磁波を「光波」と称する。)の領域の制御素子として脚光を浴びており、様々な応用を見据えた研究開発が盛んである(例えば、非特許文献1参照)。すなわち、これまでの単独物質では実現不可能な機能が、2次元あるいは3次元の周期構造をとることにより実現可能となってきている。
【0006】
フォトニック結晶は、これまで誘電体又は金属の周期構造によりその機能を実現してきた。誘電体を使用する場合は、周期構造の形状、周期構造の周期長及び周期内構造の寸法に加え、誘電体の誘電率及び屈折率が重要な制御パラメータである。また、金属を使用する場合は、当該金属は、誘電体と見なした場合の誘電率が負であり、内部を電磁波が伝播不可能な媒質といえる。
【0007】
以上のような物質を用いて作成されたフォトニック結晶において、これまで様々な機能が実現されている。実現されている機能の一例としては、周波数フィルタ、光路制御器(導波路)、共振器、レンズ、面発光レーザ等が挙げられる。
【0008】
一般に、プラズマは導電性とともに誘電性を有する媒質として知られている。そして、非特許文献2では、プラズマの上記特性を用いることにより、ミリ波帯からサブミリ波帯の電磁波を制御することや、フォトニック結晶のような機能を持たせる構成(いわゆる「プラズマフォトニック結晶」)についての可能性を指摘している。
【0009】
一方、非特許文献3には、誘電体の周期構造を2次元的に配置することにより、一様なプラズマ中にプラズマの存在しない部分を周期的に形成することにより、ミリ波帯の電磁波の伝播方向を制御するための研究が開示されている。なお、非特許文献3においても、「プラズマフォトニック結晶」という用語が用いられている。

【非特許文献1】野田 進 著「二次元・三次元フォトニック結晶の現状と将来展望」応用物理 第74巻 第2号(2005年)147~159頁
【非特許文献2】K.Tachibana,et.al.″Diagnostics of microdischarge-integrated plasma sources for display and materials processing″,Plasma Phys.Control.Fusion,Vol.47,No.5A(2005)pp.A167-A177.
【非特許文献3】内田 直人他 著「2次元プラズマフォトニック結晶における電磁波伝搬シミュレーション」日本物理学会講演概要集 第60巻 第1号 第2分冊(2005年) 263頁
【発明の開示】
【発明が解決しようとする課題】
【0010】
しかしながら、従来研究開発されてきたフォトニック結晶は、以下のような問題点を有している。
【0011】
従来のフォトニック結晶は、誘電体又は金属といった固体材料を使用しているため、上記非特許文献3のプラズマフォトニック結晶を除き、一旦構造物を作製するとその屈折率や誘電率を変化させることは容易ではない。すなわち、電磁波の周波数に対するフォトニック結晶の応答特性は、フォトニック結晶そのものを交換しない限りは変化させることは困難である。
【0012】
つまり、フォトニック結晶はこれまで存在した電磁波制御素子では実現できない様々な機能を実現可能であるものの、一旦作製したフォトニック結晶の機能はほぼ1つに限定されてしまう。
【0013】
一方、上記非特許文献3のプラズマフォトニック結晶の場合では、誘電体の周期構造の間隙がプラズマによって満たされていることから、プラズマの特性を変化させることによって上記間隙の誘電率を変化させることは可能である。
【0014】
しかしながら、上記プラズマフォトニック結晶では、周期的に誘電体が設けられておりその他の部分がプラズマによって満たされているため、プラズマ中でのエネルギーの減衰が著しくなり(特にプラズマの比誘電率を負の値に設定した場合)、プラズマフォトニック結晶中を電磁波が伝播することが困難になることから、実際にはプラズマフォトニック結晶の応答特性を広く変化させることは困難である。
【0015】
また、上記プラズマフォトニック結晶では、一様なプラズマの使用を前提としているため、プラズマの部分部分を制御することができず、プラズマフォトニック結晶の応答特性を広く制御することが困難である。
【0016】
さらに、上記非特許文献2には、いわゆる「プラズマフォトニック結晶」の具体的構成やこれを作製するための具体的内容については何ら開示はなされていない。
【0017】
本発明は、上述の問題に鑑みてなされたものであり、その目的は、電磁波の制御状態を容易に変更することができる電磁波制御素子及び電磁波制御装置を提供することにある。
【課題を解決するための手段】
【0018】
本発明に係る電磁波制御素子は、2次元又は3次元的に周期的に分布するプラズマを生成するプラズマ生成手段を備え、前記プラズマに電磁波を通過させることにより、当該電磁波の伝播状態を制御することを特徴としている。
【0019】
上記構成では、プラズマ生成手段によって2次元又は3次元的に周期的に分布するプラズマを生成する。プラズマが生成された部分ではその屈折率が周囲とは異なる。したがって、2次元又は3次元的に周期的に分布するプラズマを生成することによって、従来のフォトニック結晶と同じように、屈折率の周期的変化を形成することができ、これによって電磁波の伝播状態を制御することができる。
【0020】
従来のフォトニック結晶では、フォトニック結晶の材質や形状を決定すると、屈折率の周期的変化が定まることから、電磁波の制御状態も定まることになる。したがって、電磁波の制御状態を変更しようとすると、フォトニック結晶の材質や形状を変更する必要があり、このことはフォトニック結晶そのものを交換することになる。
【0021】
一方、プラズマは、当該プラズマにおける電子密度や当該プラズマを生成するために電離対象となるガスの圧力を変更することによって当該プラズマの屈折率を変化させることができる。したがって、上記構成では、プラズマにおける電子密度や電離対象となるガスの圧力を変更することによって制御パラメータである屈折率を容易に変更することができ、電磁波の制御状態も変更することができる。
【0022】
このように、上記構成では、電磁波の制御状態を変更することができる電磁波制御素子を実現することができる。
【0023】
また、本発明に係る電磁波制御プラズマは、2次元又は3次元的に周期的に分布することにより、通過する電磁波の伝播状態を制御することを特徴としている。また、本発明に係る電磁波制御方法は、2次元又は3次元的に周期的に分布するプラズマを生成し、前記プラズマに電磁波を通過させることにより、当該電磁波の伝播状態を制御することを特徴としている。これらによっても、上記電磁波制御素子と同じく、電磁波の制御状態を容易に変更することができる。
【0024】
前記プラズマ生成手段は、前記プラズマを生成する電力を供給する電極と、前記プラズマを生成するために電離対象となるガスを内部に保持するとともに制御対象となる電磁波を透過するガス保持手段とを備えることによって構成することができる。
【0025】
また、前記電極は周期的に配置されており、当該電極の周期的配置に応じて前記プラズマの周期的分布を形成される構成とすることもできる。
【0026】
また、前記ガス保持手段は周期的に形成された複数の空孔を有しており、当該空孔内にプラズマが生成されることにより前記プラズマの周期的分布が形成される構成とすることもできる。
【0027】
上記構成では、ガス保持手段の空孔内にプラズマを生成するので、ガス保持手段の内部にプラズマを閉じ込めることができ、プラズマの境界面を明確に定めることができる。そうすると、この境界面における電子密度の差を大きくとることができ、プラズマの周期的分布による影響をより顕在化することができる。
【0028】
また、前記ガス保持手段は、前記複数の空孔が形成された誘電体からなっている構成とすることもできる。
【0029】
上記構成では、上記空孔以外の部分が誘電体によって埋められることになる。これにより、境界面における電子密度の差を大きくとることができることに加えて、境界面における比誘電率の差をより大きくとることができる。その結果、プラズマの周期的分布による影響をさらに顕在化することができる。
【0030】
また、前記プラズマ生成手段は、前記ガス保持手段の内部に露出し、周囲よりも2次電子放出係数の高い材質からなる電子放出手段をさらに備え、前記電子放出手段は周期的に配置されており、当該電子放出手段の周期的配置に応じて前記プラズマの周期的分布が形成される構成とすることもできる。
【0031】
また、前記プラズマ生成手段は、前記周期的なプラズマを取り囲み、かつ、当該プラズマとは電子密度の異なるプラズマをさらに生成する構成としてもよい。
【0032】
上記構成では、周期的なプラズマ部分と、これを取り囲む部分、すなわち、周期的なプラズマとは電子密度の異なるプラズマ部分との両方の屈折率を変化させることができるので、より柔軟に電磁波に対する制御状態を変更することができる。
【0033】
また、前記プラズマ生成手段は、前記電極によって生成されたプラズマを引き出すための電圧を印可する引出電極を備える構成としてもよい。
【0034】
上記構成では、予備放電によって生成されたプラズマを引き出すことによってプラズマの長さを調節することができる。
【0035】
本発明に係る電磁波制御装置は、上記何れかの電磁波制御素子と、前記プラズマ生成手段によってプラズマを生成するための電力を制御する電力制御手段とを備えることを特徴としている。
【0036】
上記構成では、電力制御手段によってプラズマを生成するための電力を制御することにより、プラズマにおける電子密度を制御することができる。これにより、制御パラメータである屈折率を制御することができ、電磁波の制御状態も変更することができる。
【0037】
本発明に係る電磁波制御装置は、上記何れかの電磁波制御素子と、前記プラズマ生成手段によって生成されるプラズマの分布状態を制御するプラズマ分布制御手段とを備えることを特徴としている。
【0038】
上記構成では、プラズマ分布制御手段によってプラズマの分布状態を制御することができるので、屈折率変化の周期構造を変更することができる。これにより、より柔軟に電磁波の制御状態を変更することができる。
【0039】
本発明に係る電磁波制御装置は、上記何れかの電磁波制御素子と、前記プラズマを生成するために電離対象となるガスの圧力を制御するガス圧力制御手段とを備えることを特徴としている。
【0040】
上記構成では、電離対象となるガスの圧力を制御することにより、プラズマにおける電子密度を制御することができる。これにより、制御パラメータである屈折率を制御することができ、電磁波の制御状態も制御することができる。
【発明の効果】
【0041】
本発明に係る電磁波制御素子は、以上のように、2次元又は3次元的に周期的に分布するプラズマを生成するプラズマ生成手段を備え、前記プラズマに電磁波を通過させることにより、当該電磁波の伝播状態を制御する構成である。
【0042】
上記構成では、プラズマにおける電子密度や電離対象となるガスの圧力を変更することによって制御パラメータである屈折率を容易に変更することができ、電磁波の制御状態も変更することができる。
【0043】
このように、上記構成では、電磁波の制御状態を変更することができる電磁波制御素子を実現することができるという効果を奏する。
【図面の簡単な説明】
【0044】
【図1】本発明の第1実施形態の電磁波制御装置を示す断面図である。
【図2】図1の電磁波制御装置のA-A線矢視断面図である。
【図3】プラズマの分布状態を示す、図1の電磁波制御装置のA-A線矢視断面図である。
【図4】プラズマの他の分布状態を示す、図1の電磁波制御装置のA-A線矢視断面図である。
【図5】プラズマのさらに他の分布状態を示す、図1の電磁波制御装置のA-A線矢視断面図である。
【図6】図1の電磁波制御装置における電磁波制御素子の変形例を示す断面図である。
【図7】図1の電磁波制御装置における電磁波制御素子の他の変形例を示す断面図である。
【図8】図1の電磁波制御装置における電磁波制御素子のさらに他の変形例を示す断面図である。
【図9】本発明の第2実施形態の電磁波制御装置を示す断面図である。
【図10】本発明の第3実施形態の電磁波制御装置を示す断面図である。
【図11】本発明の第4実施形態の電磁波制御装置を示す断面図である。
【図12】図11の電磁波制御装置のB-B線矢視断面図である。
【図13】本発明の第5実施形態の電磁波制御装置を示す断面図である。
【図14】2次元プラズマアレイ内を伝播する電磁波の分散関係を示す図である。
【図15】2次元プラズマアレイ内を伝播する電磁波の2次元波数平面上の等周波数線の分布を示す図である。
【符号の説明】
【0045】
1 電磁波制御装置
2 電磁波制御素子
3 電力制御システム(電力制御手段、プラズマ分布制御手段)
4 ガス制御システム(ガス圧力制御手段)
21 筐体(プラズマ生成手段、ガス保持手段)
22a 電極(プラズマ生成手段)
22b 電極(プラズマ生成手段)
23 筒部材(プラズマ生成手段、ガス保持手段)
24 誘電部材(プラズマ生成手段、ガス保持手段)
101 電磁波制御装置
102 電磁波制御素子
103 電力制御システム(電力制御手段)
122a 電極(プラズマ生成手段)
122b 電極(プラズマ生成手段)
123a 電子放出部材(プラズマ生成手段、電子放出手段)
123b 電子放出部材(プラズマ生成手段、電子放出手段)
201 電磁波制御装置
202 電磁波制御素子
203 電力制御システム(電力制御手段、プラズマ分布制御手段)
223a 電極(プラズマ生成手段)
223b 電極(プラズマ生成手段)
301 電磁波制御装置
302 電磁波制御素子
303 電力制御システム(電力制御手段)
322a 電極(プラズマ生成手段)
322b 電極(プラズマ生成手段)
323 電極(プラズマ生成手段)
401 電磁波制御装置
402 電磁波制御素子
403 電力制御システム(電力制御手段、プラズマ分布制御手段)
P プラズマ
R 電磁波
【発明を実施するための最良の形態】
【0046】
〔実施形態1〕
本発明の実施の一形態について図1から図8に基づいて説明すると以下の通りである。
【0047】
本実施形態の電磁波制御素子では、電磁波の制御のためにプラズマを用いる。そこで、まず、プラズマの性質について説明する。
【0048】
一般に、プラズマが発生すると、その部分を通過する電磁波に対する比誘電率εは次の式(1)によって表されることが知られている。
【0049】
【数1】
JP0004613321B2_000002t.gif

【0050】
ここで、ωpe/2πは電子プラズマ周波数(「電子プラズマ振動数」ともいう。以下では単に「プラズマ周波数」という。)、ω/2πはプラズマを通過する電磁波の周波数であり、比誘電率εと屈折率nとの間の関係は、n=ε1/2である。
【0051】
式(1)より、比誘電率εは、1よりも小さな値をもち、かつ、ωがωpeよりも大きい場合には正の値をとる。したがって、ωがωpeよりも大きい場合には、プラズマは誘電体と見なしうる。
【0052】
また、式(1)より、ωがωpeよりも小さい場合には、比誘電率εは負の値となり、電磁波はプラズマ中には表皮厚さと呼ばれるごく薄い領域にしか侵入できなくなるため、電磁波はプラズマ中をほぼ伝播不可能とみなすことができる。したがって、ωがωpeよりも小さい場合には、プラズマは金属と同様に振舞う。
【0053】
したがって、プラズマを発生させたり消滅させたりすると、その場所での比誘電率εは大きく変化する。また、プラズマが存在している状態でも、そのωpeを変化させることにより、電磁波がプラズマ中を伝播できる状態とほとんど伝播できない状態とを切り換えることができる。
【0054】
なお、ωpeはプラズマ中の電子密度(プラズマ強度)の関数であり、電子密度の1/2乗に比例する。より具体的には、電子密度とプラズマ周波数との関係は次の式(2)によって表される。
【0055】
【数2】
JP0004613321B2_000003t.gif

【0056】
ここで、nは電子密度、eは素電荷量、mは電子の質量、εは真空中の誘電率である。また、電子密度とプラズマ周波数との関係を具体的数値例によって示すと、次の表1のようになる。
【0057】
【表1】
JP0004613321B2_000004t.gif

【0058】
したがって、プラズマの電子密度を変化させることにより、電磁波がプラズマ中を伝播できる状態とほとんど伝播できない状態とを切り換えることができる。
【0059】
このことは、従来のフォトニック結晶との比較でいうと、電子密度を変化させることにより、電磁波に対して誘電体相当のものから金属相当のものまで、様々な屈折率を設定可能であるといえる。
【0060】
このようなプラズマの屈折率の制御は、次のようにして行うことができる。プラズマ中の電子密度は、プラズマの生成用電力を制御することによってその調整が可能である。したがって、プラズマの生成用電力を制御することによって、プラズマ中の電子密度を制御することができ、その結果としてプラズマの屈折率を制御することができる。
【0061】
また、比誘電率εは、より正確には、プラズマ部に存在する中性粒子とプラズマ中の電子との間での衝突周波数(以下、単に「衝突周波数」という)νを考慮することにより、複素数として次の式(3)によって表現される。
【0062】
【数3】
JP0004613321B2_000005t.gif

【0063】
中性粒子と電子との間での衝突がある程度頻繁になって衝突性プラズマという領域になると、ωがωpeよりも小さい場合であっても表皮厚さが厚くなり、電磁波はある程度プラズマ中に侵入するようになる。
【0064】
ここで、本発明の発明者らは、衝突性プラズマにおいてωがωpeよりも小さい場合に、dn/dωが負となるいわゆる異常分散と呼ばれる状態となることを見出した。この異常分散を示すプラズマにおいては、その中を通過する電磁波の位相速度と郡速度が逆向きとなり、電磁波がプラズマ表面に斜めに入射するとき、プラズマ内では逆向きに折り返す(屈折する)現象が見出され、通常の誘電体面への入射よりも大きな光路変化を起こすことができる。
【0065】
このことから、プラズマ中の中性粒子密度を変化させて衝突周波数を変化させることによっても、プラズマの屈折率を制御することができることになる。プラズマ中の中性粒子密度は、プラズマを生成するために電離対象となるガスの圧力によって制御でき、このガス圧力は、ガスを閉空間に充填するときの量を調整することによって容易に制御可能である。
【0066】
本実施形態の電磁波制御素子は、フォトニック結晶における屈折率変化の周期構造に相当する構成を、上記のようなプラズマの特性を利用して実現するものである。これにより、プラズマ中の電子密度や衝突周波数の調整、すなわち供給電力やガス圧力の調整を行うことによってプラズマの屈折率等の物性値を大きく変化させることができ、電磁波制御素子としての機能を随時制御可能となる。
【0067】
ここで、2次元的に周期的にプラズマを配列させることにより構成された2次元プラズマアレイに電磁波を透過させることにより、その電磁波の伝播状態を様々に制御可能であることを説明する。
【0068】
2次元プラズマアレイの一例として、正方格子状にプラズマを配列させた構成、より具体的には、格子間隔距離(格子定数)が2.5mmの各格子点に、直径1.0mmの柱状(その軸方向は格子平面に垂直)のプラズマがそれぞれ生成されている構成を想定する。なお、各プラズマの電子密度は1×1013cm-3(プラズマ周波数ωpe/2π=28GHz)、プラズマを生成するための電離対象となるガス圧力は30kPa、ガス種はヘリウムとする。また、制御対象となる電磁波は、電磁波モードがTEモード(電界の方向が格子面に平行)、伝播方向が格子面に平行であるものとする。
【0069】
このときの電磁波の分散関係を理論的に導出すると、その理論曲線は図14のようになる。この分散関係は設定するパラメータによって大きく変化するが、以下に説明する特性は、定性的にはパラメータに依存しない共通の内容である。
【0070】
まず、プラズマ周波数(28GHz)よりも低周波数側には、「フラットバンド領域」と呼ばれるごく狭い周波数帯に、波数に対してほぼ一定の周波数をとる伝播モードが現れる。この伝播モードの存在する領域は、先に述べたプラズマの金属的振舞いと異常分散とが生じる領域にほぼ対応している。したがって、プラズマ中のこれらの現象とプラズマ自体が2次元周期構造をとることとに由来して上記伝播モードが生じることになる。このように、2次元プラズマアレイ内における屈折率変化が大きくなることによって上記伝播モードが生じることにより、2次元プラズマアレイを透過する電磁波の量を大きく増加させたり減少させたりすることができるものと考えられる。このような電磁波の透過量の制御は、誘電体のフォトニック結晶では実現し得ない、2次元プラズマアレイに特有の特性である。
【0071】
次に、フラットバンド領域とプラズマ周波数(28GHz)に相当する周波数との間には、伝播モードが存在しない禁制帯が生じる。この禁制帯では、無限に大きな2次元プラズマアレイを考えた場合、電磁波はこの2次元プラズマアレイ内を伝播できず、この2次元プラズマアレイによって遮断されることになる。有限の大きさの2次元プラズマアレイの場合は、プラズマ密度(すなわち透過する電磁波の周波数に対する屈折率)と2次元プラズマアレイの大きさとに応じて、透過する電磁波の減衰量が決まることになる。このような電磁波の透過量の制御も、誘電体のフォトニック結晶では実現し得ない、2次元プラズマアレイに特有の特性である。
【0072】
さらに、プラズマ周波数が上がって、(プラズマ周波数×格子定数/光速)=0.5となる条件、つまり、格子定数が電磁波の波長の1/2となる条件よりも少し高い周波数側にも禁制帯が生じる。この禁制帯においても、無限に大きな2次元プラズマアレイを考えた場合、電磁波はこの2次元プラズマアレイ内を伝播できず、この2次元プラズマアレイによって遮断されることになる。有限の大きさの2次元プラズマアレイの場合は、プラズマ密度(すなわち透過する電磁波の周波数に対する屈折率)と2次元プラズマアレイの大きさとに応じて、透過する電磁波の減衰量が決まることになる。この現象は、誘電体のフォトニック結晶と同様の禁制帯の発現現象である。ただし、2次元プラズマアレイの場合は、先に述べたように、プラズマ密度を時間的にかつ空間的に制御できるので、禁制帯が生じる時間や周波数を容易に制御できる。
【0073】
また、2次元プラズマアレイ内における電磁波の伝播を解析してみると、以下のような内容も明らかとなった。上記において想定した2次元プラズマアレイの電磁波及びプラズマパラメータに関して、プラズマ周波数(28GHz)よりもやや高周波数側の電磁波の伝播を、2次元波数平面上の等周波数線の分布として図示すると図15のようになった。なお、図15中「X方向波数」及び「Y方向波数」の「X方向」及び「Y方向」は、2次元プラズマアレイの格子の配列方向(行方向及び列方向)を意味する。
【0074】
通常の電磁波の伝播では、2次元波数平面上では周波数が同心円状に変化するが、電磁波の周波数がプラズマ周波数に近づくと等周波数線が歪められ、群速度(dω/dt)の異方性が生じる(なお、群速度の方向は、等周波数線上の任意の点における法線方向に一致している)。すなわち、図15に示すように、群速度はX方向及びY方向への指向性を有することになる。
【0075】
電磁波のエネルギーは概ね群速度方向に流れるので、上記のように等周波数線が歪められた電磁波については、そのエネルギーはX方向及びY方向への指向性が付与されることになる。したがって、進行方向がほぼX方向に向くようにして電磁波を2次元プラズマアレイに入射させると、その電磁波は、2次元プラズマアレイが存在しない場合には幾分発散しながら伝播するのに対して、2次元プラズマアレイが存在する場合にはエネルギーの流れがよりX方向を向くように指向性が付与されることになり、その結果、2次元プラズマアレイを透過する電磁波の量が増大すると考えられる。このような電磁波の透過量の制御も、誘電体のフォトニック結晶では実現し得ない、2次元プラズマアレイに特有の特性である。
【0076】
次に、本実施形態の電磁波制御素子及びこれを用いた電磁波制御装置の構成について説明する。本実施形態の電磁波制御装置1の全体構成を図1に示し、図1におけるA-A線矢視断面図を図2に示す。
【0077】
電磁波制御装置1は、電磁波制御素子2と、電磁波制御素子2への供給電力を制御する電力制御システム3と、電磁波制御素子2内のガスを制御するガス制御システム4とを備えている。
【0078】
電磁波制御素子2は、筐体21と、筐体21内部に配置された多数の電極22a・22bとを備えている。
【0079】
筐体21は、直方体の外形を有する箱状の容器であり、内部に所定のガスを保持できるように、ガス供給口21a及びガス排出口21bを除いて密封された構造となっている。
【0080】
筐体21の内部上面には、多数の電極22aが正方格子状(行列状)に配置されているとともに、筐体21の内部下面にも、電極22aにそれぞれ対向するように多数の電極22bが正方格子状に配置されている。
【0081】
電力制御システム3は、電力を発生する電源31と、電源31からの電力の供給を制御する電力制御器32と、電源31と電力制御器32と電磁波制御素子2との間を接続する電気配線とを備えている。
【0082】
電源31は、正弦波や矩形波の波形を有する交流電力を発生する。電源31によって発生された電力は、電力制御器32に供給される。
【0083】
電力制御器32は、電源31から供給された電力を調整し、かつ、選択的に電極22aに供給する。すなわち、電力制御器32は、電極22aに印加する電圧(なお、電極22bは接地されている)を調整することにより供給する電力を調整するとともに、多数の電極22aの中から選択されたものに対して調整された電力を供給する。電力を供給すべき電極22aは予め設定されており、その設定は変更可能である。
【0084】
ガス制御システム4は、真空ポンプ41と、ガスボンベ42と、排気弁43aと、吸気弁43bと、吸排気制御器44と、これらと電磁波制御素子2のガス供給口21a及びガス排出口21bとをつなぐ配管とを備えている。
【0085】
このガス制御システム4により、電磁波制御素子2内部のガスの排気、所定ガスの充填、ガス圧力の調整を行うことができる。
【0086】
以上のような構成を有する電磁波制御装置1による電磁波の制御動作について説明する。
【0087】
初期状態では電磁波制御素子2内部に空気が充填されており、この空気を真空ポンプ41により排気する。これにより真空状態となった電磁波制御素子2内部に、ガスボンベ42より所定のガス(例えばヘリウム)を送り込むことによって電磁波制御素子2内部にこのガスを充填する。電磁波制御素子2内部におけるガス圧力は、吸排気制御器44によって排気弁43a及び吸気弁43bの開閉を制御することによって調整する。
【0088】
そして、電源31からの電力の供給を開始し、電力制御器32によって所定の電極22aに所定の電圧を印加する。これにより、電圧が印加された電極22aとこれに対向する電極22bとの間においてプラズマPを生成する。
【0089】
図1及び図2では、全ての電極22aに対して電圧を印加することにより、全ての電極22aと電極22bとの間にプラズマPを生成した状態を示している。このとき、電磁波制御素子2内部には2次元的に周期的にプラズマPが分布することになる。
【0090】
そして、外部より電磁波制御素子2に対して、プラズマPの配列に沿った方向に制御対象となる電磁波Rを入射させる。入射された電磁波Rは、電磁波制御素子2内部において、プラズマPによって実現される屈折率変化の周期構造の影響を受け、その伝播状態が制御される。
【0091】
なお、電磁波制御素子2の筐体21における電磁波Rが入射される入射部21c、及び電磁波Rが出射される出射部21dは、電磁波Rを透過する材質によって構成されている。
【0092】
電磁波Rの伝播状態の制御には、電磁波Rの集束又は発散状態の制御、進行方向の制御、減衰(透過)の制御、共振の制御が含まれる。このとき、電磁波制御素子2はそれぞれレンズ、光路制御器(導波路)、周波数フィルタ、共振器として機能する。
【0093】
これらの制御は、上述したプラズマ中の電子密度や衝突周波数の調整に加えて、プラズマPの配置の調整(プラズマの分布状態の制御)によって実現することができる。
【0094】
図3から図5に基づいて、プラズマPの配置の調整例についてついて説明する。図3に示すように、電極22bの1行1列おきにプラズマPを発生させることにより、プラズマPの分布する周期を長くすることができる。また、図4に示すように、電極22bの行方向及び列方向に交互にプラズマPを発生させることにより、プラズマPを三角格子状に分布させることもできる。さらに、図5に示すように、プラズマPの周期構造の中に線欠陥LD又は点欠陥PDを形成することもできる。
【0095】
このようなプラズマPの配置の調整は、上述したように、電力制御器32によって電力を供給する電極22aを選択することによって実現することができる。従来のフォトニック結晶の場合でも、当該フォトニック結晶を構成する部材の形状を設定することによって屈折率変化の周期構造を設定することはできるが、従来のフォトニック結晶の場合には一旦形状を決定するとその形状を変更することは困難である。これに対して、電磁波制御装置1では、電力制御器32によるプラズマPの配置の変更によって屈折率変化の周期構造を容易に変更することができる。
【0096】
(実施例1)
上記構成の電磁波制御装置1を用いた電磁波制御の具体例を以下に示す。電磁波制御装置1における各制御パラメータの具体的な値は以下の通りである。
【0097】
電磁波制御素子2に入射させる電磁波R、つまり制御対象となる電磁波Rは、周波数帯が10~100GHzであり、電磁波モードがTEモード(電界の方向がプラズマPの周期的配列面に平行)である。プラズマPの電子密度は2~3×1013cm-3(ωpe/2π=40~49GHz)、筐体21内のガス圧力は30~100kPa、筐体21内のガス種はヘリウムである。筐体21は8mm(図1における縦方向)×50mm(図1における奥行き方向)×70mm(図1における横方向)であり、入射部21c及び出射部21dは8mm×50mmである。電極22a・22bの正方格子状の配置における格子間距離は2.1mm(図2における縦及び横方向)であり、電極22a・22bは直径1.4mmのものをそれぞれ20個(電磁波Rの進行方向)×20個(電磁波Rの幅方向)配置した。また、各プラズマPの直径は約1.4mmとなった。
【0098】
次に、制御パラメータを上記のとおり設定した電磁波制御装置1の電磁波の制御特性を説明する。
【0099】
電磁波制御素子2に入射される電磁波Rの周波数を変化させたところ、周波数が35GHz以上では電磁波制御素子2から出射される電磁波Rの出射部21d中央でのエネルギー密度が約30%減少するのに対し、周波数が35GHz以下ではエネルギー密度が約400%まで増大した。つまり、この場合の電磁波制御素子2は入射される電磁波Rを集光するレンズとして機能することが確認できた。
【0100】
この集光現象は、衝突性プラズマの表皮深さ部におけるω<ωpeのときの異常分散その他の効果により説明できる。
【0101】
通常電磁波は、ややその伝播断面を広げながら電磁波制御素子2を通過していく。そして、衝突性プラズマによりそのエネルギーの一部が消費されて出射される。これが、周波数が35GHz以上の場合に相当するものと考えられる。
【0102】
一方、ω<ωpeのとき、電磁波はプラズマPの異常分散に影響されて、その伝播断面を狭めながら伝播する。そして、衝突性プラズマによるエネルギー消費がありながらも、プラズマPの間隙ではそのようなエネルギー消費も無く、結果として出射部21d中央ではエネルギー密度が上昇する。これが、周波数が35GHz以下の場合に相当するものと考えられる。
【0103】
以上は、プラズマの異常分散の効果を中心に説明したが、屈折率の2次元周期的変化によって生じる集光効果(例えば、P.V.Parimi,W.T.Lu,P.Vodo,and S.Sridhar,Nature,vol.426(2003),p.404参照)もこの結果に寄与しているものと考えられる。
【0104】
あるいは、下記のような2次元プラズマアレイに独特の異常伝播現象もこの結果に寄与していると考えられる。すなわち、上記電磁波Rの周波数帯10~100GHzのうち、伝播している周波数帯は、プラズマ周波数(ωpe/2π=40~49GHz)よりもやや低い周波数帯であり、これは図14を用いて説明したフラットバンド領域に相当する。すなわち、観測された電磁波信号の増大は、フラットバンド領域に起因する屈折率の変化による透過量の増大も、原因の一つである。以上のように、この電磁波信号の増大現象はこれら複数の効果が重なり合ったものと考えられ、2次元プラズマアレイにより初めて実現される現象である。
【0105】
この現象は、TEモードに対して特徴的に現れる。これは、TEモードはω<ωpeのときでもプラズマPの長手方向(図1における縦方向)に沿った電界成分を持たず、遮断されにくいことに起因している。
【0106】
この集光現象は、プラズマPの生成用電力を弱くすることにより消失した。このことは、プラズマPの電子密度の調整により、上記現象を発現させるかどうかを制御可能であることを示している。
【0107】
また、別の周波数帯においても電磁波信号の増大現象が観測された。周波数が43GHzから45GHzにわたり、電磁波信号が110~150%に増加した。この現象が生じた理由は、下記のような2次元プラズマアレイに独特の異常伝播現象が寄与していると考えられる。すなわち、伝播している電磁波は、プラズマ周波数(ωpe/2π=40~49GHz)と同じかやや高い周波数の領域であり、この領域では、図15に示したように群速度の異方性が生じる。これに伴い、電磁波のエネルギーは、より電磁波の進行方向に向かって流れるように指向性が付与され、出射部21dにおいて観測される電磁波量が増大したものと考えられる。
【0108】
逆に、プラズマPをアーク放電により生成して電子密度を高くすることにより、制御対象となる電磁波の周波数帯を変化させることができる。例えば、アーク放電を用いることにより電子密度として3×1016cm-3程度のプラズマを得ることができ、そのときにはω=ωpeとなる条件が1THz程度となり、その周波数帯が制御対象となる。このようにして、電子密度を変化させることにより、様々な周波数帯の電磁波の制御に有効に作用する。
【0109】
なお、プラズマP間の距離を変化させると、その変化に対して制御対象の周波数が逆比例的に変化する。また、プラズマPの直径を変化させると、直径の拡大によって制御対象の周波数帯が拡大する。
【0110】
また、本実施例においては、プラズマPを周期構造体の構成要素として用いる種々の効果に加えて、電磁波制御素子2の外形は単純な平板構造であることから、製造や配置が容易になるという効果を有している。従来の誘電体物質により形成される凸構造を持ったレンズは、レンズ曲面の磨きだしが必要となるため製造が困難であり、また、外形が凸構造であることから配置の制約を受けやすい。
【0111】
本実施例のようなレンズ機能は、レーダーの出力部に用いることができる。レーダーの出力部では、出力する電磁波に集束性をもたせるために、通常は誘電体レンズが使用されており、この誘電体レンズに代えて上記電磁波制御装置1を設けることができる。これにより、対応周波数及び指向性を変更でき、かつ、凸構造ではなく平板構造であることから製造しやすく簡易構造のレンズを実現することができる。
【0112】
また、本実施例のようなレンズ機能は、前述のアーク放電等による高電子密度のプラズマPを用いることにより、テラヘルツ帯の周波数を有する電磁波においても活用できる。すなわち、テラヘルツ分光イメージング法においてサンプルの透過光を観測する場合、サンプルへの入射光やサンプルからの透過光を集光する必要が生じるが、そのときに本実施例のような可変レンズ機能が有効である。
【0113】
(実施例2)
次に、上記構成の電磁波制御装置1を用いた電磁波制御の他の具体例を以下に示す。電磁波制御装置1における各制御パラメータの具体的な値は以下の通りである。
【0114】
電磁波制御素子2に入射させる電磁波R、つまり制御対象となる電磁波Rは、周波数帯が10~100GHzであり、電磁波モードがTMモード(電界の方向がプラズマPの周期的配列面に垂直)である。プラズマPの電子密度は2~3×1013cm-3(ωpe/2π=40~49GHz)、筐体21内のガス圧力は30~100kPa、筐体21内のガス種はヘリウムである。筐体21は8mm(図1における縦方向)×50mm(図1における奥行き方向)×70mm(図1における横方向)であり、入射部21c及び出射部21dは8mm×50mmである。電極22a・22bの正方格子状の配置における格子間距離は5.0mm(図2における縦及び横方向)であり、電極22a・22bは直径2.0mmのものをそれぞれ20個(電磁波Rの進行方向)×20個(電磁波Rの幅方向)配置した。また、各プラズマPの直径は約2.0mmとなった。
【0115】
次に、制御パラメータを上記のとおり設定した電磁波制御装置1の電磁波の制御特性を説明する。
【0116】
電磁波制御素子2に入射される電磁波Rの周波数を変化させたところ、周波数が45GHz以上では電磁波制御素子2から出射される電磁波Rの出射部21d中央でのエネルギー密度が約30%減少するのに対し、周波数が40~45GHzではエネルギー密度が約90%減少した。つまり、この場合の電磁波制御素子2は入射される所定の周波数帯の電磁波Rを遮断するフィルタとして機能することが確認できた。
【0117】
この遮断現象は、電磁波がTMモードであり周波数がω<ωpeであることにより説明できる。つまり、TMモードの電磁波はプラズマPの長手方向に沿った電界成分しか持たないため、プラズマPの生成により電界が存在できなくなり、多くの電磁波が遮断されることに起因しているものと考えられる。
【0118】
より詳しくは、多数のプラズマPが2次元周期構造となっている効果により説明できる。すなわち、プラズマP内部では、式(1)又は式(3)で示される比誘電率εがプラズマPの周囲の部分とは異なるため、フォトニック結晶と同じ原理でいわゆる禁制帯構造が生じたためであるものと考えられる。
【0119】
この遮断現象は、プラズマPの生成用電力を弱くすることにより消失した。このことは、プラズマPの電子密度の調整により、上記現象を発現させるかどうかを制御可能であることを示している。
【0120】
なお、プラズマP間の距離を変化させると、その変化に対して制御対象の周波数が逆比例的に変化する。また、プラズマPの直径を変化させると、直径の拡大によって制御対象の周波数帯が拡大する。
【0121】
本実施例のようなフィルタ機能は、一般の電磁波送信部(発信源、フィルタ、増幅器及びアンテナ)、又は受信部(アンテナ、増幅器、フィルタ、自己ヘテロダインミクサ及び出力端子)におけるフィルタの代わりに用いることができる。この場合、対応周波数を変更することができるので、今後発展が見込まれるUWB(ウルトラワイドバンド)対応機器におけるフィルタとして最適である。
【0122】
また、本実施例のようなレンズ機能は、前述のアーク放電等による高電子密度のプラズマPを用いることにより、テラヘルツ帯の周波数を有する電磁波においても活用できる。すなわち、様々な周波数の電磁波が混在するテラヘルツ波において、特定波長の抽出を行う必要が生じることがあり、そのときに本実施例のような可変フィルタ機能が有効である。
【0123】
(実施例3)
次に、上記構成の電磁波制御装置1を用いた電磁波制御の他の具体例を以下に示す。電磁波制御装置1における各制御パラメータの具体的な値は以下の通りである。
【0124】
電磁波制御素子2に入射させる電磁波R、つまり制御対象となる電磁波Rは、周波数帯が10~100GHzであり、電磁波モードがTEモード(電界の方向がプラズマPの周期的配列面に平行)である。プラズマPの電子密度は1×1013cm-3(ωpe/2π=28GHz)、筐体21内のガス圧力は30kPa、筐体21内のガス種はヘリウムである。筐体21は8mm(図1における縦方向)×50mm(図1における奥行き方向)×70mm(図1における横方向)であり、入射部21c及び出射部21dは8mm×50mmである。電極22a・22bの正方格子状の配置における格子間距離は2.5mm(図2における縦及び横方向)であり、電極22a・22bをそれぞれ30個(電磁波Rの進行方向)×20個(電磁波Rの幅方向)配置した。また、各プラズマPの直径は約1.0mmとなった。
【0125】
次に、制御パラメータを上記のとおり設定した電磁波制御装置1の電磁波の制御特性を説明する。
【0126】
電磁波制御素子2に入射される電磁波Rの周波数を変化させたところ、周波数が61~63GHzの間で透過電磁波量が約15%まで減少した。この理由としては、電磁波Rの周波数と2次元プラズマアレイの格子間距離との関係がほぼ、周波数×格子定数/光速=0.5となることから、上記61~63GHzの周波数帯は2次元プラズマアレイにより生じた禁制帯に相当するためと考えられる。
【0127】
ついで、格子間距離を2.1mmに変化させると、同様の透過電磁波量の減少が74~76GHzで生じた。さらに、格子間距離を1.5mmに変化させると、同様の透過電磁波量の減少が103~105GHzで生じた。これらの結果はすべてほぼ、周波数×格子定数/光速=0.5の条件下において生じていることになり、2次元プラズマアレイの空間的な配列を変化させることによって周波数可変のフィルタを実現できることがわかった。
【0128】
(変形例)
電磁波制御装置1は、以下に説明するように種々の変形が可能である。
【0129】
電磁波制御装置1では、ガス制御システム4によって電磁波制御素子2内部のガス圧力を調整できる構成をとっているが、ガス圧力の調整を行わない場合には、予め電磁波制御素子2内部に所定のガスを所定の圧力で封入しておくことにより、ガス制御システム4を省くことができる。
【0130】
また、電磁波制御装置1では、電力制御器32によって供給電力やプラズマPの配置を調整できる構成をとっているが、供給電力及び/又はプラズマPの配置の調整を行わない場合には、電力制御器32においてこれらが固定的に設定されていてもよい。また、電力制御器32は、供給電力やプラズマPの配置を時間的に変更するものであってもよい。
【0131】
また、電極22a・22bの配置として6行7列配置を図示したが、これに対して種々の変更(例えば、行数及び/又は列数の変更、行間隔及び/又は列間隔の変更、三角格子状のように他の配置パターンへの変更など)を施すことができる。
【0132】
また、電極22a・22bの形状として円板形状のものを図示したが、その形状についても種々の変更を施すこともできる。例えば、矩形の板状のものに変更してもよく、図6に示すように針状の電極22a’・22b’に変更してもよい。さらに、これら電極の面積を変更することによってプラズマPの断面積(長手方向に直交する面で切ったときの断面積)を変更することもできる。
【0133】
また、図7に示すように、互いに対向する電極22aと電極22bとの間に、電極22a・22bの平面形状とほぼ同一の内面形状を有し、かつ、電磁波Rを透過する材料からなる筒部材23(例えば円筒部材)を設けてもよい。
【0134】
一般に、プラズマはその外周において荷電粒子が外部に向かって拡散するため、プラズマの境界面は曖昧になる。したがって、図1のような構成では、隣り合うプラズマP同士が連続する場合もある。このような場合であっても、各プラズマPにおいては中心から外周に向かって電子密度の勾配が生じるので、プラズマの周期的分布は維持されることになるが、電子密度の差が小さくなるため、周期構造の影響も低減されることになる。
【0135】
これに対して、筒部材23を設ける構成では、筒部材23の内部にプラズマPを閉じ込めることができるので、プラズマPの境界面を明確に定めることができ、この境界面における電子密度の差を大きくとることができる。その結果、プラズマの周期的分布による影響をより顕在化することができる。
【0136】
また、図8に示すように、電磁波制御素子2内部に、電磁波Rを透過する誘電体からなり、互いに対向する電極22aと電極22bとの間に電極22a・22bの平面形状とほぼ同一の内面形状を有する空孔が形成された誘電部材24を設けてもよい。この構成では、電磁波制御素子2内部が上記空孔を除いて誘電部材24によって埋められることになる。
【0137】
この構成では、上記筒部材23を設ける構成と同じく、境界面における電子密度の差を大きくとることができることに加えて、境界面における比誘電率の差をより大きくとることができる。なぜなら、上述したようにプラズマPの比誘電率εは1よりも小さな値をもつ一方、誘電部材24は誘電体ゆえに1よりも大きな比誘電率(通常、誘電体の比誘電率は2よりも大きい)をもつことから、誘電部材24の代わりにガス(ガスの比誘電率はほぼ1)が存在する場合と比較して境界面における比誘電率の差は大きくなるからである。これにより、プラズマの周期的分布による影響をさらに顕在化することができる。
【0138】
なお、図8の構成においてプラズマPと誘電部材24とを逆転させる、つまり、円柱状の誘電体を周期的に配置してその周囲をプラズマで満たすことも考えられるが、この場合には相対的に比誘電率の低い背景に対して相対的に比誘電率の高い周期構造が形成されることになる。そのため、図8の構成よりも制御対象となる電磁波はより短波長(高周波数)のものとなり、電波(テラヘルツ帯(波長0.1mm程度)及びこれよりも長波長の電磁波)を制御するには不向きとなる。
【0139】
さらに、円柱状の誘電体を周期的に配置してその周囲をプラズマで満たす構成では、比誘電率の差を大きくとるためにプラズマの比誘電率を負の値に設定した場合、電磁波制御素子2内部では電磁波のエネルギーの減衰が著しくなりほとんど伝播できなくなってしまう。これに対して、図8の構成では、電磁波のエネルギーの減衰を抑えつつ伝播状態を効果的に制御することができる。
【0140】
電磁波制御素子2において、電極22a・22b及び電極22a’・22b’と、筐体21、筒部材23及び誘電部材24とは、2次元的に周期的に分布するプラズマを生成するプラズマ生成手段として機能する。また、筐体21、筒部材23及び誘電部材24は、プラズマを生成するために電離対象となるガスを内部に保持するとともに制御対象となる電磁波を透過するガス保持手段として機能する。特に、筒部材23及び誘電部材24は、周期的に形成された複数の空孔を有しており、この空孔内にプラズマが生成されることによりプラズマの周期的分布を実現する。また、誘電部材24は、上記複数の空孔が形成された誘電体からなっている。
【0141】
また、電力制御システム3は、プラズマを生成するための電力を制御する電力制御手段として機能し、プラズマの分布状態を制御するプラズマ分布制御手段としても機能する。そして、ガス制御システム4は、電離対象となるガスの圧力を制御するガス圧力制御手段として機能する。
【0142】
〔実施形態2〕
本発明の他の実施形態について図9に基づいて説明すると以下の通りである。
【0143】
本実施形態の電磁波制御素子及びこれを用いた電磁波制御装置の構成について説明する。本実施形態の電磁波制御装置101の全体構成を図9に示す。なお、実施形態1において説明した構成要素と同等の機能を有する構成要素については、同一符号を用いることとし、その説明を省略する。
【0144】
電磁波制御装置101を構成する電磁波制御素子102は、筐体21の外部に平行平板をなす電極122a・122bを備え、筐体21の内部には、実施形態1の電磁波制御装置1において電極22a・22bが形成されていた部分に、筐体21の内面よりも2次電子放出係数の高い材質からなる電子放出部材123a・123bを備えている点が実施形態1における電磁波制御装置1の電磁波制御素子2とは異なっている。
【0145】
また、電磁波制御装置101を構成する電力制御システム103は、電力制御器132において、各プラズマPに対して個別に電力を供給するのではなく、上記電極122a・122bに電力を供給することによって全プラズマPに対して包括的に電力を供給する点が実施形態1における電磁波制御装置1の電力制御システム3とは異なっている。
【0146】
この構成では、電極122a・122bを平行平板によって形成しているので、電力制御システム3からの給電が容易になる。そして、電子放出部材123a・123bを所定のパターンに形成することによって、そのパターンに応じたプラズマPの周期的分布を形成することができる。また、電子放出部材123a・123bは筐体21の内面よりも2次電子放出係数の高い材質からなっているので、プラズマPが生成しやすくなる。
【0147】
電子放出部材123a・123bの具体的材質としては、金属や酸化マグネシウムなどが好適である。なお、電子放出部材123a・123bの一方を省いたとしても、所望するパターンのプラズマPの生成は可能である。
【0148】
電磁波制御素子102において、電極122a・122b及び電子放出部材123a・123bと筐体21とは、2次元的に周期的に分布するプラズマを生成するプラズマ生成手段として機能する。特に電子放出部材123a・123bは、筐体21の内部に露出し、周囲よりも2次電子放出係数の高い材質からなる電子放出手段として機能する。また、筐体21は、プラズマを生成するために電離対象となるガスを内部に保持するとともに制御対象となる電磁波を透過するガス保持手段として機能する。
【0149】
また、電力制御システム103は、プラズマを生成するための電力を制御する電力制御手段として機能する。
【0150】
〔実施形態3〕
本発明の他の実施形態について図10に基づいて説明すると以下の通りである。
【0151】
本実施形態の電磁波制御素子及びこれを用いた電磁波制御装置の構成について説明する。本実施形態の電磁波制御装置201の全体構成を図10に示す。なお、実施形態1・2において説明した構成要素と同等の機能を有する構成要素については、同一符号を用いることとし、その説明を省略する。
【0152】
電磁波制御装置201を構成する電磁波制御素子202は、筐体21の内部に設けられた電極22a・22bに加えて、筐体21の外部に平行平板をなす電極223a・223bを備えている点が実施形態1における電磁波制御装置1の電磁波制御素子2とは異なっている。
【0153】
また、電磁波制御装置201を構成する電力制御システム203は、電力制御器232において、電極22a・22bに個別に電力を供給することに加えて、上記電極223a・223bにも電力を供給する点が実施形態1における電磁波制御装置1の電力制御システム3とは異なっている。
【0154】
この構成では、実施形態1の電磁波制御素子2と同じく、電極22a・22bによって周期的に分布するプラズマPを生成し、かつ、電極223aa・223bによって、上記プラズマPの周囲を覆うようにして、プラズマPとは電子密度の異なるプラズマP’を生成する。
【0155】
したがって、周期的に分布するプラズマPと、これを取り囲むプラズマP’との両方の屈折率を変化させることができるので、より柔軟に電磁波に対する制御状態を変更することができる。
【0156】
電磁波制御素子202において、電極22a・22bと筐体21とは、2次元的に周期的に分布するプラズマを生成するプラズマ生成手段として機能する。特に電極223aa・223bは、周期的なプラズマを取り囲み、かつ、当該プラズマとは電子密度の異なるプラズマをさらに生成する。また、筐体21は、プラズマを生成するために電離対象となるガスを内部に保持するとともに制御対象となる電磁波を透過するガス保持手段として機能する。
【0157】
また、電力制御システム203は、プラズマを生成するための電力を制御する電力制御手段として機能し、プラズマの分布状態を制御するプラズマ分布制御手段としても機能する。
【0158】
〔実施形態4〕
本発明の他の実施形態について図11及び図12に基づいて説明すると以下の通りである。
【0159】
本実施形態の電磁波制御素子及びこれを用いた電磁波制御装置の構成について説明する。本実施形態の電磁波制御装置301の全体構成を図11に示し、図11におけるB-B線矢視断面図を図12に示す。なお、実施形態1・2・3において説明した構成要素と同等の機能を有する構成要素については、同一符号を用いることとし、その説明を省略する。
【0160】
電磁波制御装置301を構成する電磁波制御素子302は、筐体21の内部に互いに近接して設けられた電極322a・322bを備えている。電極322a・322bは、同一形状のメッシュ状の電極であり、各電極322a・322bには正方格子状(行列状)に配列するように開口部(スリット)Sが形成されている。電極322a・322bは、それぞれの開口部Sが重なるようにして、所定の間隙を介して配置されている。また、電磁波制御素子302には、筐体21の外部に平板状の電極323を備えている。なお、電極322b、電極322a、電極323はこの順に配置されている。
【0161】
また、電磁波制御装置301を構成する電力制御システム303は、電力制御器332において電極322bに電力を供給するとともに、電極322a・323を接地している。
【0162】
この構成では、接地されている電極322bと、給電されている電極322aとの間にプラズマが発生し、このプラズマは、接地されている電極323の電位によって、電極322aの開口部Sを通って電極323側に引き出されることになる。この引き出されたプラズマPは、開口部Sに応じた正方格子状に分布することになる。
【0163】
このように、比較的近い距離に配置された電極322a・322bによってプラズマを生成することにより、電極322a・322b間の電界強度を大きくとることができるので、プラズマを容易に生成することができる。
【0164】
電磁波制御素子302において、電極322a・322b及び電極323と筐体21とは、2次元的に周期的に分布するプラズマを生成するプラズマ生成手段として機能する。また、筐体21は、プラズマを生成するために電離対象となるガスを内部に保持するとともに制御対象となる電磁波を透過するガス保持手段として機能する。また、電力制御システム303は、プラズマを生成するための電力を制御する電力制御手段として機能する。
【0165】
〔実施形態5〕
本発明の他の実施形態について図13に基づいて説明すると以下の通りである。
【0166】
本実施形態の電磁波制御素子及びこれを用いた電磁波制御装置の構成について説明する。本実施形態の電磁波制御装置401の全体構成を図13に示す。なお、実施形態1・2・3・4において説明した構成要素と同等の機能を有する構成要素については、同一符号を用いることとし、その説明を省略する。
【0167】
電磁波制御装置401を構成する電磁波制御素子402は、実施形態1における電磁波制御素子2を積み重ねた構成である。これにより、互いに対向する電極22a・22bの対が3次元的に配置されることになり、この間に発生するプラズマPも3次元的に分布することになる。
【0168】
また、電磁波制御装置401を構成する電力制御システム403では、図13では図示を一部省略しているが、各電極22aは電力制御器432に接続されており、各電極22bは接地されている。そして、電力制御器432は、3次元的に配置された電極22aの中から選択されたものに対して調整された電力を供給する。
【0169】
この構成では、プラズマPを3次元的に周期的に分布させることができるので、いわゆる完全バンドギャップを実現することができ、上下左右任意の方向から電磁波制御素子402に対して入射する電磁波に対してフィルタ効果を発揮することができる。
【0170】
また、固体材料によって構成される従来のフォトニック結晶では、製造上の問題に起因して、3次元構造を実現するための制約が多いが、電磁波制御素子402では、比較的容易に3次元周期構造を実現することができる。
【0171】
電磁波制御素子402において、電極22a・22bと筐体21とは、3次元に周期的に分布するプラズマを生成するプラズマ生成手段として機能する。また、筐体21は、プラズマを生成するために電離対象となるガスを内部に保持するとともに制御対象となる電磁波を透過するガス保持手段として機能する。また、電力制御システム403は、プラズマを生成するための電力を制御する電力制御手段として機能し、プラズマの分布状態を制御するプラズマ分布制御手段としても機能する。
【0172】
なお、本実施形態では実施形態1の電磁波制御素子2を積み重ねることにより電磁波制御素子402を構成したが、実施形態2~4において説明した電磁波制御素子102・202・302を積み重ねることにより電磁波制御素子402を構成してもよい。
【0173】
以上のように、本発明によると、外部からの信号印加により機能を動的にかつ広範囲にコントロール可能な電磁波制御素子及びこれを用いた電磁波制御装置を実現することができる。本発明による電磁波制御装置は、各種電磁波の制御に好適に用いることができ、特に10GHzからテラヘルツ帯の電磁波の制御に好適に用いることができる。
【0174】
なお、本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
【0175】
本発明の電磁波制御素子は、多数のプラズマP(個々のプラズマPを「プラズマ体」とも称す。)を2次元的又は3次元的な周期構造をなすように生成するものである。この多数のプラズマ体が配置される空間のガス圧力を調整可能な機能を備えていてもよい。上記多数のプラズマ体を誘電体内に配置してもよい。上記多数のプラズマ体を、同じく周期構造をなす円筒中空の管内に配置してもよい。上記多数のプラズマ体を、それらとは電子密度の異なるプラズマ内に配置してもよい。上記多数のプラズマ体を、アーク放電により生成してもよい。上記多数のプラズマ体の配置位置を制御可能な機能を備えていてもよい。上記多数のプラズマ体の配置位置の制御機能を、プラズマ体の一部の予備放電の発生制御により実現してもよい。上記多数のプラズマ体の配置位置の制御機能を、プラズマ体端部接触部の材質の設定により実現してもよい。上記プラズマ体の生成用電力の供給手段を備え、かつ該生成用電力が時間的に可変となっていてもよい。
【産業上の利用可能性】
【0176】
本発明は、例えば通信分野や計測分野における電磁波の制御に好適に利用することができる。
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11
【図13】
12
【図14】
13
【図15】
14