TOP > 国内特許検索 > 筋力訓練装置及び筋力特性評価方法 > 明細書

明細書 :筋力訓練装置及び筋力特性評価方法

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第4956808号 (P4956808)
公開番号 特開2008-272361 (P2008-272361A)
登録日 平成24年3月30日(2012.3.30)
発行日 平成24年6月20日(2012.6.20)
公開日 平成20年11月13日(2008.11.13)
発明の名称または考案の名称 筋力訓練装置及び筋力特性評価方法
国際特許分類 A63B  21/005       (2006.01)
A63B  23/12        (2006.01)
A63B  24/00        (2006.01)
FI A63B 21/005
A63B 23/12
A63B 24/00
請求項の数または発明の数 12
全頁数 21
出願番号 特願2007-122482 (P2007-122482)
出願日 平成19年5月7日(2007.5.7)
新規性喪失の例外の表示 特許法第30条第1項適用 〔発行者名〕 社団法人日本機械学会 〔刊行物名〕 ジョイント・シンポジウム2006 スポーツ工学シンポジウム Symposium on Sports Engineering シンポジウム:ヒューマン・ダイナミクス Symposium on Human Dynamics 講演論文集 〔発行年月日〕 平成18年11月9日
審査請求日 平成22年4月30日(2010.4.30)
特許権者または実用新案権者 【識別番号】593006630
【氏名又は名称】学校法人立命館
発明者または考案者 【氏名】伊坂 忠夫
【氏名】小澤 隆太
【氏名】川村 貞夫
【氏名】重歳 憲治
【氏名】森園 哲也
【氏名】加藤 高志
個別代理人の代理人 【識別番号】100080182、【弁理士】、【氏名又は名称】渡辺 三彦
審査官 【審査官】中槙 利明
参考文献・文献 特開平11-262542(JP,A)
特開2002-126122(JP,A)
特開平05-180245(JP,A)
特開2002-017887(JP,A)
調査した分野 A63B 21/005
A63B 23/12
A63B 24/00
特許請求の範囲 【請求項1】
操作部の回転に連動して、回転する第1の可動体と、
回転駆動体によって回転する第2の可動体と、
電場又は磁場の強さに応じて変化する粘性により、第2の可動体から第1の可動体側にトルクを伝達する電気粘性流体又は磁気粘性流体と、
操作部に加わる負荷を検出する第1のセンサ部
および操作部の回転角度を検出する第2のセンサ部を備え、
第1又は/及び第2のセンサ部の出力に応じて、前記電場又は磁場の強さおよび回転駆動体が制御されることを特徴とする筋力訓練装置。
【請求項2】
第1又は/及び第2のセンサ部の出力に応じて、本筋力訓練装置における実効的な機械的インピーダンス(慣性、粘性、弾性の値)を定めることにより、電場又は磁場の強さおよび回転駆動体を制御することを特徴とする請求項1に記載の筋力訓練装置。
【請求項3】
第1又は/及び第2のセンサ部の出力に応じて、本筋力訓練装置における実効的な機械的インピーダンス(慣性、粘性、弾性の組合せ)を定めることにより、電場又は磁場の強さおよび回転駆動体を制御することを特徴とする請求項1に記載の筋力訓練装置。
【請求項4】
第1又は/及び第2のセンサ部の出力に応じて、本筋力訓練装置における実効的な機械的インピーダンス(慣性、粘性、弾性の値および組合せ)を定めることにより、電場又は磁場の強さおよび回転駆動体を制御することを特徴とする請求項1に記載の筋力訓練装置。
【請求項5】
第1の可動体の回転を補助する補助動力を備えていることを特徴とする請求項1~4のいずれかの項に記載の筋力訓練装置。
【請求項6】
請求項1又は請求項5に記載のいずれかの筋力訓練装置により、操作部に発生させる等速性負荷又は等粘性負荷の少なくとも3パターン以上の負荷強度を用いて測定を行い、第2のセンサ部で検出される操作部の回転角度データ、該回転角度データに微分操作を施すことにより得られる角速度データおよび第1のセンサ部から得られる操作部に加わる負荷を基に求められるトルクデータから構成される三次元形状における規定角度間隔毎の体積、規定角速度間隔毎の体積又は規定トルク間隔毎の体積の少なくとも一つを算出し、筋力特性の評価指標として呈示することを特徴とする筋力特性評価方法。
【請求項7】
請求項1又は請求項5に記載のいずれかの筋力訓練装置により、操作部に発生させる等速性負荷又は等粘性負荷の少なくとも3パターン以上の負荷強度を用いて測定を行い、第2のセンサ部で検出される操作部の回転角度データ、該回転角度データに微分操作を施すことにより得られる角速度データおよび第1のセンサ部から得られる操作部に加わる負荷を基に求められるトルクデータから構成される三次元形状のうち、回転角度データ、角速度データ、トルクデータのいずれか一つが所定範囲にある形状の他の二つのいずれかの規定間隔毎の体積を算出し、筋力特性の評価指標として呈示することを特徴とする筋力特性評価方法。
【請求項8】
トルクデータをパワーデータに変換して三次元形状を構成することを特徴とする請求項6又は請求項7に記載の筋力特性評価方法。
【請求項9】
トルクデータをピークトルクで正規化したデータに変換して三次元形状を構成することを特徴とする請求項6又は請求項7に記載の筋力特性評価方法。
【請求項10】
パワーデータをピークパワーで正規化したデータに変換して三次元形状を構成することを特徴とする請求項8に記載の筋力特性評価方法。
【請求項11】
トルクデータを被験者の体重で正規化したデータに変換して三次元形状を構成することを特徴とする請求項6又は請求項7に記載の筋力特性評価方法。
【請求項12】
パワーデータを被験者の体重で正規化したデータに変換して三次元形状を構成することを特徴とする請求項8に記載の筋力特性評価方法。
発明の詳細な説明 【技術分野】
【0001】
本発明は、筋力強化やリハビリテーションのための筋力訓練装置および筋力評価方法に関するものである。
【背景技術】
【0002】
従来から多く利用されている筋力訓練装置としては、ダンベル、バーベル、油圧、空圧、ゴムもしくはバネ等を用いる筋力訓練装置がある。これらの機械的要素を単独で用いている筋力訓練装置では、負荷様式(負荷の種類)が機械的要素に依存するものになるため、関節等に必要以上の負荷がかかる、又は必要な負荷を与えられる可動域が制限されてしまう問題がある。例えば、ゴムチューブやバネ等の弾性負荷を用いた訓練装置では、動作開始時は負荷が小さいが、動作が進むにつれて負荷が大きくなり、動作の最後では最も大きな負荷を生じるので、動作開始時は必要な負荷が得られず、動作の最後では必要以上の負荷がかかる場合がある。逆にダンベルやバーベル等の錘を用いた場合には、動作開始時に最も大きな負荷を生じ、その後は慣性の影響で負荷が小さくなるので、動作開始時に必要以上の負荷を生じ、関節等を痛める場合がある。
【0003】
これらの問題を解決するために、これまで電磁ブレーキを利用して、等粘性負荷を発生させる筋力訓練装置(例えば、特許文献1参照)や駆動モータとパウダークラッチを利用し、電流を制御することにより、出力トルクを調整し、一定のトルクを発生させる筋力訓練装置がある(例えば、特許文献2参照)。また、負荷発生手段として、磁場の強さに対する粘性変化が大きい磁気粘性流体(MR流体)を用いることで高速応答高出力化が図られている筋力訓練装置もある(例えば、特許文献3参照)。この磁気粘性流体を用いた装置では、一定トルクおよび一定速度の負荷を発生させることが実現されている。
【0004】
また、パウダークラッチとインダクションモータを用いて、複数の強度における粘性および弾性負荷を呈示できる装置がある(例えば、非特許文献1参照)。
【0005】
筋力評価方法においては、動作中の発揮トルクもしくは発揮パワーのピーク値を用いた評価や動作速度と力(以下、この力はトルクの意も含むものとする)もしくはパワーの関係や関節角度と力もしくはパワーの関係を示した二次元上での評価が多く行われている。また、負荷を一定に保つ脚力測定装置を用いて、脚伸展時の到達速度を求めることを3段階以上の負荷に変化させて測定を行い、得られた負荷-到達速度に対して近似曲線を求めることにより、最大筋力値や最大動作速度を推定する方法等がある(例えば、特許文献4参照)。
【0006】
また、等速性負荷装置を用いて、計測される関節角度、角速度、トルクデータを補間し、三次元形状を構成することにより、定性的な筋力特性評価指標として用いているものもある(例えば、非特許文献2参照)。

【特許文献1】特開2002-17887号公報
【特許文献2】特開2000-14825号公報
【特許文献3】特開2002-126122号公報
【特許文献4】特開2002-209874号公報
【非特許文献1】伊藤晋彦、赤滝久美、三田勝己、石田義人、伊東保志、篠田剛、加藤厚生、伊藤宏司「筋の機械的インピーダンス特性を模擬したトルク発生装置」、医用電子と生体工学、31-2、1993年、p.155-163
【非特許文献2】R. N. Marshall, S. M. Mazur and N. A. S. Taylor 「Three-Dimensional surfaces for human muscle kinetics」、European Journal of Applied Physiology, Vol.61, 1990, p.263-270.
【発明の開示】
【発明が解決しようとする課題】
【0007】
特許文献1~3に示す筋力訓練装置では、一定トルク、一定速度或いは等粘性の負荷を発生させることが実現されているが、これらは全て直線的な負荷であり、訓練者の動作特性や目的に応じて、筋力訓練の動作途中に所望の負荷強度や負荷様式を呈示することは実現されていない。そのため、訓練者に必要以上の負荷を与える、又は動作特性とはかけ離れた負荷を与えてしまう問題がある。
【0008】
また、非特許文献1に示す装置では、複数の強度における粘性および弾性負荷を個別に呈示することは実現されているが、パウダークラッチの応答速度が遅いため、筋力訓練の動作途中に負荷強度を変化又は負荷様式を変化させることができないので、訓練者の動作特性や目的に応じた負荷を呈示することができないという問題がある。
【0009】
筋力評価方法においては、特許文献4に示すような動作速度と力の関係もしくは動作速度とパワーの関係又は関節角度と力の関係を示した二次元上での評価が多く行われているが、このような評価方法では、動的な負荷を用いた測定における関節角度毎の動作速度と力もしくはパワーの関係を総合的に示すことができないため、動作に対する詳細な評価が困難であるという問題点がある。そのため、トレーニング効果を検証する場面でも単なる力、パワーもしくは動作速度におけるピーク値の比較や二次元上の定性的な特徴の変化でしか確認することができないため、十分な評価が行われているとは言い難い。
【0010】
また、非特許文献2に示す等速性負荷装置を用いて、計測される関節角度、角速度、トルクのデータを補間することにより、構成される三次元形状を用いた評価では、定性的な指標を呈示することしかできないため、筋力特性の違いを定量的に示すことができない。そのため、専門家等に定性的な指標について検討してもらう必要が生じる。
【0011】
本発明は、これらの点に鑑みてなされたものであり、動作途中においても高応答、高精度に負荷強度もしくは負荷様式又はこれらの組合せを可変に呈示することにより、訓練者の目的や動作特性に応じた効果的なトレーニングやリハビリテーションを行うことができる筋力訓練装置を提供するにある。さらに、本発明は訓練者等の筋力特性を定量的かつ詳細な評価指標として呈示する筋力特性評価方法を提供することを目的とする。
【課題を解決するための手段】
【0012】
上記の目的を達成するために、請求項1に記載の筋力訓練装置では、筋力訓練者の目的や動作特性に応じた負荷を高応答、高精度に呈示するために操作部の回転に連動して、回転する第1の可動体と回転駆動体によって回転する第2の可動体と高応答性かつ電場又は磁場の強さに応じて変化する粘性により、第2の可動体から第1の可動体側にトルクを伝達する電気粘性流体又は磁気粘性流体と操作部に加わる負荷を検出する第1のセンサ部および操作部の回転角度を検出する第2のセンサ部を備え、第1又は/及び第2のセンサ部の出力に応じて、前記電場又は磁場の強さおよび回転駆動体が制御されることを特徴としている。
【0013】
請求項2に記載の筋力訓練装置では、請求項1に記載の筋力訓練装置において、第1又は/及び第2のセンサ部の出力に応じて、筋力訓練装置における実効的な機械的インピーダンス(慣性、粘性、弾性の値)を定めることにより、電場又は磁場の強さおよび回転駆動体を制御し、動作途中においても訓練者の目的に応じて、負荷強度を変更できることを特徴としている。
【0014】
また、請求項3に記載の筋力訓練装置では、請求項1に記載の筋力訓練装置において、第1又は/及び第2のセンサ部の出力に応じて、筋力訓練装置における実効的な機械的インピーダンス(慣性、粘性、弾性の組合せ)を定めることにより、電場又は磁場の強さおよび回転駆動体を制御し、動作途中においても訓練者の目的に応じて、負荷様式を変更できることを特徴としている。
【0015】
また、請求項4に記載の筋力訓練装置では、請求項1に記載の筋力訓練装置において、第1又は/及び第2のセンサ部の出力に応じて、筋力訓練装置における実効的な機械的インピーダンス(慣性、粘性、弾性の値および組合せ)を定めることにより、電場又は磁場の強さおよび回転駆動体を制御し、動作途中においても訓練者の目的に応じて、負荷強度および負荷様式を変更できることを特徴としている。
【0016】
また、請求項5に記載の筋力訓練装置では、請求項1~4のいずれかの項に記載の筋力訓練装置において、第1の可動体の回転を補助する補助動力を備えていることを特徴としている。
【0017】
上記の目的を達成するために、請求項6に記載の筋力特性評価方法では、請求項1又は請求項5に記載のいずれかの筋力訓練装置により、操作部に発生させる等速性負荷又は等粘性負荷の少なくとも3パターン以上の負荷強度を用いて測定を行い、第2のセンサ部で検出される操作部の回転角度データ、該回転角度データに微分操作を施すことにより得られる角速度データおよび第1のセンサ部から得られる操作部に加わるトルクデータから構成される三次元形状における一定角度間隔毎の角速度-トルク平面、一定角速度毎の角度-トルク平面および一定トルク間隔毎の角度-角速度平面の3パターンの基準平面で区切った断面積を算出後、それぞれ微小角度幅、微小角速度幅、微小トルク幅で積分する。このようにして算出されるそれぞれの体積を予め設定しおく間隔毎になるようにそれぞれ足し合わせることにより、規定角度間隔毎の体積、規定角速度毎の体積および規定トルク間隔毎の体積を算出する。このようにして算出されるそれぞれの体積を動的な負荷に対する筋力特性の評価指標として呈示することを特徴としている。
【0018】
請求項7に記載の筋力評価方法では、前記三次元形状のうち、前記回転角度データ、前記角速度データ、前記トルクデータのいずれか一つが所定範囲にある形状の他の二つのいずれかの規定間隔毎の体積を算出し、筋力特性の評価指標として呈示することを特徴としている。
【0019】
また、請求項8に記載の筋力特性評価方法では、請求項6又は請求項7に記載の筋力特性評価方法において、前記トルクデータに角速度データを乗じることにより、パワーデータを算出し、回転角度データ、角速度データ、パワーデータを用いて、上記と同様の処理を行うことにより、動的な負荷に対する筋力特性の定量的評価指標を呈示することを特徴としている。
【0020】
また、請求項9もしくは請求項10に記載の筋力特性評価方法では、請求項6又は請求項7もしくは請求項8に記載の筋力特性評価方法において、前記トルクデータをピークトルクで正規化もしくは前記パワーデータをピークパワーで正規化したデータに変換して、上記と同様の処理を行うことにより、被験者のトルクもしくはパワーのピーク値を統一した定量的評価指標を呈示することを特徴としている。
【0021】
また、請求項11もしくは請求項12に記載の筋力特性評価方法では、請求項6又は請求項7もしくは請求項8に記載の筋力特性評価方法において、前記トルクデータもしくは前記パワーデータを被験者の体重で正規化したデータに変換して、上記と同様の処理を行うことにより、体格差を考慮した定量的評価指標を呈示することを特徴としている。
【発明の効果】
【0022】
請求項1に記載の筋力訓練装置によれば、操作部の回転に連動して、回転する第1の可動体と回転駆動体によって回転する第2の可動体と高応答性かつ電場又は磁場の強さに応じて変化する粘性により、第2の可動体から第1の可動体側にトルクを伝達する電気粘性流体又は磁気粘性流体と操作部に加わる負荷を検出する第1のセンサ部および操作部の回転角度を検出する第2のセンサ部を備え、第1又は/及び第2のセンサ部の出力に応じて、前記電場又は磁場の強さおよび回転駆動体が制御されることを特徴としている。本筋力訓練装置では、高応答性の電気粘性流体又は磁気粘性流体を利用することにより、第1又は/及び第2のセンサ部からの出力に応じて、訓練者が操作する操作部の動作に対応した高応答高精度な制御が可能となり、所望の負荷を即座に呈示することができるので、訓練者の目的や動作特性に応じた負荷を呈示することが可能となる。
【0023】
請求項2~4に記載の筋力訓練装置では、第1又は/及び第2のセンサ部の出力に応じて、該筋力訓練装置における実際的に効果のある機械的インピーダンス(慣性、粘性、弾性の値)もしくはこれらの組合せ、又は機械的インピーダンスの値および組合せを定めることにより、電場又は磁場の強さおよび回転駆動体を制御し、負荷強度もしくは負荷様式、又は負荷強度および負荷様式を訓練者の動作途中においても変更することができるので、動作範囲全域で高強度の負荷を呈示することが可能である。また、従来のような直線的な負荷だけではなく、運動負荷をオーダーメイド型でつくることが可能である。例えば、運動中の負荷の強弱によって効果的な動作の習熟が可能となるので、どの角度で力を加える、抜くなどのタイミングを筋感覚から捉えることができる。つまり、動作のトレーニングにも利用できる。また、従来にない刺激を与えられるので、従来にない効果が得られる。例えば、関節角度毎に負荷を制御することにより、危険性の高い角度領域のみ負荷強度を下げて安全性を確保し、所望の角度領域だけを強化することや粘性負荷から粘性と弾性を組合せた負荷等に変化させることも可能であるので、最大速度を上げる効果と最大トルクを上げる効果を同時にかなえること等、訓練者の目的に応じた効果を得るためのトレーニングが可能となる。
【0024】
また、請求項5に記載の筋力訓練装置では、請求項1に記載の筋力訓練装置における第1の可動体の回転を補助する補助動力を備えることにより、電気粘性流体又は磁気粘性流体による空転トルクの相殺や細かな制御を実現することが可能となるので、訓練者の目的や動作特性に応じた高精度な制御が可能となる。
【0025】
請求項6に記載の筋力特性評価方法によれば、請求項1又は5に記載のいずれかの装置により、操作部に発生させる等速性負荷又は等粘性負荷の少なくとも3パターン以上の負荷強度を用いて測定を行い、第2のセンサ部で検出される操作部の回転角度データ、該回転角度データに微分操作を施すことにより得られる角速度データおよび第1のセンサ部から得られる操作部に加わる負荷を基に求められるトルクデータから構成される三次元形状における規定角度間隔毎の体積、規定角速度間隔毎の体積および規定トルク間隔毎の体積を算出することにより、筋力特性の定量的評価指標として呈示することができる。
【0026】
このような定量的評価指標を用いることにより、被験者の目的に応じた筋力特性を定量的に示すことが可能となる。例えば、高速な動作における筋力特性について知りたい場合であれば、高角速度間隔における評価指標を呈示することにより、その部分の筋力特性を知ることができる。また、それぞれの規定間隔は被験者等の要求する間隔に設定することが可能であるので、詳細な評価を行うことも可能である。例えば、角度間隔毎の筋力特性を詳細に検討したいのであれば、規定角度間隔を細かく設定することにより、角度間隔毎の詳細な筋力特性を定量的に呈示することができる。したがって、トレーニング効果の検討やリハビリテーションにおける回復度合いを詳細に検討するための指標としても有効に利用することができる。
【0027】
請求項7に記載の筋力特性評価方法によれば、前記三次元形状のうち、前記回転角度、前記角速度、前記トルクのいずれか一つが所定範囲にある形状の他の二つのいずれかの規定間隔毎の体積を算出し、筋力特性の定量的評価指標として呈示することができる。
【0028】
このような定量的評価指標を用いることにより、詳細な筋力特性を呈示することが可能となる。例えば、低トルク範囲(負荷が小さい時の動作に関する範囲)における角度毎の筋力特性を知りたいのであれば、前記所定の範囲を低トルク範囲に設定し、規定角度間隔毎の体積を算出することにより、低トルク範囲における角度毎の筋力特性の定量的評価指標を呈示することが可能となる。したがって、被験者の必要なデータに合わせて、所定範囲と規定間隔を設定することにより、詳細な評価指標を呈示することが可能となり、被験者の要求に適した指標を呈示することができる。
【発明を実施するための最良の形態】
【0029】
以下に本発明における実施の形態について図面に基づいて説明する。図1は、本発明の実施の形態に係る筋力訓練装置における構成の一例を示す概略上面図である。
【0030】
筋力訓練装置100は、操作部1の回転に連動して、回転する可動体2と回転駆動体3によって回転する可動体4と電場の強さによって粘性を変化させることにより、可動体4から可動体2側へトルクを伝達する電気粘性流体5と操作部1に加わる負荷を検出するセンサ部7および操作部1の回転角度を検出するセンサ部8を備えている。また、センサ部7又は/及びセンサ部8からの出力に応じて、前記電場の強さおよび回転駆動体3を制御する制御部9が筋力訓練装置100の内部もしくは外部にある。
【0031】
筋力訓練装置100では、ハンドル状の操作部1は、アーム11の先端部に取付けられており、アーム11は基台15に回転可能に支持されている回転軸10の一端に固定されている。また、ハンドル状の操作部1を訓練者が握って、回転軸10を回転中心とした回転方向に力を加えることにより、回転軸10は回転し、その回転はタイミングベルト12を介して伝達され、可動体2を回転させる。回転軸10には、メカニカルストッパー14が備え付けられているが、これは、アーム11の回転可動域を調節するためのものであり、取り外すことも可能である。また、回転駆動体3の駆動力は、タイミングベルト13を介して伝達され、可動体4を回転させる。なお、操作部1は、ロープ状のものやペダル等に置き換えて利用することやリンク機構に置き換えることも考えられる。
【0032】
電気粘性流体5は、機能性材料の一種であるER(Electro-Rheological)流体と呼ばれるもので、電場を印加することによって粘性が変化する流体である。筋力訓練装置100では、電気粘性流体5をクラッチとして利用することにより、可動体4から可動体2側にトルクの伝達を行っている。図2は電気粘性流体クラッチの断面図の一例を示したものであり、この図に示すように可動体4の入力円筒4aおよび可動体2の出力軸2aに電場を印加することによって、入力円筒4aおよび出力軸2aに備えられているディスク4bおよびディスク2bの間における電気粘性流体5が架橋し、せん断応力が増加するので、電気粘性流体5の粘性が増加する。よって、この印加する電場の強さを制御部9で制御することにより、伝達トルクを調節することが可能となる。なお、電気粘性流体クラッチに置き換えて、磁気粘性流体(Magnetro-Rheological流体)クラッチを利用することも可能である。
【0033】
センサ部7は、回転軸10に取付けられており、操作部1に加わる負荷を検出する。なお、センサ部7は、可動体2に取り付けることも可能である。その場合、可動体2に加わる負荷を基に操作部1に加わる負荷を求める。また、センサ部8は、可動体2に取り付けられており、操作部の回転角度情報を検出する。なお、センサ部8は、回転軸10に取り付けることも可能である。センサ部8から得られる操作部の回転角度情報に対して、制御部9で微分操作を施すことにより、角速度および角加速度を算出する。
【0034】
センサ部7又は/及びセンサ部8から得られる出力に応じて、制御部9で電気粘性流体5に印加する電場の強さおよび回転駆動体3を制御することにより、操作部1に負荷を発生させる。また、回転駆動体3には、高出力までの負荷を呈示するためにダイレクト・ドライブモータ等の高出力モータを用いるのが好適である。
【0035】
また、図3に示すように可動体2の回転を補助する補助動力6を備えた筋力訓練装置200としてもよく、その場合は制御部9により、電気粘性流体5に印加する電場の強さ、回転駆動体3および補助動力6を制御することにより、操作部1に負荷を発生させる。また補助動力6は、電気粘性流体5の粘性による空転トルクの相殺や細かな制御を行う役割を担っており、小型のモータを利用するのが好適である。
【0036】
図4は負荷強度、負荷様式を変化させる制御系の説明図である。センサ部7から操作部1に加わる負荷、センサ部8から操作部1の回転角度情報がそれぞれ取得される。演算部9aでは、取得された操作部1に加わる負荷を基に操作部1に加わるトルクを算出する。また、取得された操作部1の回転角度情報に微分操作を施すことにより、角速度および角加速度を算出する。そして、算出されたトルクおよび角速度からパワーを算出する。
【0037】
目標トルク算出部9bでは、前記回転角度、前記トルク、前記角速度、前記角加速度、前記パワーの少なくとも一つの情報を基に予め設定された所望の機械的インピーダンスに変更し、訓練者に負荷すべき目標トルクを算出する。ここで、所望の機械的インピーダンスに変更とは、以下の式(1)~(3)に示す慣性パラメータMd1、粘性パラメータBd1、弾性パラメータKd1を変更することであり、目標トルクとは、式(4)のTd1のことである。
Md1=Md1・α 式(1)
Bd1=Bd1・ν 式(2)
Kd1=Kd1・θ 式(3)
Td1=TMd1+TBd1+TKd1 式(4)
ここで、αは前記角加速度、νは前記角速度、θは前記回転角度を表している。また、所望の機械的インピーダンスの設定の仕方は訓練者の鍛えたい特性に応じて、決定する。
【0038】
次いで、制御信号生成部9cにおいて、前記目標トルクTd1と演算部9aで得られた操作部1に加わるトルクTとの偏差を算出し、該偏差を零にするように回転駆動体3および電気粘性流体5への印加電場の強さを制御する制御信号を生成する。このようにして、回転駆動体3および電気粘性流体5から成る負荷発生部により、操作部1に負荷が発生する。具体的には、以下の式(5)を用いて、前記目標トルクTd1と前記トルクTの偏差を零にするように制御する。
u=Td1+Kp(Td1-T) 式(5)
式(5)におけるuは制御入力であり、Kpは比例定数である。前記制御入力uを用いて、負荷発生部を制御する。ここにおいて、回転駆動体3は、一定速度(速度制御)で駆動させ、電気粘性流体5への印加電場によって、伝達トルクを調節してもよい。また、回転駆動体3からの入力トルクが全て操作部1へ伝達されるように電気粘性流体5への印加電場の強さを調節すれば、回転駆動体3のみで操作部1への出力トルクを制御することも可能である。なお、このとき、回転駆動体3をトルク制御にしてもよい。
【0039】
負荷強度を変化させる制御では、目標トルク算出において、角度、角速度、角加速度、トルクもしくはパワー等の情報をトリガーとして機械的インピーダンスの値を変化させる(例えば、弾性パラメータの大きさを変化させる)ことによって、訓練者に印加する負荷強度を変化させることが可能となる。
【0040】
また、負荷様式を変化させる制御では、目標トルク算出において、角度、角速度、角加速度、トルクもしくはパワー等の情報をトリガーとして機械的インピーダンスの組合せを変化させる(例えば、弾性制御していたものを粘性制御に変化させる)ことによって、訓練者に印加する負荷様式を変化させる(例えば、弾性負荷から粘性負荷へ変化させる)ことが可能となる。
【0041】
また、負荷強度および負荷様式を変化させる制御では、目標トルク算出において、角度、角速度、角加速度、トルクもしくはパワー等の情報をトリガーとして機械的インピーダンスの値および組合せを変化させることによって、訓練者に印加する負荷強度および負荷様式を変化させることが可能となる。
【0042】
ただし、上記の負荷強度および負荷様式の変更点では、その時点における負荷の値をオフセットし、且つ、変更したパラメータに乗算される変数(α、ν、θ)は、変更点を0として、計算する。以下の式(6)~(8)におけるTMd2、TBd2、TKd2は、各インピーダンスパラメータに対する変更点以降の目標トルクを示しており、式(9)のTd2は目標トルクを示している。なお。TMoff、TBoff、TKoffは変更前の所望のインピーダンスパラメータにおける変更点での目標トルクである。また、Md2、Bd2、Kd2はそれぞれ変更後の所望の慣性パラメータ、粘性パラメータ、弾性パラメータであり、αp、νp、θpはそれぞれインピーダンスパラメータの変更点である。
Md2=TMoff+Md2・(α-αp) 式(6)
Bd2=TBoff+Bd2・(ν-νp) 式(7)
Kd2=TKoff+Kd2・(θ-θp) 式(8)
Td2=TMd2+TBd2+TKd2 式(9)
したがって、変更前の式(4)および変更後の式(9)より、次式(10)となり、このときの制御入力は、式(5)のTd1を式(10)のTdに置き換えることにより式(11)となる。
Td=Td1+Td2 式(10)
u=Td+Kp(Td-T) 式(11)
【0043】
図5および図6は、負荷強度を変化させる実験結果の一例を示すグラフである。図5は、横軸にセンサ部8から取得される操作部1の回転角度、縦軸にセンサ部7から取得される操作部1に加わる負荷を基に算出されるトルクの関係を示すグラフである。図6は、横軸にセンサ部8から取得される操作部1の回転角度を基に演算部9aで算出される角速度、縦軸に前記トルクを示すグラフである。ここでは、粘性負荷における負荷強度を動作途中で変化させている。具体的には図6に示すように角速度1.0rad/sで粘性パラメータの大きさを変化させている。したがって、角速度が1.0rad/sまでは強度の高い粘性であるので、傾きが急であるが、その後は粘性を低い強度に変えているので、傾きが小さくなっていることがわかる。なお、この負荷強度の変更点(1.0rad/s)では、その時点での負荷の値をオフセットし、且つ、変更した粘性パラメータに乗算される変数(角速度ν)は、前記変更点を0として計算している。
【0044】
図7および図8は、負荷様式を変化させた実験結果の一例を示すグラフである。図7は、図5と同様に横軸に操作部1の回転角度、縦軸に操作部1に加わるトルクの関係を示すグラフである。図8は、図6と同様に横軸に角速度、縦軸に前記トルクを示すグラフである。ここでは、粘性負荷から弾性負荷に動作途中で負荷様式を変化させている。具体的には、図7に示すように角度1.5radにおいて粘性から弾性へと負荷様式を変化させている。したがって、図8に示すように動作開始時は負荷様式が粘性負荷であるので、角速度に依存して負荷が増大しており、角度1.5radを超えると負荷様式が弾性負荷に変化するので、図7に示すように角度に依存して負荷が増大していることがわかる。ここでは、負荷様式の変更点(1.5rad)において、負荷の値をオフセットし、且つ、変更した弾性パラメータに乗算される変数(角度θ)は、前記変更点を0として計算している。
【0045】
図9は、負荷強度および負荷様式を変化させた実験結果の一例を示すグラフである。ここでは、粘性負荷と弾性負荷を組み合わせた負荷を発生させており、それらの負荷強度を動作途中で変化させている。図10は、図9の粘性負荷の寄与分を取り出して示したグラフである。図10に示すように、粘性負荷の強度が1.5rad/sで変化していることがわかる。また、図11は、図9の弾性負荷の寄与分を取り出して示したグラフであり、弾性負荷の強度が1.5radで変化していることがわかる。
【0046】
このように、センサ部7又は/およびセンサ部8からの出力に応じて、電気粘性流体5に印加する電場および回転駆動体3を制御することにより、負荷強度および負荷様式を動作途中でも変化させることができるので、訓練者の目的や動作特性に対応した負荷を呈示することが可能となる。
【0047】
以下では、筋力特性評価方法における実施の形態について図面に基づいて説明する。図12は、筋力特性評価方法における処理を行う構成の一例を示すブロック図である。筋力訓練装置100を用いて、測定を行うことにより得られる角度、角速度およびトルクのデータは、コンピュータ300の入力部302に送られ、RAM303に格納される。また、操作入力部304では、被験者の体重や被験者の要求する指標の種類を入力することも可能である。RAM303では、測定データや処理データの格納等を行う。CPU301では、入力部に送られる測定データおよび操作入力部304から入力された情報を基にROM305に格納されている後述の筋力特性評価方法の処理プログラムに従って、処理を行う。次いで、CPUで行われた処理結果は、ディスプレイ等から成る出力部306に出力される。
【0048】
図13は、等速性負荷における制御系の説明図である。この等速性負荷は筋力特性評価方法に係る測定を行うために操作部1に与える負荷である。ここでは、センサ部8から操作部1の回転角度情報を取得し、取得した回転角度情報に対して、演算部9aで微分操作を施すことにより、角速度を算出する。
【0049】
次いで、制御信号生成部9cにおいて、予め設定している目標角速度との偏差を算出する。そして、該角速度偏差を零にするように回転駆動体3および電気粘性流体5への印加電場を制御する制御信号を生成する。このようにして、回転駆動体3および電気粘性流体5から成る負荷発生部により、操作部1に等速性負荷を発生させる。ここでは、回転駆動体3が一定速度を超えないように駆動させ、電気粘性流体5への印加電場によって、操作部1への伝達トルクを調節している。
【0050】
図14は、等粘性負荷における制御系の説明図である。この等粘性負荷も上記の等速性負荷と同様に筋力特性評価方法に係る測定を行うために操作部1に与える負荷である。ここでは、センサ部7から操作部1に加わる負荷、センサ部8から操作部1の回転角度情報をそれぞれ取得する。演算部9aでは、取得した操作部1に加わる負荷を基に操作部1に加わるトルクを算出する。また、取得した操作部1の回転角度情報に微分操作を施すことにより、角速度を算出する。目標トルク算出部9bでは、前記トルクおよび前記角速度又は前記トルク、前記角速度および前記回転角度の情報を基に予め設定された等粘性パラメータを用いて訓練者に負荷すべき目標トルクを算出する。
【0051】
次いで、制御信号生成部9cにおいて、該目標トルクと演算部9aで得られた操作部1に加わるトルクとの偏差を算出し、該偏差を零にするように回転駆動体3および電気粘性流体5への印加電場を制御する制御信号を生成する。このようにして、回転駆動体3および電気粘性流体5から成る負荷発生部により、操作部1に等粘性負荷を発生させる。
【0052】
本筋力特性評価方法では、上記に示した等速性負荷又は等粘性負荷の少なくとも3パターン以上の異なる負荷強度を用いて測定を行い、計測される角度、角速度、トルクデータから構成される三次元形状における規定角度間隔毎の体積、規定角速度間隔毎の体積又は規定トルク間隔毎の体積の少なくとも一つを算出し、筋力特性の評価指標として呈示する。
【0053】
前記三次元形状とは、図15に示すような形状のことであり、この図は、筋力特性評価方法の流れを示す図16におけるS10の処理およびS20の近似式によるデータ補間処理を行うことにより、得られる角度、角速度、トルクデータを角度軸、角速度軸、トルク軸から成る三次元直交座標系に表示することで得られる。該三次元形状は、図15に示すように角速度0の平面、トルク0の平面および前記データ補間処理により構成される曲面で規定される。このような三次元形状を角速度-トルク平面、角度-トルク平面又は角度-角速度平面で分割した体積を算出することにより、前記評価指標を呈示する。以下に、前記評価指標を作成するまでの流れについて説明する。
【0054】
まず、本筋力特性評価方法では、上記に示した等速性負荷又は等粘性負荷の少なくとも3パターン以上の異なる負荷強度を用いて測定を行い、計測される角度、角速度、トルクデータに関して、図16に示すように一定角度間隔および一定角速度間隔から成る領域にある最大トルクデータの検出を行う(S10)。図17は、S10における処理の流れを示す図である。図17に示すように、検出する領域全体Aallの指定を行う(S11)。図18は、等粘性負荷を用いた測定におけるそれぞれの負荷強度の角度と角速度の関係の一例を二次元上に示すグラフである。検出領域Aallの指定方法としては、図18に示すように横軸Xと縦軸Yおよび計測された最大角度θmaxと最大角速度Vmaxを含む点線で囲まれた領域を全体の検出領域Aallとして指定する方法がある。
【0055】
次いで、図18に示すようにOを原点とした最初の一定角度間隔および一定角速度間隔から成る縦縞の領域A11から検出を開始し(S12)、領域A11にトルクデータが存在するかどうかを判断する(S13)。トルクデータが存在する場合は、最大トルクデータの検出および角速度-最大トルクデータを抽出し、格納する(S14)。トルクデータが存在しない場合には、次の角速度間隔及び同じ一定角度間隔から成る領域に含まれる最大トルクデータを検出しにいく(S15)。角速度データがこれ以上存在しない角速度間隔(最大角速度Vmaxよりも高い値の角速度間隔)に到達すると(S16)、角速度間隔を初期値に戻し、今度は次の角度間隔に含まれる最大トルクデータを検出しにいく(S17)。このようにして、一定角度間隔毎における角速度-最大トルクデータの抽出を行い(S14)、検出領域(最大角度θmax)を超えたら(S18)、検出処理を終了する。
【0056】
ここでの一定角度間隔は、評価指標の精度を上げるためには、できる限り細かく設定する方が好ましいが、測定に用いられているサンプリングタイムおよび測定対象部位の動作速度に応じて、得られるデータ数が異なるため、適切な角度間隔の値は変化する。例えば、サンプリングタイム1ミリ秒で肘屈曲動作を測定する場合であれば、個人差はあるが、人間の肘屈曲動作速度のピーク値はおよそ10~15rad/sであるので、少なくとも0.015rad以上の間隔で算出するのが好ましい。また、一定角速度間隔に関しても、できる限り細かく設定することが好ましいが、角速度は被験者の能力に応じて、最大角速度Vmaxにばらつきがあるため、Vmaxを考慮して、一定角速度間隔を設定することも考えられる。
【0057】
次いで、図18に示すような角度間隔Δθの網掛け部における領域には、実際に角速度-トルクデータは存在しておらず、このような領域に関しては、S14の処理で抽出した一定角度間隔毎の角速度-トルクの関係における近似式を用いることにより、データの補間を行う(S20)。この補間に用いる近似式としては、Hillの特性方程式、線形近似もしくは多項式近似等を用いる。このような近似式から一定角度間隔毎におけるトルク0の時の角速度の推定値、角速度0の時のトルクの推定値および図17に示す網掛け部のように角速度-トルクデータが存在しない領域の推定値を算出する。
【0058】
次いで、S20の処理より算出された角度、角速度、トルクデータを用いることにより、S30~S32に示す一定角度間隔毎における角速度-トルク平面の断面積、一定角速度間隔毎における角度-トルク平面の断面積および一定トルク間隔毎における角度-角速度平面の断面積を算出する。ここでは、角度、角速度、トルクデータが算出されているので、その数値データを用いることにより、積分処理を行い、それぞれの断面積を算出する。
【0059】
そして、上記処理により得られた一定角度間隔毎における角速度-トルク平面の断面積、一定角速度間隔毎における角度-トルク平面の断面積および一定トルク間隔毎における角度-角速度平面の断面積に対して、それぞれ微小角度幅、微小角速度幅、微小トルク幅で積分することにより、一定角度間隔毎の体積、一定角速度間隔毎の体積および一定トルク間隔毎の体積を算出する(S40~S42)。これらのデータはそれぞれ一定角度間隔における被験者の筋力特性、一定角速度間隔における被験者の筋力特性および一定トルク間隔における被験者の筋力特性を定量的に表す指標となるものである。
【0060】
このようにして得られるそれぞれの体積値を予め設定しておく規定間隔毎になるように足し合わせることにより、規定角度間隔毎における筋力特性評価指標、規定角速度毎における筋力特性評価指標および規定トルク間隔毎における筋力特性評価指標を呈示する(S50~S52)。ここでの規定間隔は、被験者等の要求する指標に応じて、変更可能である。例えば、角度間隔0.2rad毎の筋力特性を確認するのであれば、予めそのように設定しておけばよい。同様に規定角速度間隔および規定トルク間隔においても被験者等の要求する指標に応じて、設定を変更できる。
【0061】
図19は本筋力特性評価方法の他の例を示すフローチャートである。図19では、所定のトルク範囲にある形状の体積を規定角度間隔毎に算出し、被験者の所定のトルク範囲における角度間隔毎の筋力特性評価指標として呈示する流れを示している。
【0062】
ここでは、図19に示すようにS20の処理により算出された角度、角速度、トルクデータを用いることにより、一定トルク間隔毎における角度-角速度平面の断面積を算出する(S32)。該角度-角速度平面の断面積に対して、微小トルク幅で積分することにより、一定トルク間隔毎の体積を算出する(S42)。
【0063】
次いで、予め設定しておく所定のトルク範囲にある形状の体積を算出するために、一定トルク間隔毎の体積を足し合わせる(S43)。このようにして求められた体積を規定角度間隔毎に分割することにより、所定のトルク範囲にある形状における規定角度間隔毎の体積を算出し(S44)、筋力特性評価指標として呈示する(S53)。なお、ここでの所定範囲と規定間隔の組み合わせとしては、所定範囲として、角度データ、角速度データ、トルクデータの3通りがあり、規定間隔として、所定範囲で選んだ前記3通りのいずれか一つを除いた2通りがあるので、6通りの組み合わせが考えられる。
【0064】
また、図20に示すパワーデータを用いた評価方法では、S20の角速度-トルクの関係における近似式により算出されたトルクデータに対して角速度データを乗じることにより、パワーデータを算出する(S60)。算出されたパワーデータを用いて、S70~S72、S80~S82、S90~S92の処理を順次行うことにより、規定角度間隔毎の筋力特性評価指標、規定角速度間隔毎の筋力特性評価指標および規定パワー間隔毎の筋力特性評価指標を呈示する。
【0065】
図21の処理では、角速度-トルクの関係における近似式により算出されたトルクデータにおけるピークトルク値を検出する(S100)。該ピークトルク値で、トルクデータを除することにより、正規化する(S110)。したがって、ピークトルク値で正規化後のトルクデータに関してはピーク値が1に統一されることになる。こうして得られる角度、角速度、ピークトルクで正規化後のトルクデータから形成される三次元形状における一定角度間隔毎の体積、一定角速度毎の体積およびピークトルクで正規化後の一定トルク間隔毎の体積を算出し(S120~S122およびS130~S132)、それらをそれぞれ規定間隔毎になるように足し合わせることにより、筋力特性評価指標を呈示する(S140~S142)。ここで呈示される筋力特性評価指標では、ピーク値を統一した定量的評価指標を呈示することができるので、競技種目間における筋力特性の違い等を検証する指標として、用いることができ、被験者毎の筋力特性における分類等に利用できる。
【0066】
図22の処理では、S20の角速度-トルクの関係における近似式により算出されたトルクデータに対して角速度データを乗じることにより、パワーデータを算出(S60)後、該パワーデータにおけるピークパワーを検出する(S150)。次いで、パワーデータを検出されたピークパワーで除することにより、正規化する(S160)。したがって、ピークパワーで正規化後のパワーデータに関してはピーク値が1に統一されることになる。このようにして得られる角度、角速度、ピークパワーで正規化後のパワーデータから形成される三次元形状における一定角度間隔毎の体積、一定角速度間隔毎の体積およびピークパワーで正規化後の一定パワー間隔毎の体積を算出し(S170~S172およびS180~S182)、それらをそれぞれ規定間隔毎になるように足し合わせることにより、筋力特性評価指標を呈示する(S190~S192)。
【0067】
図23の処理では、3パターン以上の負荷強度での測定が終了後、被験者の体重を入力する(S200)。その入力された体重の値は、角速度-トルクの関係における近似式を用いて、角度、角速度、トルクデータが算出された後にトルクデータを除するのに用いることにより、体重で正規化する(S210)。該正規化されたトルクデータおよび角度、角速度データを用いて、三次元形状における一定角度間隔毎の体積、一定角速度間隔毎の体積および体重で正規化後の一定トルク間隔毎の体積を算出し(S220~S222およびS230~S232)、それらをそれぞれ規定間隔毎になるように足し合わせることにより、被験者の体格を考慮した筋力特性評価指標を呈示する(S240~S242)。
【0068】
図24の処理では、3パターン以上の負荷強度での測定が終了後、被験者の体重を入力する(S200)。そして、角速度-トルクデータの関係における近似式により、算出されるトルクデータに角速度を乗じることにより、算出されるパワーデータを被験者の体重で正規化する。こうして正規化されたパワーデータおよび角度、角速度データを用いて、三次元形状における一定角度間隔毎の体積、一定角速度間隔毎の体積および体重で正規化後の一定パワー間隔毎の体積を算出し(S260~S262およびS270~S272)、それらをそれぞれ規定間隔毎になるように足し合わせることにより、被験者の体格を考慮した筋力特性を呈示する(S280~S282)。
【0069】
勿論、これらの筋力特性評価方法に係る発明は本訓練装置の構成に限らず、等速性負荷、等張性負荷もしくは等粘性負荷を発生し、角度、角速度、トルク(もしくはパワー)データを計測できる装置であれば、種々のものに適用可能である。
【図面の簡単な説明】
【0070】
【図1】本発明の実施形態に係る筋力訓練装置についての一例の概略上面図である。
【図2】電気粘性流体クラッチにおける構造の一例を示す概略断面図である。
【図3】本発明の実施形態に係る筋力訓練装置についての他の例の概略上面図である。
【図4】負荷強度、負荷様式を変化させる制御系の説明図である。
【図5】負荷強度を変化させた一例における角度-トルク関係を示すグラフである。
【図6】負荷強度を変化させた一例における角速度-トルク関係を示すグラフである。
【図7】負荷様式を変化させた一例における角度-トルク関係を示すグラフである。
【図8】負荷様式を変化させた一例における角速度-トルクの関係を示すグラフである。
【図9】負荷強度および負荷様式を変化させた一例における角度-トルクの関係を示すグラフである。
【図10】図9における粘性負荷の寄与分を取り出して示したグラフである。
【図11】図9における弾性負荷の寄与分を取り出して示したグラフである。
【図12】筋力特性評価方法における処理を行う構成の一例を示すブロック図である。
【図13】等速性負荷における制御系の説明図である。
【図14】等粘性負荷における制御系の説明図である。
【図15】角度、角速度およびトルクから成る三次元形状の一例を示す図である。
【図16】角度、角速度、トルクデータを用いた筋出力特性評価方法のフローチャートである。
【図17】図15における処理の一部を示すフローチャートである。
【図18】図15における処理の説明に関する図である。
【図19】角度、角速度、トルクデータを用いた筋出力特性評価方法における他の例のフローチャートである。
【図20】図15におけるトルクデータをパワーデータに変換した筋力特性評価方法のフローチャートである。
【図21】図15におけるトルクデータをピークトルクで正規化した筋力特性評価方法のフローチャートである。
【図22】図20におけるパワーデータをピークパワーで正規化した筋力特性評価方法のフローチャートである。
【図23】図15におけるトルクデータを被験者の体重で正規化した筋力特性評価方法のフローチャートである。
【図24】図18におけるパワーデータを被験者の体重で正規化した筋力特性評価方法のフローチャートである。
【符号の説明】
【0071】
1 操作部
2 可動体(第1の可動体)
3 回転駆動体
4 可動体(第2の可動体)
5 電気粘性流体
6 補助動力
7 センサ部(第1のセンサ部)
8 センサ部(第2のセンサ部)
9 制御部
9a 演算部
9b 目標トルク算出部
9c 制御信号生成部
100、200 筋力訓練装置
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11
【図13】
12
【図14】
13
【図15】
14
【図16】
15
【図17】
16
【図18】
17
【図19】
18
【図20】
19
【図21】
20
【図22】
21
【図23】
22
【図24】
23