TOP > 国内特許検索 > ヘテロ型5量体組換えワクチン > 明細書

明細書 :ヘテロ型5量体組換えワクチン

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第4623625号 (P4623625)
公開番号 特開2005-052135 (P2005-052135A)
登録日 平成22年11月12日(2010.11.12)
発行日 平成23年2月2日(2011.2.2)
公開日 平成17年3月3日(2005.3.3)
発明の名称または考案の名称 ヘテロ型5量体組換えワクチン
国際特許分類 C12N  15/09        (2006.01)
A61K   9/52        (2006.01)
A61K  39/00        (2006.01)
A61K  39/12        (2006.01)
A61P  31/12        (2006.01)
A61P  37/04        (2006.01)
C07K  14/18        (2006.01)
C07K  14/195       (2006.01)
C07K  19/00        (2006.01)
C12N   1/15        (2006.01)
C12N   1/19        (2006.01)
C12N   1/21        (2006.01)
C12N   5/10        (2006.01)
FI C12N 15/00 ZNAA
A61K 9/52
A61K 39/00 H
A61K 39/12
A61P 31/12
A61P 37/04
C07K 14/18
C07K 14/195
C07K 19/00
C12N 1/15
C12N 1/19
C12N 1/21
C12N 5/00 101
請求項の数または発明の数 9
全頁数 17
出願番号 特願2003-412053 (P2003-412053)
出願日 平成15年12月10日(2003.12.10)
優先権出願番号 2003279156
優先日 平成15年7月24日(2003.7.24)
優先権主張国 日本国(JP)
審査請求日 平成18年12月4日(2006.12.4)
特許権者または実用新案権者 【識別番号】301014085
【氏名又は名称】株式会社AMBiS
【識別番号】504145308
【氏名又は名称】国立大学法人 琉球大学
発明者または考案者 【氏名】新川 武
【氏名】喜久川 政直
【氏名】島袋 勲
【氏名】只野 昌之
【氏名】松本 安喜
【氏名】辻 尚利
【氏名】佐藤 良也
個別代理人の代理人 【識別番号】100086759、【弁理士】、【氏名又は名称】渡辺 喜平
審査官 【審査官】滝口 尚良
参考文献・文献 特開2003-116385(JP,A)
調査した分野 C12N 15/09
A61K 9/52
A61K 39/00
A61K 39/12
A61P 31/12
A61P 37/04
C07K 14/18
C07K 14/195
C07K 19/00
C12N 1/15
C12N 1/19
C12N 1/21
C12N 5/10
BIOSIS/MEDLINE/WPIDS(STN)
BIOTECHABS(STN)
特許請求の範囲 【請求項1】
免疫原性のあるアミノ酸配列と、粘膜結合性タンパク質のモノマーのアミノ酸配列との融合タンパク質からなる融合モノマーと、粘膜結合性タンパク質のモノマーのアミノ酸配列からなる非融合モノマーと、から構成されるヘテロ型5量体。
【請求項2】
前記免疫原性のあるアミノ酸配列と、前記粘膜結合性タンパク質のアミノ酸配列とが、リンカー部分を介して結合している請求項1記載のヘテロ型5量体。
【請求項3】
前記粘膜結合性タンパク質が、エンテロトキシンBサブユニット又はコレラ毒素Bサブユニットである請求項1又は2記載のヘテロ型5量体。
【請求項4】
前記免疫原性のあるアミノ酸配列が日本脳炎ウイルス外郭タンパク質由来抗原である請求項1~3のいずれかに記載のヘテロ型5量体。
【請求項5】
前記融合モノマーが、(1)配列番号1のアミノ酸配列;又は(2)前記アミノ酸配列に対して1又は数個のアミノ酸の欠失、置換、挿入及び/又は付加を有しかつ日本脳炎ウイルス抗原性及び粘膜結合性を有するアミノ酸配列からなる請求項4に記載のヘテロ型5量体。
【請求項6】
請求項1~5のいずれかに記載の融合モノマーと非融合モノマーをコードするか、又は前記融合モノマーと非融合モノマーのコード配列と相補的な核酸分子。
【請求項7】
前記融合モノマーをコードするか、又は前記融合モノマーのコード配列と相補的な核酸分子が配列番号2で示される請求項6に記載の核酸分子。
【請求項8】
請求項6又は7記載の核酸分子を含み、形質転換宿主中において前記融合モノマーと前記非融合モノマーを発現できるベクター。
【請求項9】
請求項8に記載のベクターで形質転換された宿主。
発明の詳細な説明 【技術分野】
【0001】
本発明は、融合タンパク質を含むヘテロ型5量体を用いた組換えワクチン、特に腸溶性経口ワクチンに関する。また、本発明は、日本脳炎ワクチンに関する。
【背景技術】
【0002】
これまでのワクチン生産は、その殆どがウィルスや細菌の弱毒化や不活化によって行われてきた。しかし、近年の遺伝子組換操作技術の発達により、特定の病原体由来遺伝子のみを利用した組換えコンポーネントワクチンの可能性が示唆されてきた。現にB型肝炎ウィルスに対するワクチンは組換え技術によってつくられたものである。
【0003】
しかしながら、粘膜組織に対する親和性の無いコンポーネントワクチン抗原を、直接粘膜面から投与しても、抗体産生等の抗原特異的免疫応答を誘導することは困難であった。そこで、粘膜親和性のあるコレラ毒素B鎖タンパク質(CTB)等の粘膜結合性タンパク質とワクチン抗原とを融合することにより、ワクチン抗原に対する鼻腔や腸管等での粘膜親和性を格段に向上させることが試みられている(例えば、特許文献1)。しかし、そのような融合タンパク質には、抗原によっては製造が困難であったり、ワクチンとしての機能を有効に発揮し得ないものもあった。
【0004】
また、これまで、消化管粘膜結合性タンパク質と日本脳炎由来の抗原を結合させた融合タンパク質であって、日本脳炎のコンポーネントワクチンとして使用可能な抗体産生が確認できた融合タンパク質は知られていなかった。
【0005】

【特許文献1】特開平6-206900
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明は上記事情に鑑みなされたものであり、生産レベル、精製効率を向上させることにより、工業レベルでの生産を可能とするワクチンを提供することを目的とする。また、本発明は、日本脳炎のコンポーネントワクチンを提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明によれば以下の核酸分子(DNA,RNA)、融合タンパク質、5量体、ワクチン等を提供できる。
[1] 免疫原性のあるアミノ酸配列と、粘膜結合性タンパク質のモノマーのアミノ酸配列との融合タンパク質からなる融合モノマーと、粘膜結合性タンパク質のモノマーのアミノ酸配列からなる非融合モノマーと、から構成されるヘテロ型5量体。
[2] 前記免疫原性のあるアミノ酸配列と、前記粘膜結合性タンパク質のアミノ酸配列とが、リンカー部分を介して結合している[1]のヘテロ型5量体。
[3] 前記粘膜結合性タンパク質が、エンテロトキシンBサブユニット又はコレラ毒素Bサブユニットである[1]又は[2]のヘテロ型5量体。
[4] 前記免疫原性のあるアミノ酸配列が日本脳炎ウイルス外郭タンパク質由来抗原である[1]~[3]のヘテロ型5量体。
[5] [1]~[4]の融合モノマーと非融合モノマーをコードするか、又は前記融合モノマーと非融合モノマーのコード配列と相補的な核酸分子。
[6] [5]の核酸分子を含み、形質転換宿主中において前記融合モノマーと前記非融合モノマーを発現できるベクター。
[7] 日本脳炎ウイルス外郭タンパク質由来抗原のアミノ酸配列と、粘膜結合性タンパク質のモノマーのアミノ酸配列との融合タンパク質からなる融合モノマーから構成されるホモ型5量体。
[8] 日本脳炎ウイルス外郭タンパク質由来抗原のアミノ酸配列と、粘膜結合性タンパク質のモノマーのアミノ酸配列からなる融合モノマータンパク質。
[9] (1)配列番号1のアミノ酸配列;又は(2)前記アミノ酸配列に対して1又は数個のアミノ酸の欠失、置換、挿入及び/又は付加を有しかつ日本脳炎ウイルス抗原性及び粘膜結合性を有するアミノ酸配列からなる[10]の融合モノマータンパク質。
[10] [8]又は[9]のタンパク質をコードするか、又は前記タンパク質のコード配列と相補的な核酸分子。
[11] 配列番号2で示される[10]の核酸分子。
[12] [10]又は[11]の核酸分子を含み、形質転換宿主中において前記融合モノマーを発現できるベクター。
[13] [12]のベクターで形質転換された宿主。
[14] [6]又は[12]のベクターで形質転換された宿主。
[15] [1]~[4]のヘテロ型5量体、[7]のホモ型5量体、又は[14]の宿主を含むワクチン。
[16] 腸溶性コーティングされている経口投与可能な[15]のワクチン。
[17] 前記腸溶性コーティングがカルシウムを含んでなる[16]のワクチン。
[18] 免疫原性のあるアミノ酸配列と粘膜結合性タンパク質のモノマーのアミノ酸配列との融合タンパク質をコードする遺伝子配列と、粘膜結合性タンパク質のモノマーのアミノ酸配列をコードする遺伝子配列を、ベクターの遺伝子に組み込み、
前記ベクターを形質転換宿主に導入し、
前記ベクターを発現させて、前記融合タンパク質からなる融合モノマーと、前記モノマーからなる非融合モノマーとから構成されるヘテロ型5量体を生成させ、
前記宿主から培養液中に分泌された前記ヘテロ型5量体を精製する工程を含むワクチンの製造方法。
[19] [15]~[17]のワクチン又は[14]の宿主を、ヒト又は動物に経口投与による腸管免疫法。
[20] [15]~[17]のワクチン又は[14]の宿主を含む、経口投与による腸管免疫のための医薬組成物。
【発明の効果】
【0008】
本発明によれば、以下の効果を奏するヘテロ型5量体を提供できる。
(1)融合ワクチン分子の分子量を大幅に拡大できる。融合できる抗原の大きさが拡大したことは、抗原の多様性も拡大したといえる。
(2)ヘテロ型5量体の5量体形成効率が向上できる。
(3)ヘテロ型5量体が酵母培養上清へ分泌することにより、ヘテロ型5量体の精製を簡便化できる。
(4)ヘテロ型5量体を産生・細胞内保持する宿主は、その経口経路での投与法により、腸管免疫が可能となるため、用途によっては、上記(3)の精製の簡便化すらも必要とせず、直接免疫可能な形態となりうる。
さらに、本発明は、ヘテロ型5量体を、酵母発現系以外の植物等の他の発現系で発現させることも可能であり、動物やヒトへの組換え粘膜ワクチンとして有用である。
また、本発明によれば、日本脳炎のコンポーネントワクチンを提供できる。
【発明を実施するための最良の形態】
【0009】
粘膜結合性タンパク質は5つのモノマーから5量体を形成して、その機能を発揮する。粘膜結合性タンパク質を用いてワクチンを製造するとき、遺伝子工学技術を用いて、「抗原の遺伝子配列」と「粘膜結合性タンパク質の1つのモノマーの遺伝子配列」が結合した遺伝子配列をベクターに組み込み、そのベクターで宿主を形質転換し、図1に示すように、抗原10とモノマー20を含む融合タンパク質30を宿主内で生成させる。融合タンパク質30は、それに含まれるモノマー20により、5量体(ホモ型5量体)を形成し、これを投与することにより、ワクチンとして、有効な免疫反応を誘導する。
【0010】
しかし、本発明者らは、このように粘膜結合性タンパク質をワクチン抗原の運搬体として用いる方法にはその融合可能なワクチン抗原の分子量に限界があることを見出した。図2に示すように、分子量の大きい抗原12がモノマー20に融合すると、融合タンパク質32同士の分子間相互干渉が起こり、5量体形成が阻害される場合がある。5量体が形成されないと、かかるワクチンを粘膜投与しても、効果的な免疫ができない恐れがある。
【0011】
さらに、図1,2に示すように、5量体の5つのモノマー20にワクチン抗原10,12が融合していると、従来の大腸菌やその他の発現系では、形成された5量体が細胞外に分泌されず、細胞質内に留まるため、その精製効率が低く、工業的生産が困難である。
【0012】
従って、本発明では、「免疫原性のあるアミノ酸配列の遺伝子配列」と「粘膜結合性タンパク質のひとつのモノマーの遺伝子配列」が結合した遺伝子配列と共に、「粘膜結合性タンパク質のひとつのモノマーの遺伝子配列」を、ベクターに組み込み、そのベクターで宿主を形質転換する。これらの遺伝子を、酵母等の細胞内で共発現させて、図3に示すように、「融合タンパク質(融合モノマー)32」と「抗原12が融合していないモノマー(非融合モノマー)20」を生成させる。この融合モノマー32と非融合モノマー20は、5量体を形成するが、図1,2の5量体と異なり、全てのモノマーに抗原12が融合していない(ヘテロ型5量体)。従って、5量体形成時の分子間相互干渉を軽減でき、従来困難だった高分子量の抗原の融合が可能となる。
【0013】
このヘテロ型5量体には、5量体を形成するモノマーの種類により、以下の6通りのタイプ(I~VI)がある。
I II III IV V VI
融合モノマー 0 1 2 3 4 5
非融合モノマー 5 4 3 2 1 0
本発明のヘテロ型5量体は、主に、II~Vのタイプを含むが、I,VIのタイプを含んでいてもよい。
【0014】
また、このヘテロ型5量体は、そのコンパクトな分子構造のため、5量体形成効率が促進されるだけでなく、酵母等の細胞培養液中に大量に分泌される。その結果、その後の組換え分子の分離・精製が簡便化され、工業レベルでのタンパク生産が可能となる。さらに、ヘテロ型の融合タンパク質抗原は、ホモ型の融合タンパク質抗原と比べ、その5量体分子形成効率が著しく促進されるため、宿主細胞内での粘膜免疫原性をもつ5量体の抗原量が増加する。従って、ヘテロ型5量体を含むワクチンを細胞質内に保持する宿主(植物、酵母等)の直接の経口投与による腸管免疫法の効果を向上させることが可能となる。
【0015】
本発明の融合モノマーの例として、日本脳炎ウイルス外郭タンパク質由来抗原のアミノ酸配列と、粘膜結合性タンパク質もモノマーのアミノ酸配列からなる融合モノマータンパク質を挙げられる。
この融合モノマータンパク質は、例えば配列番号1のアミノ酸配列を有する。この融合モノマータンパク質は、例えば配列番号2で示される、融合モノマータンパク質をコードするか、又はこのタンパク質のコード配列と相補的な核酸分子を含むベクターを形質変換宿主で発現させて生成できる。
【0016】
上記の融合モノマータンパク質の機能的誘導体、例えば、上記のアミノ酸配列に対して1又は数個のアミノ酸の欠失、付加、挿入及び/又は置換を有するアミノ酸配列からなるタンパク質や、前記アミノ酸配列に対して少なくとも70%以上、好ましくは80%以上、より好ましくは90%以上の相同性を有するアミノ酸配列からなるタンパク質も、本発明のタンパク質の特徴的な機能を保持している限りにおいて、本発明に利用可能である。尚、ここでいうアミノ酸配列の相同性は、プログラムのデフォルトパラメータ(マトリクス=Blosum62;ギャップ存在コスト=11、ギャップ拡張コスト=1)を用いた検索で、インターネットサイトhttp://www.ncbi.n/m.nih.gov/egi-gin/BLASTで実装可能なBLASTPアルゴリズムによって示される陽性のパーセンテージとして定義できる。
また、上記のタンパク質をコードする核酸分子も、本発明のセンサータンパク質の製造において有用である。尚、ここでいう核酸分子は、本明細書に具体的に例示されるものの他、遺伝子コードの縮重により、他の多くのヌクレオチド配列によりコードされることも可能であり、発現系によっては、その宿主において最も使用頻度が高いコドン等が有利に用いられ得る。これら縮重配列を有するものも本発明の核酸分子に含まれることはいうまでもない。
【0017】
以下、本発明のヘテロ型5量体について、さらに詳細に説明する。
本発明に用いる「粘膜結合性タンパク質」は、鼻腔、気道等の呼吸器系粘膜組織、口腔、食道、胃、十二指腸、小腸、大腸、直腸等の消化器系粘膜、及び膣等の生殖器粘膜に存在する糖脂質等のレセプターを介して、直接又は間接的に結合する能力をもつタンパク質抗原のことである。代表的例は、コレラ毒素(CT)及易熱性腸管毒素(LT)であり、これらは、それぞれコレラ菌、及び毒素原性大腸菌(ETEC)によって産生される類似したタンパク質である。これらは、毒性を有するAサブユニットと、毒性のないBサブユニット(CTB,LTB)から構成されていて、Aサブユニットの細胞内への侵入は、Bサブユニットによって促進される。このBサブユニットは、GM-モノシアロガングリオシド受容体に結合する。GMは、粘膜上皮を含む哺乳動物の様々な組織の表面上に存在する。これら粘膜結合性タンパク質を抗原と共に、経口的又は経鼻的に投与した場合、BサブユニットのGM結合性により、抗原の免疫応答が誘導される。
【0018】
本発明の「免疫原性のあるアミノ酸配列」は、例えば、ウイルス、細菌、寄生虫等の病原体由来の抗原で、特に、ヒトや動物の感染防御に重要な抗原決定基を有するアミノ酸配列である。また、ヒト又は動物の自己免疫疾患に重要な自己抗原でもある。さらに、自己或いは類似の抗原が感染性のある形態に変性したプリオンタンパク質等も含む。そして、アレルギー反応の要因となるアレルゲンを含むタンパク質も含む。病原体は、好ましくは、日本脳炎ウイルス、マラリア等の節足動物媒介性病原体やブタ回虫等の腸管寄生虫等である。自己免疫疾患はインシュリン依存型糖尿病や炎症性リュウマチ等である。プリオン病はクロイツフェルト・ヤコブ病等である。アレルゲンは、食物アレルギーを起こす抗原やダニアレルゲン、スギ花粉症のアレルゲン等である。
本発明で用いる「免疫原性のあるアミノ酸配列」は、免疫応答を正と負の方向の両方に誘発することができるものである。例えば、液性免疫(抗体応答)や細胞性免疫を活性化させる正の応答や組織・臓器特異、非特異的炎症反応を抑える負の応答(免疫トレランス)を誘導することができるものである。
エピトープは、ウイルス、細菌、かび、酵母又は寄生虫由来のものを使用することができる。
【0019】
「免疫原性のあるアミノ酸配列」の長さは限定されない。しかしながら、この配列は、ヘテロ型5量体がGM-ガングリオシドに結合する能力を破壊するものであってはならない。この配列は、200残基長まで、150残基長まで、又は100残基長までとすることができる。長さ60まで、例えば30又は20までのアミノ酸残基の短い配列も使用することができる。
【0020】
本発明の融合モノマーを構成する融合タンパク質は、モノマータンパク質(12kDa)をN末側に、任意の抗原タンパク質(~22kDa)をC末側にもつタンパク質である。
「病原体のエピトープのアミノ酸配列」と、「粘膜結合性タンパク質のモノマーのアミノ酸配列」の間に、リンカー部分を設けることができる。このリンカー部分はアミノ酸配列Gly-Proの4~20個の反復配列からなる。例えば、4個までの反復配列を置くことができる。リンカー部分はモノマーのC末端に融合される。
Gly-Pro反復配列は他のアミノ酸残基が隣接していてもよい。適当なものは、非荷電非芳香性残基である。4個までのアミノ酸残基、例えば2個のアミノ酸残基又は1個のアミノ酸残基をBサブユニットモノマー残基の後、Gly-Pro反復配列の前に配置することができる。4個までのアミノ酸残基、例えば2個のアミノ酸残基又は1個のアミノ酸残基をGly-Pro反復配列の後、病原体のエピトープのアミノ酸配列の前に配置することができる。
エピトープのアミノ酸配列は、リンカー部分のC末端に融合させることができる。
融合モノマーは、式(I)
X-Y-(Gly-Pro)-Y-Z (I)
(式中、XはBサブユニットモノマー残基を表し、Y及びYはそれぞれ独立にペプチド結合又はアミノ酸残基4個までのアミノ酸配列であり、Zはエピトープのアミノ酸配列を表し、nは2、3又は4である)で表すことができる。好ましくは、Yはロイシン(L)であり、Yはアミノ酸残基、グルタミン酸-イソロイシン(EI)を意味する。
【0021】
「融合モノマーの遺伝子配列」と「非融合モノマーの遺伝子配列」は、好ましくは、同プラスミドベクター上に並列して存在し、宿主への遺伝子導入法によっては、細胞質内に環状のまま(プラスミド)で存在するか、核又は葉緑体の染色体中に線状化されて挿入される。また、「融合モノマーの遺伝子配列」と「非融合モノマーの遺伝子配列」は、真核生物のモノシストロン的な発現形態で、それぞれが独自のプロモーター・ターミネーター配列を保持する発現ユニットを形成するか、複数遺伝子の発現に重要なIRESのようなリボゾーム結合配列を間に保持してもよいし、原核生物のポリシストロン的な発現形態で、上記の2種遺伝子がオペロンを形成してもよい。さらに、「融合モノマーの遺伝子配列」と「非融合モノマーの遺伝子配列」はそれぞれ宿主細胞内に複数コピー存在してもよく、また、その数の比も1:1である必然性はない。
【0022】
融合モノマーと非融合モノマーは、正しくフォールディングされ、5量体に組み立てられる。ヘテロ型5量体はGM-ガングリオシドに結合することが可能で、一方、免疫原生を有するアミノ酸配列を提供する。従って、このヘテロ型5量体はワクチンとして、特に、粘膜(経鼻、経口等)投与型ワクチンとして使用することができる。
ヘテロ型5量体は、GTPアーゼをADP-リボシル化できるエンテロトキシンのBサブユニットの十分なアミノ酸配列からなり、GM-ガングリオシドに結合することが可能である。
ヘテロ型5量体はLTB又はCTBから構成されていてもよい。天然のBサブユニットのアミノ酸配列、LTB又はCTBは、実際には、1個又は2個以上のアミノ酸の置換、挿入又は欠失によって修飾されていてもよい。天然のBサブユニットに対して作成された抗体は、そのサブユニットのアミノ酸配列の修飾型からなる融合タンパク質に結合できる。
このような修飾アミノ酸配列は、その修飾アミノ酸配列が挿入されたモノマーが、5量体を形成し、GM-ガングリオシドに結合する能力を維持している限り、使用できる。元の配列の物理化学的性質、例えば電荷密度、親水性/疎水性、サイズ及びコンフィギュレーションが保存されていなければならない。置換の候補を単一文字コード(Eur.J.Biochem.138,9-7,1984)で示せば、GのAによる置換及びその逆、VのA、L又はGによる置換、KのRによる置換、TのSによる置換及びその逆、EのDによる置換及びその逆、ならびにQのNによる置換及びその逆を挙げることができる。
天然のエンテロトキシンBサブユニットの配列と修飾アミノ酸配列の間のホモロジーの程度は、80%もしくはそれ以上、例えば90%もしくはそれ以上又は95%もしくはそれ以上とすることができる。天然のBサブユニットのアミノ酸配列は、例えば、いずれかの末端又は両末端において、アミノ酸残基4個まで又は2個まで、短縮することができる。即ち、LTB又はCTBのC末端は、このように短縮することができる。
【0023】
本発明のヘテロ型5量体は、組換えDNA技術によって製造できる。即ち、ヘテロ型5量体は、宿主を、その宿主中で融合及び非融合モノマーを発現できるベクターで形質転換する。宿主においてベクターを発現させて、生成したヘテロ型5量体を単離する。
従って、ヘテロ型5量体の製造はその融合及び非融合モノマーをコードするDNA配列の準備状態に依存する。DNA配列は、融合及び非融合モノマーが発現される宿主細胞の細胞質から放出されるように、その5’末端に、融合及び非融合モノマーのリーダーペプチドをコードする配列を設けることができる。任意の適当なリーダー配列が使用できる。しかしながら、通常は、Bサブユニットの天然のリーダー配列をコードするDNAが、成熟Bサブユニット残基のアミノ酸配列をコードするDNAのすぐ上流に配置される。
リンカー部分の残基を特定するコドンの選択は重要である。適当には、コドンの少なくとも半分は、融合タンパク質を発現する宿主においてアミノ酸残基の対して希なコドンとする。従って、コドンは、至適コドン、即ちその宿主における使用に際しての第一選択コドンであってはならない。一般的には第二の選択コドンであってもならない。このリンカー部分のコドンの少なくとも75%、少なくとも95%又は全てを希なコドンとすることができる。大腸菌の場合のこのようなコドンは、Sharp & Li(1986)によって報告されている。希なコドンは翻訳時に休止を生じ、これがリンカー部分及びリンカー部分の融合とは独立に、Bサブユニットの正しいフォールディングを可能にする。
このようにして、所望の融合及び非融合モノマーをコードするDNA配列が得られる。このDNA配列が挿入されて、適当な宿主に付与した場合に融合及び非融合モノマーを発現できる発現ベクターを調製する。そのDNA配列に適当な転写及び翻訳制御要素、とくにDNA配列のためのプロモーター及び翻訳終結コドンが与えられる。DNA配列はベクター中の翻訳開始及び停止シグナルの間に配置される。DNA配列は、そのベクターに適合した宿主中での融合及び非融合モノマーの発現が可能なように正しいフレームで配置される。
【0024】
本発明に使用するベクターは、融合モノマーと非融合モノマーの塩基配列をコードし、好ましくは、大腸菌、グラム陽性菌、乳酸菌、酵母、哺乳動物細胞、昆虫細胞、植物等での発現が可能な宿主特異的プロモーター・ターミネーター塩基配列を有する遺伝子発現ベクターである。
リンカー部分のコード配列は、免疫原性有するアミノ酸配列をコードする遺伝子の挿入が可能な制限部位で終わるように選択される。この制限部位は、正しい読み取り枠での遺伝子の挿入を可能にする。即ち、融合モノマーの遺伝子配列は、タンパク質の翻訳された時に一本の完全長な1次構造を有する融合タンパク質に翻訳されなければならない。
BサブユニットがLTBである場合には、LTBを発現できるベクターをまず、LTB遺伝子(Dallas,1983)を適当な転写及び翻訳調節要素の制御下、ベクター中にクローン化することによって得られる。リンカー部分に相当するオリゴヌクレオチドは、合成して、LTB遺伝子の3’末端に適合させることができる。とくに、リンカー部分をコードするDNA配列は、LTB遺伝子の3’末端の自然の終結コドンに位置するSpeI部位にクローン化できる。生物活性を有するアミノ酸配列をコードする遺伝子は、リンカー部分をコードするDNA配列の3’末端に適当に配置された制限部位中に同位相でクローン化することができる。
【0025】
上記のベクターにより宿主を形質転換し、この宿主を培養して融合及び非融合モノマーを発現させる。融合及び非融合モノマーは5量体に自己集合する。任意の適当な宿主-ベクター系が使用できる。宿主は原核生物宿主でも、真核生物宿主でもよい。好ましい宿主として、大腸菌、グラム陽性菌、乳酸菌、酵母、昆虫細胞、哺乳動物細胞、植物細胞、トランスジェニック動物、トランスジェニック植物が挙げられる。さらに、「宿主」は細胞である必然性は必ずしもなく、適切な翻訳とその後のタンパク質修飾(糖鎖付加やリン酸化等)が行われる限りにおいて、無細胞発現系でもよい。
ベクターはプラスミドとすることができる。この場合、細菌又は酵母宿主、例えば大腸菌もしくはビブリオ種のようなグラム陰性桿菌、又はビール酵母菌(S.cerevisiae)が使用できる。別法として、ベクターはウイルスベクターとすることもできる。これは、哺乳動物細胞系の細胞、例えばチャイニーズハムスター卵巣(CHO)細胞又はCOS細胞にトランスフェクトして使用し、発現させることができる。
生成されたヘテロ型5量体は単離することができる。本発明では、5量体を形成する5つのモノマー全てに抗原が融合していないので、細胞質から培養液に分泌される。この培養液から、ヘテロ型5量体を単離、精製できる。また、宿主の直接の経口投与によっても腸管免疫を誘導することが可能である。
【0026】
精製されたヘテロ型5量体、このヘテロ型5量体を生成した大腸菌の毒素産生株の死菌、及びこのヘテロ型5量体を生成できる弱毒化生菌ワクチンは、それぞれワクチンとして使用できる。ワクチンは通常、生理学的に許容される担体又は希釈剤も含有する。慣用の処方、担体及び希釈剤が使用できる。
適当な弱毒化生菌ワクチンは、その芳香族生合成経路における2つの別個の遺伝子のそれぞれに非復帰突然変異を有する弱毒化微生物とすることができる。このような微生物は、EP-A-0322237に記載されている。典型的な微生物は、例えばサルモネラ属からの病原細菌、例えばS.typhi,S.typhimurium,S.dublin又はS.cholerasiusである。
非復帰突然変異は通常、aroA,aroB,aroC.aroD及びaroE遺伝子の任意の2つに起こすことができる。非復帰突然変異の一つはaroA遺伝子中にあることが好ましい。適当な弱毒化微生物には、融合及び非融合モノマーがその微生物によって発現されるように、融合及び非融合モノマーをコードする発現カセットを繋留させる。微生物の世代を通しての確実な発現のためには、発現カセットは、抗生物質選択の不存在下に、安定に伝えられねばならない。
【0027】
ワクチンは任意の経路で投与できる。経口経路、経鼻経路、経気道経路、経膣経路、経直腸経路又は非粘膜経路、例えば皮下、静脈内もしくは筋肉内投与のいずれを採用するかの選択、ワクチンの用量及び摂取の頻度は、ワクチン接種の目的、ヒト又は動物のいずれが処置されるか、又はワクチンを投与されるヒト又は動物の状態に依存する。
しかし、通常、ヘテロ型5量体は、経口、経鼻又は非経口経路により、1用量あたり、1~1000μg、好ましくは10~100μg投与される。一方、弱毒化S.typhiの場合、通常の経口経路、70kgの成人患者で、1用量あたりS.typhi微生物10~1011の投与量が一般に便利である。
ヘテロ型5量体は、医薬的に許容される担体又は希釈剤を含有する医薬組成物として投与するために、医薬組成物に処方することができる。任意の慣用の担体又は希釈剤が使用さできる。
【0028】
本発明のワクチンは、腸溶性コーティングして経口投与できることが好ましい。腸溶性コーティングすれば、ワクチンが腸管に達して吸収されるまでに、消化液等により分解されるのを防ぐことができる。
腸溶性コーティングとして、公知のものを使用できるが、特に、カルシウムを含んでなるものが、費用、安全性等の観点から好ましい。カルシウム微粒子で腸溶性コーティングする方法は、特開平7-328416号公報,特開平10-5577号公報,特開平10-155876号公報に記載されているように、カルシウムを油滴の周りに吸着させて殻を形成し、その後、中の油滴をワクチンに置き換える。
【0029】
本発明の経口ワクチン法では、上記のへテロ型5量体を含むワクチン又は、へテロ型5量体を細胞質内に保持する組換え宿主(植物、酵母等)を、直接経口投与して免疫を誘導できる。
また、本発明のワクチンは、粘膜ワクチンとして、家畜動物等の経済動物やペット等の動物にも応用できる。特に、腸溶剤等に封入する技術と組み合わせて、ヒトに投与することができる。さらに、ヘテロ型5量体融合遺伝子を含む遺伝子組換え作物による植物ワクチンの可能性もある。
【0030】
また、本発明は、ホモ型5量体の日本脳炎のコンポーネントワクチンを提供するが、その製造方法、ワクチンとしての利用方法等は、製造方法において、日本脳炎ウイルス外郭タンパク質由来抗原と、粘膜結合性タンパク質のモノマーとの融合タンパク質をコードするDNAだけを、ベクターに挿入する他は、上述したヘテロ型5量体と同様である。そのようなベクターを挿入された宿主は、融合タンパク質だけを生成し、ホモ型5量体を形成する。
【実施例】
【0031】
以下の実施例では、日本脳炎ウィルス外郭タンパク質を抗原として使用したが、本発明は他の抗原にも適用可能であり、この実施例に限定されない。
【0032】
実施例1
[ヘテロ型5量体の製造]
JEV EIIIの5'プライマー(配列番号3)と3'プライマー(配列番号4)を作成し、日本脳炎ウイルス分離株(JaOH0566株)由来のDNAをテンプレートにPCRを行った。PCR増幅産物をEcoRI(G/AATTC)で切断・精製した。
一方、酵母発現ベクターpAO815(インビトロジェン社製、商品名マルチコピーPichia発現キット)にCTBのDNAを挿入した。これを、PCR増幅産物と同じくEcoRI処理した。
このCTB遺伝子を含む酵母発現ベクターpAO815-CTBに、EcoRI処理したJEVDNAを、融合遺伝子が正しいフレームになるように挿入した。
【0033】
CTB遺伝子の下流にヒンジ領域をコードする配列を挿入した。融合タンパク質の中で、GPGPの配列がCTBとJEV EIIIの間に存在することで、両タンパク質部位の分子間相互干渉を軽減させることが可能となる。また、このことはCTBの5量体形成に効果的に機能し、融合タンパク質の5量体形成およびそのGM1-ガングリオシド結合性を獲得する。グリシン(G)は、20種のアミノ酸の中で最も小さい側鎖(H)をもち、プロリン(P)は、アミノ基とカルボキシル基との角度が直角であるため、ヒンジとして好適である。
【0034】
プラスミドDNAを用いて大腸菌XL-1-Blue株をエレクトロポレーション法で形質転換し、アンピシリン耐性菌をLB-Amp培地で選択した。アンピシリン耐性菌からプラスミドベクターを分離し、DNA塩基配列解析装置を用いてシーケンスを行った(AGT ATG GCA AAT-[CTB]-GGC CCC GGT CCA-[GPGP(リンカー部分)]-GAA TTC-[EcoRI]-ACC TAT GGC ATG-[JEV EIIIドメインN’末端配列])。DNA塩基配列を配列番号2に、これにより生成されるアミノ酸配列を配列番号1に示す。配列番号2に示される、1~372までの塩基配列がCTB由来のものであり、373~384までの塩基配列がリンカー部分であり、385~390までの塩基配列がEcoRIサイトであり、391~882までの塩基配列がJEV EIIIドメインN’末端配列である。
作成したプラスミドベクターpAO815-CTB:JEV EIIIをBamHI(G/GATCC)酵素処理し、CIAP(Calf intestinal alkaline phosphatase)処理を行い、精製した。
【0035】
同時にプラスミドベクターpAO815-CTBをBamHI/BglIIで処理した後、アガロースゲル電気泳動し、CTB発現カセットを含むDNAフラグメントのバンドをゲルから精製した。
【0036】
上記のCIAP処理プラスミドベクターpAO815-CTB:JEV EIIIと、CTB発現カセット(BamHI-BglIIフラグメント)を含むフラグメントをT4
DNAリガーゼを用いて連結した。
再度、大腸菌XL-1-Blue株を用いて形質転換した。プラスミドベクターpAO815-CTB:JEV EIII/CTBを組換え大腸菌から精製し、酵母(Pichia
pastoris GS115株)へ遺伝子導入に導入するため、SalIで切断し、精製後1.5kVでエレクトロポレーションした。1Mソルビトールを加え、MD培地で28℃で2~3日培養した。培養後、酵母のコロニーにおいて発現されていることを確認するために、酵母の培養を行った。BMMG培養液で、30℃、250rpmで、16~24時間前培養した。次に、BMMY培養液に移し変え、24時間ごとに1%メタノールを加えて、30℃、250rpmで、72時間培養した。この72時間の培養後、3000rpmで10分間遠心し、培養上清と細胞とを分離し、培養上清を得た。
【0037】
[ヘテロ型5量体の免疫原性]
(ELISA解析)
得られた培養上清についてELISA解析を行った。GM-ガングリオシド(100μl/ウェル)O/N、4℃でコートし、洗浄後1%BSA-PBSでブロッキング(1時間)し、培養上清アプライした。洗浄後、1次抗体(抗JEV及び抗CT)1/1000(1時間)及び2次抗体(抗ウサギIgG/APコンジュゲート:シグマ)1/2000(1時間)で洗浄後、呈色反応(OD415nm)を行った。図4に示すELISAデータから、抗JEV及び抗CTに対して反応する抗原が確認された。
【0038】
(ウエスタンブロット法)
さらに、ウエスタンブロット法による解析も行った。アクリルアミドゲル(ゲル濃度12.5%)で電気泳動(SDS-PAGE)を20mA(定電流)で60分間を行い、ニトルセルロース膜へ転写を100V(低電圧)120分間ウエットタイプの転写装置で行った。
【0039】
5%スキムミルク/PBS-T、25℃、60分でブロッキングを行い、1次抗体(抗CT及び抗JEV)1/1000希釈、25℃、60分間反応後、洗浄し2次抗体(抗ウサギIgG)1/1000希釈、25℃、60分間反応後洗浄しDAB染色を行った。抗JEV及び抗CTに反応する融合タンパク質が確認された。図5にウエスタンブロット写真を示す。
【0040】
実施例2
JEVとCTBが結合したDNAだけをベクターに挿入した以外は、実施例1と同様にして、大腸菌に、CTB-JEV融合タンパク質(ホモ型5量体)を発現させた。
CTB-JEV融合タンパク質を発現している大腸菌体を粉砕してCTB-JE融合タンパク質を取り出し、カラム精製した。
この精製菌体(CTB-JEV融合タンパク質)、JEVワクチン、精製菌体及びCTBの混合物、JEVワクチン及びCTBの混合物を、マウスに経鼻噴霧(i.n.)、腹こう内(i.p.)に投与した(投与量:18μg/匹、投与回数:4回、各群:4匹)。また、ネガティブ・コントロール(NC)として、無処置のマウスと比較した。採血して、ELISA法により、JEV特異的血清IgGレベルを測定した。結果を図6に示す。
図6から、血中におけるJEVに対する抗体誘導が確認された。
【0041】
さらに、中和試験により、中和抗体価を測定した。結果を図7に示す。図7と図6の対応関係は以下の通りである。
図7のCT:JEV E/IIIの○ 図6のCTB:JEV E・III (i.n.)
図7のCT:JEV E/IIIの△ 図6のCTB:JEV E・III+CT (i.n.)
図7のCT:JEV E/IIIの□ 図6のCTB:JEV E・III (i.p.)
図7のJEV vaccineの○ 図6のJEV vaccine (i.n.)
図7のJEV vaccineの△ 図6のJEV vaccine +CT (i.n.)
図7のJEV vaccineの□ 図6のJEV vaccine (i.p.)
図7から、JEVに対する中和抗体の誘導が確認された。
【0042】
実施例3
JEVとCTBが結合したDNAだけをベクターに挿入した以外は、実施例1と同様にして、アグロバクテリウムに、CTB-JEV融合タンパク質(ホモ型5量体)を発現させた。
CTB-JEV融合タンパク質を発現しているアグロバクテリウムの菌体を、経鼻及び経口で投与し(投与量:経鼻0.1g/匹、経口1g/匹、投与回数:3回、各群:5匹)、ELISA法にて抗JEV産生を確認した。結果を表1に示す。コントロールとして、菌体を投与しないマウスを用いた。
【表1】
JP0004623625B2_000002t.gif
表1のデータから、鼻粘膜及び腸管粘膜から、JEVに対する抗体誘導が確認された。
【0043】
参考例1
実施例1と同様にして、酵母発現ベクターpAO815にCTBのDNAを挿入して、酵母にCTBを発現させた。
CTBを分泌する酵母培養上清よりCTBを粗精製して、カルシウム封入により腸溶加工した(CalShell/CTB)。また、比較としてリン酸緩衝液を同様にカルシウム腸溶加工した(CalShell/PBS)。これら腸溶加工物及び、組換え酵母をそのままマウスに経口投与した(投与量:腸溶加工物0.5g/匹、酵母0.5g/匹、投与回数:5回、各群:4匹)。免疫前、及びこれらの投与後に採血して、ELISA法により、CTB特異的血清IgGレベルを測定した。結果を図8に示す。
図8から、血中におけるCTBに対する抗体誘導が確認された。
【産業上の利用可能性】
【0044】
本発明のヘテロ型5量体又はホモ型5量体は、ヒト又は動物のワクチンとして利用できる。
【図面の簡単な説明】
【0045】
【図1】ホモ型5量体を示す図である。
【図2】ホモ型5量体を示す図である。
【図3】ヘテロ型5量体を示す図である。
【図4】実施例1のELISAデータを示すグラフである。
【図5】実施例1のウエスタンブロット写真である。
【図6】実施例2のJEV特異的血清IgGレベルの測定結果を示すグラフである。
【図7】実施例2の中和抗体価の測定結果を示すグラフである。
【図8】参考例1のCTB特異的血清IgGレベルの測定結果を示すグラフである。
【符号の説明】
【0046】
10,12 抗原(病原体のエピトープ)
20 モノマー(非融合モノマー)
30,32 融合タンパク質(融合モノマー)
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図7】
4
【図5】
5
【図6】
6
【図8】
7