TOP > 国内特許検索 > 半導体表面歪測定装置、方法及びプログラム > 明細書

明細書 :半導体表面歪測定装置、方法及びプログラム

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第5108447号 (P5108447)
公開番号 特開2009-099757 (P2009-099757A)
登録日 平成24年10月12日(2012.10.12)
発行日 平成24年12月26日(2012.12.26)
公開日 平成21年5月7日(2009.5.7)
発明の名称または考案の名称 半導体表面歪測定装置、方法及びプログラム
国際特許分類 H01L  21/66        (2006.01)
FI H01L 21/66 J
請求項の数または発明の数 8
全頁数 10
出願番号 特願2007-269754 (P2007-269754)
出願日 平成19年10月17日(2007.10.17)
審査請求日 平成22年8月12日(2010.8.12)
特許権者または実用新案権者 【識別番号】801000027
【氏名又は名称】学校法人明治大学
発明者または考案者 【氏名】小椋 厚志
【氏名】小瀬村 大亮
【氏名】清水 良祐
個別代理人の代理人 【識別番号】100092820、【弁理士】、【氏名又は名称】伊丹 勝
審査官 【審査官】酒井 朋広
参考文献・文献 特公平06-082098(JP,B2)
特開2006-250781(JP,A)
特開2007-173526(JP,A)
特開2003-007792(JP,A)
特開平09-257692(JP,A)
特開2006-073866(JP,A)
調査した分野 H01L 21/66
特許請求の範囲 【請求項1】
波長が異なる2以上の励起光を発する励起光光源と、
前記2以上の励起光を集光して被測定半導体試料上に同軸で照射する集光照射機構と、
前記励起光の前記被測定半導体試料上への照射パワーを調整する照射パワー調整手段と、
前記被測定半導体試料上に前記励起光が照射されることにより発せられたラマン散乱光を受光してラマンスペクトルを測定する測定装置と、
前記照射パワー調整手段により調整された異なる複数の照射パワーのそれぞれについて前記測定されたラマンスペクトルのピーク位置を求め、求められた複数のピーク位置を線形補間して照射パワー無限小におけるラマンスペクトルのピーク位置を求め、この求められたピーク位置から前記被測定半導体試料の前記励起光の照射位置における歪量を算出し、前記励起光の波長毎に前記歪量を算出して歪量の深さ分布を算出する演算装置と
を備えたことを特徴とする半導体表面歪測定装置。
【請求項2】
前記照射パワー調整手段は、透明度が異なる複数の半透明板の一つを選択的に光路上に配置することにより、前記励起光の透過量を調整するNDフィルタによって構成されていることを特徴とする請求項1記載の半導体表面歪測定装置。
【請求項3】
前記被測定半導体試料への照射パワーを検出する受光素子を有し、
前記演算装置は、前記受光素子からの出力信号に基づいて照射パワーをモニタすることを特徴とする請求項1又は2記載の半導体表面歪測定装置。
【請求項4】
前記励起光の少なくとも一つは、紫外光又は深紫外光であることを特徴とする請求項1記載の半導体表面歪測定装置。
【請求項5】
前記励起光の少なくとも一つの波長は、350~370nmであることを特徴とする請求項4記載の半導体表面歪測定装置。
【請求項6】
前記励起光を疑似線状光源に変換する手段を有し、
前記測定装置は、前記疑似線状光源の各位置のラマンスペクトル情報を含む2次元情報を検出する2次元マトリクス配置された複数の画素からなるCCDを有する
ことを特徴とする請求項1記載の半導体表面歪測定装置。
【請求項7】
波長が異なる2以上の励起光をそれぞれ異なる複数の照射パワーで被測定半導体試料上に同軸で照射し、
これにより前記各照射パワーについて前記被測定半導体試料から発せられたラマン散乱光を受光してラマンスペクトルを測定し、
前記各照射パワーにおけるラマンスペクトルのピーク位置を求め、
求められた複数のピーク位置を線形補間して照射パワー無限小におけるラマンスペクトルのピーク位置を求め、
この求められた照射パワー無限小時におけるラマンスペクトルのピーク位置から前記被測定半導体試料の前記励起光の照射位置における歪量を算出し、
前記励起光の波長毎に前記歪量を算出して歪量の深さ分布を算出する
ことを特徴とする半導体表面歪測定方法。
【請求項8】
波長が異なる2以上の励起光をそれぞれ異なる複数の照射パワーで被測定半導体試料上に同軸で照射し、これにより前記各照射パワーについて前記被測定半導体試料から発せられたラマン散乱光を受光してラマンスペクトルを測定して得られた測定値を入力するステップと、
前記各照射パワーについての測定値から前記各照射パワーにおけるラマンスペクトルのピーク位置を求めるステップと、
求められた複数のピーク位置を線形補間して照射パワー無限小におけるラマンスペクトルのピーク位置を求めるステップと、
この求められた照射パワー無限小時におけるラマンスペクトルのピーク位置から前記被測定半導体試料の前記励起光の照射位置における歪量を算出するステップと、
前記励起光の波長毎に前記歪量を算出して歪量の深さ分布を算出するステップと
をコンピュータに実行させるための半導体表面歪測定プログラム。
発明の詳細な説明 【技術分野】
【0001】
本発明は、シリコンウェーハ等の半導体表面の歪を測定するための半導体表面歪測定装置に関する。
【背景技術】
【0002】
シリコン結晶に歪を加えると、キャリア移動度が増加し、等価的にチャネル幅を短くできることが知られている。これを利用して、LSIの微細化の限界を補填する技術として、SOI(Silicon on Insulator)等のウェーハ製造技術を利用した歪Si基板が提案されている。歪Si基板技術にとって重要な点は、導入する歪の絶対値と分布の制御である。このため、歪Si基板の歪の評価技術の確立は、製品開発及び製品管理上極めて重要である。また、微細化が更に進んでいるLSIの製造プロセスで生じる意図的でないウェーハの歪についても、これを正確に測定することがデバイス特性のバラツキ抑制等において極めて重要である。
【0003】
従来、このようなシリコンウェーハの歪量を測定する技術としては、ラマン分光法、X線回折法、透過型電子顕微鏡(TEM)装置を用いた電子線回折法等が知られている。このうち、ラマン分光法は、非破壊でサブミクロン領域の歪測定が可能な手法として知られており、簡便でクリーンルームでの使用が可能であるため、LSI製造現場で最も容易に使用可能な評価手法として期待されている。ラマン分光法は、測定すべきシリコンウェーハ上にレーザ光の微小ビームスポットを照射することによって、シリコンウェーハから発せられたラマン散乱光のスペクトルを分光器で測定し、ラマンスペクトルのピーク位置を歪量、半値幅を結晶性の指標として評価する手法である。ラマン分光法では、シリコンウェーハ中への光の侵入深さはその波長に依存し、表面数nmのラマン分光測定を行うためには紫外光の利用が必要となる。
【0004】
ところが単純に紫外光を用いるだけでは、光の侵入長が減少するのに伴って測定対象の体積が減少し、結果的に信号強度が減少する。十分に精度の高い測定を行うためには、強い光を当てるか測定時間を長くする必要が生じる。しかし、強い光を当てる方法は、試料温度の上昇を伴う。試料温度が上昇するとラマンスペクトルのピーク位置がシフトし、誤った歪量を測定する要因となる。また測定時間を長く取る手法では、合理的な時間内に、十分意味のある測定点数を伴った分布を測定することは難しい。
【0005】
特許文献1では、散乱光のラマンスペクトルのピーク位置変動量から試料温度を推定し、その推定温度を用いて歪シリコン層及びシリコンゲルマニウム層のラマンスペクトルのピーク位置変動量を補正し、その補正された歪シリコン層及びシリコンゲルマニウム層のラマンスペクトルのピーク位置情報により、それら各層の内部応力を算出している。
【0006】
しかし、この方法では、試料温度を推定するのに、試料の下層に存在する無応力のシリコン基板のラマンスペクトルのピーク位置のシフト量を測定し、これを参照情報として現在の試料温度を推定している。このため、試料温度の正確な推定は困難であり、また、無歪のシリコン基板のラマンスペクトルを得るために、シリコン基板に届く長波長の光を発生するためのレーザ光源を表層測定用とは別途必要とするという問題がある。

【特許文献1】特開2006-73866号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明は、以上の点に鑑みなされたもので、極めて簡便に試料温度上昇に起因するラマンスペクトルのピーク位置のシフトを補償して、正確な歪量を測定することができる半導体表面歪測定装置、方法及びプログラムを提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は、被半導体試料の表面への照射パワーとラマンシフトとの関係が線形であるという本発明者等による知見に基づいてなされたものである。
【0009】
すなわち、本発明に係る半導体表面歪測定装置は、励起光を発する励起光光源と、前記励起光を集光して被測定半導体試料上に照射する集光照射機構と、前記励起光の前記被測定半導体試料上への照射パワーを調整する照射パワー調整手段と、前記被測定半導体試料上に前記励起光が照射されることにより発せられたラマン散乱光を受光してラマンスペクトルを測定する測定装置と、前記照射パワー調整手段により調整された異なる複数の照射パワーのそれぞれについて前記測定されたラマンスペクトルのピーク位置を求め、求められた複数のピーク位置を線形補間して照射パワー無限小におけるラマンスペクトルのピーク位置を求め、この求められたピーク位置から前記被測定半導体試料の前記励起光の照射位置における歪量を算出する演算装置とを備えたことを特徴とする。
【0010】
また、本発明に係る半導体表面歪測定方法は、励起光を異なる複数の照射パワーで被測定半導体試料上に照射し、これにより前記各照射パワーについて前記被測定半導体試料から発せられたラマン散乱光を受光してラマンスペクトルを測定し、前記各照射パワーにおけるラマンスペクトルのピーク位置を求め、求められた複数のピーク位置を線形補間して照射パワー無限小におけるラマンスペクトルのピーク位置を求め、この求められた照射パワー無限小時におけるラマンスペクトルのピーク位置から前記被測定半導体試料の前記励起光の照射位置における歪量を算出することを特徴とする。
【0011】
更に、本発明に係る半導体表面歪測定プログラムは、励起光を異なる複数の照射パワーで被測定半導体試料上に照射し、これにより前記各照射パワーについて前記被測定半導体試料から発せられたラマン散乱光を受光してラマンスペクトルを測定して得られた測定値を入力するステップと、前記各照射パワーについての測定値から前記各照射パワーにおけるラマンスペクトルのピーク位置を求めるステップと、求められた複数のピーク位置を線形補間して照射パワー無限小におけるラマンスペクトルのピーク位置を求めるステップと、この求められた照射パワー無限小時におけるラマンスペクトルのピーク位置から前記被測定半導体試料の前記励起光の照射位置における歪量を算出するステップとをコンピュータに実行させるためのものである。
【発明の効果】
【0012】
本発明によれば、極めて簡便に試料温度上昇に起因するラマンスペクトルのピーク位置のシフトを補償して、正確な歪量を測定することができる。
【発明を実施するための最良の形態】
【0013】
以下、本発明の実施の形態に係るシリコンウェーハ歪測定装置を、図面を参照して詳細に説明する。
【0014】
図1は本発明の一実施の形態に係るシリコンウェーハ歪測定装置の全体構成を示す概略図である。この装置は、アルゴンイオンレーザ、DPSS(Diode Pumped Solid-State)レーザ等の波長244~514.5nmのDUV(深紫外)光、UV光又は可視光を励起光として出力するレーザ装置10を使用する。なお、この実施形態では、測定すべき層の深さに応じた一種類の波長のみを使用すれば良い。例えば、測定すべき層の深さに対する励起光の波長との関係は、300nmの深さに対し514.5nmの光、同様に、250nmに対し488nm、65nmに対し457nm、5nmに対し364nm、3nmに対し244nmを選択することが好ましい。これらの関係から、ウェーハの表面から数~数十nmまでの表層の歪を測定する場合には、DUV光又はUV光を使用するのが望ましい。
【0015】
レーザ装置10から出射された励起光は、ミラー20で反射され、照射パワー調整手段であるND(Neutral Density)フィルタ30で照射パワーを調整された後、バンドパスフィルタ40で不要波長成分が抑制され、ハーフミラー50を透過する。ハーフミラー50を透過した光は、集光照射機構60によって集光され、直径約0.5μm程度の円形のビームスポットとなって可動ステージ70上に配置された被測定半導体試料であるシリコンのウェーハ80上に照射される。可動ステージ70は、コンピュータ100から出力される制御信号を受けたドライバ90によりウェーハ表面方向に沿って移動制御される。また、集光照射機構60は、対物レンズ61を備えるほか、可動ステージ70の移動に伴う焦点ずれを補正するため、合焦光学系62を備えている。この合焦光学系62は、合焦状態を検出するための図示しないフォーカス検出機構の検出出力に基づいて、図示しない制御機構により制御される。
【0016】
ウェーハ80からは、照射部位における試料表面の歪量に応じたエネルギを持つラマン散乱光が発せられる。ラマン散乱光は、集光照射機構60で集光された後、ハーフミラー50により反射されて不要波長成分を除去するフィルタ130を透過してモノクロメータ式の分光器110に入射される。分光器110は、入射したラマン散乱光を分光してラマンスペクトルを得る。得られたラマンスペクトルは、CCD検出器120で検出される。CCD検出器120から出力される信号は、コンピュータ100に入力される。また、NDフィルタ30及びバンドパスフィルタ40を透過した励起光の一部は、ハーフミラー50で反射されて照射パワーを検出する受光素子140に入射される。さらにこの受光素子140では、入射光が集光照射機構60や外気及び外乱(例えば、空気散乱、宇宙線、蛍光灯等)等により減衰した分を補正し、ウェーハ80位置到達時の照射パワーを出力するようにしている。受光素子140の出力も、コンピュータ100に入力されている。コンピュータ100は、受光素子140で検出された照射パワーをモニタしながら、NDフィルタ30により調整された異なる複数の照射パワーのそれぞれについて、CCD検出器120で検出されたラマンスペクトルのピーク位置を求め、求められた複数のピーク位置を線形補間して照射パワー無限小におけるラマンスペクトルのピーク位置を求め、この求められたピーク位置からウェーハ80の励起光の照射位置における歪量を算出する。
【0017】
なお、NDフィルタ30は、光透過率の異なる複数の半透明板が回転軸を中心に等間隔で配置され、半透明板が回転軸回りに自動又は手動で回転されることにより、複数の半透明板の1つが選択的に光路に挿入される構造を有し、これにより励起光のウェーハ80に対する照射パワーが調整されるようにしている。また、NDフィルタ30は、上述のように複数の半透明板が等間隔に配置されている、いわゆるデジタル的な調整板ではなく、透過率が回転方向に連続的に変化するアナログ的な調整が可能なものであると、更に調整分解能が高められて好ましい。
【0018】
分光器110は、例えば図2に示すように、スリット111と、コリメーションミラー112,114と、回折格子113とを備えている。スリット111に集光され入射したラマン散乱光は、焦点距離約2m先のコリメーションミラー112で反射されて平行光線となって回折格子113に到達する。回折格子113は入射光を分光する。分光された光は、平行光線のままコリメーションミラー114で反射され、最終的にCCD検出器120上に結像される。CCD検出器120のどのピクセルに、どの程度の光強度の光が到達したかを検出することにより、ラマン信号のスペクトルを検出することができる。この分光器110では、測定中にコリメーションミラー112,114や回折格子113は一切移動させる必要はなく、CCD検出器120の各ピクセルが検出した光強度を検出することにより、ラマン信号に対応する波数領域(例えば450-590cm-1)におけるスペクトルを検出することができる。そのため、CCD検出器120での照射時間がそのまま被測定半導体試料であるウェーハ80上の照射領域一点あたりの測定時間に対応する。また、このラマンスペクトルの検出では、波長校正のためラマン散乱光と同時にもとのレーザ波長の光を検出している。高い分解能で検出するためには、分光器の中のミラーが更に分割されていることが望ましい。
【0019】
なお、CCD検出器120は、図2の紙面方向に沿う方向に一次元にピクセルを配列させた一次元CCDであってもよいが、2次元CCDである方が、平均化手法を採用して一層高精度の歪計測を行うことができるので好ましい。
【0020】
本測定装置を用いて測定される被測定半導体試料として、例えば図3に示す3種類の歪Siウェーハ等が適している。これらのウェーハはいずれも、最表面のSi薄膜に故意に歪を与えることによって、高性能のデバイスを実現するために準備された最先端機能性ウェーハである。ウェーハは例えば直径200mmの大きさに形成される。
【0021】
図3(a)に示す第1の歪Siウェーハは“バルク”タイプと呼ばれ、Si基板210上に、傾斜組成SiGe層220を経て、緩和SiGe層230を形成し、更に最上層に歪Si薄膜240を形成してなるものである。傾斜組成SiGe層220は、Ge濃度がSi基板210から離れるにつれて徐々に増加するように形成される。これにより、結晶欠陥を発生させつつ徐々にSi基板210の格子定数から離れ、SiGeの格子定数に近づけることができる。その上層の緩和SiGe層230では、Geの濃度に応じてSiGeが本来持つ格子定数を有する。Ge濃度はここでは10%~35%の範囲で変化させるものとする。また、傾斜組成SiGe層220と緩和SiGe層230を合わせた膜厚は2~6μmの範囲が通常使用されている。最上層の歪Si薄膜240の膜厚は、歪緩和および結晶欠陥の発生を抑制するため、例えば10~25nm程度が通常使用されている。歪Si薄膜240の歪量とその分布は緩和SiGe層230のGe濃度とその分布、さらに結晶欠陥などに影響される。
【0022】
図3(b)に示す第2の歪Siウェーハは“SGOI”タイプと呼ばれ、Si基板250上に、埋込酸化膜層260を形成し、その上に緩和SiGe層270を形成し、さらに最上層に歪Si薄膜280を形成した構造を持つ。埋込酸化膜層260の膜厚は例えば40~200nm、緩和SiGe層270の膜厚は例えば20~150nm及び歪Si薄膜280の膜厚は例えば10~25nmが通常使用される。歪Si薄膜280の歪量とその分布は緩和SiGe層270のGe濃度とその分布、結晶欠陥などに影響される。
【0023】
図3(c)に示す第3の歪Siウェーハは“SSOI”タイプと呼ばれ、Si基板290上に、埋込酸化膜層300を形成し、さらにその上層に歪Si薄膜310を形成した構造を持つ。埋込酸化膜層300の膜厚は、例えば40~200nm、歪Si薄膜310の膜厚は、例えば通常使用されている10~100nmである。
【0024】
図4は、引っ張り歪及び圧縮歪とラマンスペクトルとの関係を示している。無歪の場合、ラマンスペクトルのピーク位置は波数520cm-1付近に存在するが、ウェーハに引っ張り歪を付与するとピーク位置は、低波数側にシフトし、圧縮歪を付与すると高波数側にシフトする。
【0025】
図5は、同じウェーハ80に対して364nmのUV光で、1mWのパワーの光を照射した場合と、100mWのパワーの光を照射した場合とで、ラマンスペクトルがどのように変化するかを示す図である。図示のように、照射パワーを増加させると、スペクトルのピーク位置は低波数側にシフトし、半値幅も広がることが分かる。本発明者等は、この照射パワーとラマンシフトとの関係を詳細に調査した。その結果、図6に示すように、照射パワーとラマンシフトとの関係は線形であることが分かった。この知見に基づき、本実施形態では、コンピュータ100で、異なる複数の照射パワーのそれぞれについてラマンスペクトルのピーク位置を求め、求められた照射パワーとピーク位置との関係から線形補間により照射パワー無限小時のラマンスペクトルのピーク位置を求める。
【0026】
図7は、コンピュータ100及びこれと協働する半導体表面歪測定プログラムにより実行される測定処理を示すフローチャートである。まず、NDフィルタ30を1番目の状態に設定し(S1)、受光素子140から照射パワーをモニタしながらラマンスペクトルを入力する(S2)。ラマンスペクトルからピーク位置を計算する(S3)。以上の操作を、照射パワーを変えながらn回(nは2以上の整数)実行する(S4)。なお、測定精度向上のために同じ照射パワーでも複数回の測定を行うことが望ましい。また、測定場所も変えて複数回の測定を行うと、より測定精度が向上する。n回の測定が終了したら、照射パワーとラマンスペクトルのピーク位置とから線形補間により照射パワー無限小時のラマンスペクトルのピーク位置を求め、このピーク位置から照射位置の歪量を算出する(S5)。そして、ステージ70を移動して同様の測定を繰り返し、ウェーハ80の所定領域の二次元歪分布を算出する(S6)。所定領域の測定が終了したら測定を終了する(S7)。
【0027】
なお、各測定点において、ピーク位置は、最低2つの異なる照射パワーについて求めればよいが、測定精度をより高めるためには、更に多種類の照射パワーについてピーク位置を求めることが望ましい。
【0028】
本実施形態によれば、照射パワーを変えてラマンスペクトルのピーク位置を測定することにより、ラマンシフト直線を推定し、照射パワー無限小時の歪量を直線補間によって算出するようにしているので、高精度な測定が可能であり、しかも使用する波長は1種類で良いので簡便に構成することができる。
【0029】
しばしば、試料に対する検出深さを調整するためにUV光と可視光の試料への透過率の違いを利用した歪の深さ分布が測定される。しかしながら、UV光と可視光では試料への照射熱の熱影響が異なるため得られた結果が正確なものとは限らない。本手法を用いれば、正確な歪の深さ分布を測定できる。
【0030】
なお、測定光としてDUV、UV、可視光のうちUVを用いると、Si窒化膜など紫外光に対して透明な物質を通して、Si最表面の歪分布を測定できる。Si窒化膜の他、Si酸化膜や、その他の金属酸化膜あるいはそのSi又はNとの化合物でも同様の測定が可能である。
【0031】
本発明は上記実施形態に限定されるものではない。
例えば、ラマン分光測定における信号強度に関して、共鳴効果と呼ばれる特異な現象が知られている。すなわち、波長350~370nm、典型的には364nmの励起光を用いることで、244nmに比べて浸入長には大きな差がないにも拘わらず、良いS/N特性が得られていることが知られている。したがって、波長364nmの光源を本発明に利用することで、UV光としての適度な浸入長と、共鳴効果による強い信号強度が同時に達成され、且つラマンスペクトルのピーク位置のシフトを補償することができる。これらの特徴を利用して、歪分布を得るために必要なマッピング測定のための機構、つまり可動式ステージや、自動焦点機構、歪分布を可視化する機構などを組み合わせることによって、非破壊で高い空間分解能を持つ歪分布のマッピング測定を短時間で行うことが可能となる。
【0032】
また、例えば、高速で動作するガルバノミラーを用いた疑似線状光源を用いて、CCD(図1の符号120)の画素の2次元マトリクス配置を利用することで、一度に位置情報とラマンスペクトル情報を取得するようにしても良い。この方法を用いると、1次元の歪分布を瞬時に取得することが可能となるうえ、CCDのピクセル間隔で決定される、例えば200nmといった高い空間分解能を達成することができる。
この技術と、UV光励起下でのSiにおける共鳴効果を利用することにより、弱励起下で複数のラマンスペクトルを検出でき、試料最表面の高速歪分布測定が可能となる。
【0033】
この他、異なる2以上の波長、例えば515nmの可視光と、364nmの紫外光を同軸で被測定半導体試料に照射して、深さ方向分の測定を行うようにしても良い。その際にも、各波長の測定でラマンスペクトルのピーク位置のシフト量を補正して正確な深さ方向分の測定が可能になる。
【図面の簡単な説明】
【0034】
【図1】本発明の一実施の形態に係るウェーハ歪測定装置の概略構成を示すブロック図である。
【図2】図1に示す分光器の構成例を示す図である。
【図3】被測定半導体試料としての歪Siウェーハの例を示す断面図である。
【図4】引っ張り歪及び圧縮歪とラマンスペクトルとの関係を示すグラフである。
【図5】照射パワーとラマンスペクトルとの関係を示すグラフである。
【図6】照射パワーとラマンシフトとの関係を示すグラフである。
【図7】本実施形態におけるコンピュータの測定処理を示すフローチャートである。
【符号の説明】
【0035】
10・・・レーザ装置、 20・・・ミラー、30・・・NDフィルタ、40・・・バンドパスフィルタ、50・・・ハーフミラー、 60・・・集光照射機構、7
0・・・可動ステージ、 80・・・ウェーハ、100・・・コンピュータ、 110・・・分光器、120・・・CCD検出器、 130・・・フィルタ、 140・・・受光素子。
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6