TOP > 国内特許検索 > 加工モニタ付きパルスレーザ加工装置 > 明細書

明細書 :加工モニタ付きパルスレーザ加工装置

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第4316279号 (P4316279)
公開番号 特開2004-306100 (P2004-306100A)
登録日 平成21年5月29日(2009.5.29)
発行日 平成21年8月19日(2009.8.19)
公開日 平成16年11月4日(2004.11.4)
発明の名称または考案の名称 加工モニタ付きパルスレーザ加工装置
国際特許分類 B23K  26/00        (2006.01)
B23K  26/03        (2006.01)
G02B  27/00        (2006.01)
FI B23K 26/00 P
B23K 26/03
G02B 27/00 S
請求項の数または発明の数 6
全頁数 15
出願番号 特願2003-104253 (P2003-104253)
出願日 平成15年4月8日(2003.4.8)
審査請求日 平成18年4月3日(2006.4.3)
特許権者または実用新案権者 【識別番号】503360115
【氏名又は名称】独立行政法人科学技術振興機構
【識別番号】590002389
【氏名又は名称】静岡県
【識別番号】000236436
【氏名又は名称】浜松ホトニクス株式会社
発明者または考案者 【氏名】神谷 眞好
【氏名】青島 紳一郎
個別代理人の代理人 【識別番号】100088155、【弁理士】、【氏名又は名称】長谷川 芳樹
【識別番号】100088155、【弁理士】、【氏名又は名称】長谷川 芳樹
【識別番号】100114270、【弁理士】、【氏名又は名称】黒川 朋也
【識別番号】100088155、【弁理士】、【氏名又は名称】長谷川 芳樹
【識別番号】100092657、【弁理士】、【氏名又は名称】寺崎 史朗
【識別番号】100124291、【弁理士】、【氏名又は名称】石田 悟
審査官 【審査官】青木 正博
参考文献・文献 特開平09-010971(JP,A)
特開平06-099292(JP,A)
特開平09-281691(JP,A)
特開昭63-144887(JP,A)
調査した分野 B23K 26/00-26/42
G02B 27/00
特許請求の範囲 【請求項1】
被加工物の所定部位にパルス幅が10ps以下であるパルスレーザ光を照射してレーザ加工を行うパルスレーザ加工装置と、加工状態をモニタする加工モニタとを備える加工モニタ付きレーザ加工装置において、
前記パルスレーザ加工装置が、
前記パルスレーザ光を出力するレーザ発振器と、
前記パルスレーザ光を照射光と参照光とに分岐する分岐手段と、
前記照射光を前記被加工物の所定部位に集光して照射する集光手段と、
を備えており、
前記加工モニタが、
前記パルスレーザ加工装置を構成する前記レーザ発振器、前記分岐手段及び前記集光手段と、
前記参照光と前記所定部位で反射される前記照射光とを干渉させて干渉光とする干渉手段と、
前記干渉光を分光してその分光スペクトルを算出する分光手段と、
を備える、
ことを特徴とする加工モニタ付きパルスレーザ加工装置。
【請求項2】
前記参照光を遮断する参照光遮断手段を更に備えており、前記参照光遮断手段が前記加工モニタを構成することを特徴とする請求項1に記載の加工モニタ付きパルスレーザ加工装置。
【請求項3】
前記被加工物を移動させる被加工物移動手段と、
前記分光手段で得られる分光スペクトルに基づいて、前記被加工物移動手段及び前記レーザ発振器を制御する制御手段と、
を更に備えており、
前記被加工物移動手段が前記パルスレーザ加工装置を構成する、
ことを特徴とする請求項1又は2に記載の加工モニタ付きパルスレーザ加工装置。
【請求項4】
前記パルスレーザ光の波形を整形する波形整形手段を更に備えており、前記制御手段が、前記分光手段で得られる分光スペクトルに基づいて、前記波形整形手段を制御することが可能であり、前記波形整形手段が、前記パルスレーザ加工装置及び前記加工モニタのそれぞれを構成する、
ことを特徴とする請求項に記載の加工モニタ付きパルスレーザ加工装置。
【請求項5】
被加工物の所定部位にパルスレーザ光を照射してレーザ加工を行いながら前記所定部位の加工状態をモニタする加工状態のモニタ方法において、
前記パルスレーザ光を照射光と参照光とに分岐する分岐工程と、
前記分岐工程で分岐された照射光を前記被加工物の所定部位に集光して照射する集光工程と、
前記分岐工程で分岐された参照光と、前記所定部位で反射される前記照射光との干渉光を分光してその分光スペクトルを算出する分光工程と、
前記分光工程で算出された前記分光スペクトルをモニタするモニタ工程と、
を含み、
前記パルスレーザ光のパルス幅を10ps以下とすることを特徴とする加工状態のモニタ方法。
【請求項6】
被加工物の所定部位にパルスレーザ光を照射してレーザ加工を行う加工工程と、
前記所定部位の加工状態をモニタするモニタ工程と、
前記モニタ工程でモニタされた加工状態に基づき前記パルスレーザ光及び前記被加工物の位置又はそのいずれか一方を制御する制御工程とを含むレーザ加工方法において、
前記モニタ工程を、請求項に記載の加工状態のモニタ方法により行うことを特徴とするレーザ加工方法。
発明の詳細な説明 【0001】
【発明の属する技術分野】
【0002】
本発明は、加工モニタ付きパルスレーザ加工装置、加工状態のモニタ方法及びこれを用いたレーザ加工方法に関する。
【0003】
【従来技術】
従来から、レーザ光により物質を加工するレーザ加工方法が知られている。このレーザ加工方法においては、物質を精密にかつ効率よくレーザ加工するために、加工中における物質の状態変化(形状変化や物性変化)を連続的にモニタする技術が求められる。
【0004】
このように加工中における物質の状態変化を連続的にモニタするための方法として、例えば加工用レーザ光の反射光の強度をモニタしながらレーザ光により物質を加工する方法が知られている(特許文献1参照)。
【0005】
また加工用レーザ光とは別にモニタ用レーザ光を用意し、被加工物の加工状態のモニタは、被加工物からのモニタ用レーザ光の反射光を分光することにより行う方法が知られている(特許文献2参照)。
【0006】
【特許文献1】
【0007】
特開2002-1555号公報
【0008】
【特許文献2】
特開平6-99292号公報。
【発明が解決しようとする課題】
しかし、前述した特許文献1に記載の加工状態のモニタ方法では、測定量が反射光の強度のみであるため測定が簡便であるが、光量変化を生ずる要因が様々であることから、加工部位の状態を的確に表すことが困難である。従って、測定された反射光の強度に基づいて加工用レーザ光の波長等を制御しても、加工精度を十分に向上させることができないという問題があった。
【0009】
また特許文献2に記載の加工状態のモニタ方法では、モニタ用レーザ光の光軸が加工用レーザ光の光軸に対して傾斜することとなる。このため、図8(a)に示すように、被加工物104において、加工直後でモニタ用レーザ光100によるモニタ部位101と加工用レーザ光102の加工部位103を一致させたとしても、加工が進行するにつれて、図8(b)に示すように、モニタ部位101と加工部位103とが一致しなくなることがある。このため、モニタ用レーザ光100によるモニタ部位101からの反射光について分光を行っても、加工部位103の状態を的確に表すことができない。従って、モニタ用レーザ光100の反射光を分光し、その分光スペクトルに基づいて加工用レーザ光102の波長等を制御しても、加工精度を十分に向上させることができないという問題があった。
【0010】
本発明は、上記事情に鑑みてなされたものであり、被加工物の加工中における加工状態を的確にモニタすることができる加工モニタ付きパルスレーザ加工装置、加工状態のモニタ方法及びこれを用いたレーザ加工方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するため、本発明の加工モニタ付きパルスレーザ加工装置の一つは、被加工物の所定部位にパルスレーザ光を照射してレーザ加工を行うパルスレーザ加工装置と、加工状態をモニタする加工モニタとを備える加工モニタ付きレーザ加工装置において、パルスレーザ加工装置が、パルスレーザ光を出力するレーザ発振器と、パルスレーザ光を被加工物の所定部位に集光して照射する集光手段とを備えており、加工モニタが、パルスレーザ加工装置を構成するレーザ発振器及び集光手段と、所定部位で反射されるパルスレーザ光を分光してその分光スペクトルを算出する分光手段とを備えることを特徴とする。
【0012】
この加工モニタ付きパルスレーザ加工装置によれば、パルスレーザ加工装置を構成するレーザ発振器によりパルスレーザ光が出力され、このパルスレーザ光が集光手段により被加工物の所定部位に集光されて照射され、所定部位を加工する。そして、所定部位の加工状態が加工モニタによりモニタされる。具体的には、レーザ発振器により被加工物の所定部位に照射されて反射されたパルスレーザ光は分光手段により分光され、その分光スペクトルが分光手段により算出される。ここで、この分光スペクトルは、被加工物の物性の変化に伴って変化することから、被加工物の物性についての指標とすることができる。特に、パルスレーザ光のパルス幅を10ps以下にした場合、分光スペクトルは、比較的広い波長領域にわたって観測されるため、分光スペクトルの変化を容易に知ることができる。従って、この分光スペクトルをモニタすることで、被加工物の加工状態(物性変化)をモニタすることができる。このとき、被加工物の加工状態をモニタするために、パルスレーザ光の反射光が用いられている。つまり、加工用のパルスレーザ光が、所定部位における加工状態のモニタ光を兼ねている。このため、被加工物の所定部位において加工が進行しても、パルスレーザ光による加工部位とモニタ部位とを常に一致させることができる。
【0013】
また本発明の他の加工モニタ付きパルスレーザ加工装置は、被加工物の所定部位にパルスレーザ光を照射してレーザ加工を行うパルスレーザ加工装置と、加工状態をモニタする加工モニタとを備える加工モニタ付きレーザ加工装置において、パルスレーザ加工装置が、パルスレーザ光を出力するレーザ発振器と、パルスレーザ光を照射光と参照光とに分岐する分岐手段と、照射光を被加工物の所定部位に集光して照射する集光手段とを備えており、加工モニタが、パルスレーザ加工装置を構成するレーザ発振器、分岐手段及び集光手段と、参照光と所定部位で反射される照射光とを干渉させて干渉光とする干渉手段と、干渉光を分光してその分光スペクトルを算出する分光手段とを備えることを特徴とする。
【0014】
この加工モニタ付きパルスレーザ加工装置によれば、パルスレーザ加工装置を構成するレーザ発振器によりパルスレーザ光が出力され、このパルスレーザ光が分岐手段により参照光と照射光とに分岐される。照射光は、被加工物の所定部位に集光されて照射され、所定部位を加工する。そして、所定部位の加工状態が加工モニタによりモニタされる。具体的には、レーザ発振器により被加工物の所定部位に照射されて反射された照射光と、分岐手段により分岐された参照光とが干渉手段により干渉光とされ、この干渉光が分光手段により分光され、干渉光の分光スペクトルが分光手段により算出される。ここで、被加工物の形状が変化するにつれて参照光と照射光との光路長差が変化し、分光スペクトルの形状が変化することから、分光スペクトルは、被加工物の形状の指標とすることができる。特に、パルスレーザ光のパルス幅を10ps以下にした場合、分光スペクトルは、比較的広い波長領域にわたって観測されるため、分光スペクトルの変化を容易に知ることができる。従って、この分光スペクトルをモニタすることで、被加工物の加工状態(形状変化)をモニタすることができる。このとき、被加工物の加工状態をモニタするために、照射光の反射光が用いられている。つまり、加工用の照射光が、所定部位における加工状態のモニタ光を兼ねている。このため、被加工物の所定部位において加工が進行しても、照射光による加工部位とモニタ部位とを常に一致させることができる。
【0015】
ここで、上記加工モニタ付きパルスレーザ加工装置は、参照光を遮断する参照光遮断手段を更に備えており、参照光遮断手段が加工モニタを構成することが好ましい。
【0016】
加工モニタにおいて、参照光遮断手段により参照光が遮断されない場合、干渉手段により、参照光と、所定部位で反射された照射光との干渉光が得られ、この干渉光が分光手段により分光されて、干渉光の分光スペクトルが分光手段により算出される。一方、加工モニタにおいて、参照光遮断手段により参照光が遮断されると、干渉手段により干渉光が得られず、所定部位で反射された照射光が分光手段により分光され、照射光の反射光の分光スペクトルが算出される。即ちこの加工モニタ付きパルスレーザ加工装置によれば、干渉光の分光スペクトルのみならず、照射光の反射光の分光スペクトルも得ることができる。そして、干渉光の分光スペクトルをモニタすることで、被加工物の形状変化をモニタすることができ、反射光の分光スペクトルをモニタすることで被加工物の物性変化をモニタすることができる。
【0017】
本発明の加工状態のモニタ方法の一つは、被加工物の所定部位にパルスレーザ光を照射してレーザ加工を行いながら所定部位の加工状態をモニタする加工状態のモニタ方法において、パルスレーザ光を被加工物の所定部位に集光して照射する集光工程と、所定部位で反射される照射光を分光してその分光スペクトルを算出する分光工程と、分光工程で算出された分光スペクトルをモニタするモニタ工程とを含み、パルスレーザ光のパルス幅を10ps以下とすることを特徴とする。
【0018】
この加工状態のモニタ方法によれば、パルスレーザ光が被加工物の所定部位に集光されて照射され、所定部位を加工する。そして、所定部位で反射されたパルスレーザ光は分光され、その分光スペクトルが算出される。ここで、この分光スペクトルは、被加工物の物性の変化に伴って変化することから、被加工物の物性についての指標とすることができる。特に、パルスレーザ光のパルス幅を10ps以下にしており、分光スペクトルは、比較的広い波長領域にわたって観測されるため、分光スペクトルの変化を容易に知ることができる。従って、この分光スペクトルをモニタすることで、被加工物の加工状態をモニタすることができる。このとき、被加工物の加工状態をモニタするために、パルスレーザ光の反射光が用いられている。つまり、加工用のパルスレーザ光が、所定部位における加工状態のモニタ光を兼ねている。このため、被加工物の所定部位において加工が進行しても、パルスレーザ光による加工部位とモニタ部位とを常に一致させることができる。
【0019】
また本発明の他の加工状態のモニタ方法は、被加工物の所定部位にパルスレーザ光を照射してレーザ加工を行いながら所定部位の加工状態をモニタする加工状態のモニタ方法において、パルスレーザ光を照射光と参照光とに分岐する分岐工程と、分岐工程で分岐された照射光を被加工物の所定部位に集光して照射する集光工程と、分岐工程で分岐された参照光と、所定部位で反射される照射光との干渉光を分光してその分光スペクトルを求める分光工程と、分光工程で求められた分光スペクトルをモニタするモニタ工程とを含み、パルスレーザ光のパルス幅を10ps以下とすることを特徴とする。
【0020】
この加工状態のモニタ方法によれば、パルスレーザ光が参照光と照射光とに分岐され、照射光は、被加工物の所定部位に集光されて照射され、所定部位を加工する。そして、所定部位で反射された照射光と参照光との干渉光が分光され、干渉光の分光スペクトルが求められる。ここで、被加工物の形状が変化するにつれて参照光と照射光との光路長差が変化し、分光スペクトルの形状が変化することから、分光スペクトルは、被加工物の形状の指標とすることができる。特に、パルスレーザ光のパルス幅を10ps以下にしており、分光スペクトルが比較的広い波長領域にわたって観測されるため、分光スペクトルの変化を容易に知ることができる。従って、この分光スペクトルをモニタすることで、被加工物の加工状態をモニタすることができる。このとき、被加工物の加工状態をモニタするために、照射光の反射光が用いられている。つまり、加工用の照射光が、所定部位における加工状態のモニタ光を兼ねている。このため、被加工物の所定部位において加工が進行しても、パルスレーザ光による加工部位とモニタ部位とを常に一致させることができる。
【0021】
また本発明のレーザ加工方法は、被加工物の所定部位にパルスレーザ光を照射してレーザ加工を行う加工工程と、所定部位の加工状態をモニタするモニタ工程と、モニタ工程でモニタされた加工状態に基づきパルスレーザ光を制御する制御工程とを含むレーザ加工方法において、モニタ工程を、上記加工状態のモニタ方法により行うことを特徴とする。
【0022】
このレーザ加工方法によれば、被加工物の所定部位において加工が進行しても、パルスレーザ光による加工部位とモニタ部位とを常に一致させることができる。このため、被加工物に対しパルスレーザ光でレーザ加工を行いながら加工状態を的確にモニタすることができるため、パルスレーザ光を制御することで、被加工物に対する加工精度を十分に向上させることができる。
【0023】
【発明の実施の形態】
以下、本発明の実施形態について詳細に説明する。
【0024】
図1は、本発明の加工モニタ付きパルスレーザ加工装置の第1実施形態を示す概略図である。図1に示すように、加工モニタ付きパルスレーザ加工装置1は、パルスレーザ被加工物2を加工するためのパルスレーザ光を出力するレーザ発振器3を備えている。ここで、レーザ発振器3は、10ps以下、好ましくは1ps以下のパルス幅を有するパルスレーザ光を出力可能であることが好ましい。このようにパルス幅を極めて短くすることで、レーザ発振器3から出力されるパルスレーザ光の波長幅を十分に広くすることができる。なお、パルス幅が10psを超えると、レーザ光の波長幅が十分でなく、加工状態をモニタすることが困難となる傾向がある。またレーザ発振器3は、好ましくは1パルスあたり1μJ以上のパルスレーザ光を出力可能であることが好ましい。このようなレーザ発振器3としては、例えばチタンサファイヤレーザを用いることができる。
【0025】
被加工物2とレーザ発振器3との間には、レーザ発振器3側から順次、光アイソレータ4、ハーフミラー5及びアクロマティックレンズ6が配置されている。光アイソレータ4は、レーザ発振器3への戻り光を低減するものであり、ハーフミラー5は、レーザ発振器3から出力されるパルスレーザ光を照射光と参照光とに分岐するものである。またアクロマティックレンズ6は、照射光を被加工物2に集光するレンズであり、パルスレーザ光の波長分散による集光スポットの広がりを十分に防止して被加工物2に対する加工精度を向上させることができる。なお、ハーフミラー5は、パルスレーザ光を照射光と参照光とに分岐する分岐手段として機能し、アクロマティックレンズ6は、照射光を被加工物2の所定部位に集光する集光手段として機能する。
【0026】
加工モニタ付きパルスレーザ加工装置1は、ハーフミラー5で反射により分岐された参照光を反射する反射ミラー7を備えている。ここで、反射ミラー7は、参照光の光軸8とその反射光の光軸とが同軸となるように配置されている。従って、反射ミラー7で反射された参照光は、ハーフミラー5に入射されてハーフミラー5を透過するようになっている。反射ミラー7は、反射ミラー7を参照光の光軸8と平行に移動させる移動ステージ9に設けられている。従って、移動ステージ9により参照光の光路長を調整することができる。またハーフミラー5と反射ミラー7との間には、ハーフミラー5で反射された参照光を遮断する電磁シャッタ10が配置されている。なお、ハーフミラー5及び反射ミラー7は、参照光と照射光とを干渉させる干渉手段として機能する。
【0027】
更に加工モニタ付きパルスレーザ加工装置1は、反射ミラー7で反射されてハーフミラー5を透過する参照光と、被加工物2で反射された後にハーフミラー5で反射された照射光との干渉光を分光するマルチチャネル分光器11を備えている。マルチチャネル分光器11は、単一チャネル分光器に比べて、干渉光の分光を高速で行うことができる。このため、マルチチャネル分光器11は、被加工物2の加工速度が大きくても、その速度に追従することができ、被加工物2の加工状態をリアルタイムにモニタすることができる。マルチチャネル分光器11は、干渉光を分光する分光手段として機能するものである。
なお、本実施形態においては、レーザ発振器3、光アイソレータ4、ハーフミラー5及びアロマティックレンズ6がパルスレーザ加工装置を構成し、レーザ発振器3、光アイソレータ4、ハーフミラー5及びアロマティックレンズ6、反射ミラー7、移動ステージ9、電磁シャッタ10及びマルチチャネル分光器11が加工モニタを構成している。即ち、パルスレーザ加工装置を構成する部品が、加工モニタの一部を兼ねている。従って、パルスレーザ加工装置及び加工モニタがそれぞれ独立に構成される場合に比べて、加工モニタ付きパルスレーザ加工装置の部品点数を減らすことができ、低コスト化を図ることができる。
【0028】
次に、本発明のレーザ加工方法の第1実施形態を、上記加工モニタ付きパルスレーザ加工装置1を用いて説明する。
【0029】
まずアクロマティックレンズ6の焦点位置に被加工物2を配置する。そして、移動ステージ9を移動させて、反射ミラー7の位置を調整する。反射ミラー7の位置の調整は、参照光と、所定部位で反射された照射光とを干渉可能な状態にするために行うものである。
【0030】
次に、電磁シャッタ10を開いた状態にして、レーザ発振器3よりパルスレーザ光を出力する。このとき、パルスレーザ光のパルス幅は、10ps以下とし、好ましくは1ps以下とする。パルス幅が10psを超えると、パルスレーザ光の発光スペクトルの波長範囲が狭くなり、後述する干渉スペクトルの変化を認識することが困難となる。また、1パルスあたりのパルスエネルギーは、好ましくは1μJ以上であり、より好ましくは1mJ以上とする。そして、パルスレーザ光を、ハーフミラー5で参照光と照射光とに分岐させる(分岐工程)。照射光は、ハーフミラー5を透過した後、アクロマティックレンズ6により被加工物2の所定部位に集光されて照射される(集光工程)。これにより、被加工物2の所定部位においてレーザ加工が行われる。
【0031】
ここで、被加工物2の加工状態のモニタ方法について説明する。
【0032】
まずレーザ発振器3から被加工物2の所定部位に照射されて反射された照射光を、アクロマティックレンズ6を透過させた後、ハーフミラー5で反射させる。一方、参照光は、反射ミラー7で反射させた後、ハーフミラー5を透過させる。そして、ハーフミラー5を透過する参照光と、被加工物2の所定部位で反射された照射光との干渉光をマルチチャネル分光器11に入射させて分光させ、マルチチャネル分光器11により干渉光の干渉スペクトル(分光スペクトル)を算出させる(分光工程)。
【0033】
ここで、レーザ加工が進行すると、被加工物2に穴が形成され、次第に穴の深さが大きくなる。
【0034】
レーザ加工前は、参照光と照射光との光路差長が一定の値であるが、上記のように被加工物2に穴が形成されて穴の深さが大きくなると、照射光の光路長が長くなる結果、参照光と照射光との光路長差が大きくなる。このため、干渉スペクトルの形状が変化する。即ち、被加工物2に穴が形成されると、干渉スペクトルの形状も変化する。従って、干渉スペクトルは、被加工物2の形状の指標とすることができる。
【0035】
特に、レーザ加工時においては、10ps以下の極めて短いパルス幅を有するパルスレーザ光が用いられるため、それを分岐した後に干渉させた干渉光は、広い波長範囲にわたって干渉し合う。従って、干渉スペクトルも広い波長範囲にわたって分布する。このように干渉スペクトルが広い波長範囲にわたって分布することで、干渉スペクトルの変化を容易に知ることができる。
【0036】
そこで、レーザ加工時においては、同時に、この干渉スペクトルをモニタする(モニタ工程)。
【0037】
このとき、被加工物2の加工状態をモニタするために、照射光の反射光が用いられる。つまり、レーザ加工用の照射光が、所定部位における加工状態のモニタ光を兼ねている。このため、被加工物2において加工が進行しても、図2に示すように、照射光34による加工部位32と照射光によるモニタ部位33とを常に一致させることができる。よって、干渉スペクトルは、被加工物2の加工部位32の加工状態を的確に表しており、この干渉スペクトルをモニタすることで、被加工物2の加工部位32における加工状態(形状変化)を的確にモニタすることができる。
【0038】
次に、モニタされた干渉スペクトルに基づいてレーザ発振器3を制御し、出力されるパルスレーザ光を連続的に制御する(制御工程)。こうしてパルスレーザ光を連続的に制御することにより、被加工物2における加工部位を的確にレーザ加工することが可能となり、被加工物2を高精度に加工することができる。ここで、パルスレーザ光の制御対象となるのは、具体的には、パルスレーザ光のパワー、波長、パルス幅などである。パワーの制御は、レーザ加工の進行度合が不十分なときなどに行い、波長の制御は、干渉スペクトルが波長の影響を受けるような材料について加工を行うときなどに行う。またパルス幅は、長すぎると熱で溶けたような穴が被加工物に形成されるなど、加工がうまくできなくなり、短すぎると加工ができなくなる。そして、熱で溶けたような穴が被加工物にできる場合と、熱で溶けたような穴が被加工物にできない場合とでは、スペクトルの形状が異なる。従って、パルス幅の制御は、被加工物に対して的確な加工を行うために行う。
【0039】
次に、本発明のレーザ加工方法の第2実施形態を、上述した加工モニタ付きパルスレーザ加工装置1を用いて説明する。ここでは、第1層12及びこれと異種の材料からなる第2層13を備えた被加工物2に対してレーザ加工(穴あけ加工)を行う場合を例にして説明する(図3参照)。
【0040】
まずアクロマティックレンズ6の焦点位置に被加工物2を配置し、電磁シャッタ10を閉じた状態にする。被加工物2は、第1層12をアクロマティックレンズ6側に向けて配置する。なお、本実施形態では、電磁シャッタ10を閉じているため、反射ミラー7の位置調整を行う必要がない。
【0041】
次に、レーザ発振器3よりパルスレーザ光を出力する。このときのパルスレーザ光のパルス幅、パルスエネルギーについては、第1実施形態と同様である。パルスレーザ光は、ハーフミラー5で参照光と照射光とに分岐されるが、参照光は、電磁シャッタ10により遮断される。
【0042】
照射光は、ハーフミラー5を透過した後、アクロマティックレンズ6により被加工物2の第1層12における所定部位に集光されて照射される(集光工程)。これにより、被加工物2の所定部位においてレーザ加工が行われる。
【0043】
ここで、被加工物2の加工状態のモニタ方法について説明する。まず所定部位で反射された照射光を、アクロマティックレンズ6を透過させた後、ハーフミラー5で反射させる。そして、被加工物2の所定部位で反射された照射光をマルチチャネル分光器11に入射させて分光させ、マルチチャネル分光器11により照射光の反射スペクトル(分光スペクトル)を算出させる(分光工程)。
【0044】
レーザ加工が進行すると、被加工物2の第1層12に穴12aが形成され、次第に穴12aの深さが大きくなる。そして、照射光は、第1層12を貫通した後、第2層13を加工するようになる。
【0045】
ここで、第1層12と第2層13とは互いに異種の材料からなるため、第1層12で反射された照射光と、第2層13で反射された照射光とでは、反射スペクトルの形状が異なっている。即ち、加工部位が第1層12から第2層13に変化すると、反射スペクトルの形状も変化するのである。従って、反射スペクトルは、被加工物2の物性の指標とすることができる。
【0046】
特に、レーザ加工時においては、10ps以下の極めて短いパルス幅を有するパルスレーザ光が用いられるため、照射光の波長範囲も広くなっている。従って、反射スペクトルも広い波長範囲にわたって分布する。このため、反射スペクトルの変化を容易に知ることができる。
【0047】
そこで、レーザ加工時においては、同時に、この反射スペクトルをモニタする(モニタ工程)。
【0048】
このとき、被加工物2の加工状態をモニタするために、照射光が用いられている。つまり、レーザ加工用の照射光が、所定部位における加工状態のモニタ光を兼ねている。このため、被加工物2の所定部位において加工が進行しても、被加工物2の加工部位とパルスレーザ光によるモニタ部位とを常に一致させることができる。よって、反射スペクトルは、被加工物2の加工部位の加工状態を的確に表しており、この反射スペクトルをモニタすることで、被加工物2の所定部位における加工状態(物性変化)を的確にモニタすることができる。
【0049】
次に、上記のようにしてモニタされた加工状態の指標となる反射スペクトルに基づいてレーザ発振器3を制御し、出力されるパルスレーザ光を制御する(制御工程)。こうしてパルスレーザ光を制御することにより、被加工物2における所望部位を的確にレーザ加工することが可能となり、被加工物2に対して高精度にレーザ加工を行うことができる。
【0050】
次に、本発明の加工モニタ付きパルスレーザ加工装置の第2実施形態について説明する。なお、第1実施形態と同一又は同等の構成要素については同一符号を付し、重複する説明を省略する。
【0051】
図4は、本発明の加工モニタ付きパルスレーザ加工装置の第2実施形態を示す概略図である。図4に示すように、本実施形態の加工モニタ付きパルスレーザ加工装置21は、まず光アイソレータ4とレーザ発振器3との間に設けられパルスレーザ光の波形整形を行う波形整形器22と、被加工物2をXYZ軸方向に移動させる3軸移動ステージ23を更に備える点で第1実施形態の加工モニタ付きパルスレーザ加工装置1と相違する。このように本実施形態の加工モニタ付きパルスレーザ加工装置21は波形整形器22を有するため、レーザ発振器3から出力されるパルスレーザ光について波形整形器22により波形整形を行うことができる。また、3軸移動ステージ23により、被加工物2を3軸方向に移動することができるため、被加工物2の表面を基準とした深さ方向だけでなく、被加工物2の表面に沿った方向(面内方向)にも加工を施すことができる。
【0052】
また本実施形態の加工モニタ付きパルスレーザ加工装置21は、波形整形器22を制御する波形整形器コントローラ24と、3軸移動ステージ23の移動方向及び移動量を制御する3軸移動ステージコントローラ25と、移動ステージ9の移動量を制御する移動ステージコントローラ26と、電磁シャッタ10の開閉を制御する電磁シャッタコントローラ27と、レーザ発振器3を制御してパルスレーザ光の波長、パルス幅、パルスエネルギーを調整するレーザ発振器コントローラ28と、上記波形整形器コントローラ24、3軸移動ステージコントローラ25、移動ステージコントローラ26、電磁シャッタコントローラ27、レーザ発振器コントローラ28及びマルチチャネル分光器11を制御するパーソナルコンピュータ29とを更に備える点で第1実施形態の加工モニタ付きパルスレーザ加工装置1と相違する。
【0053】
このため、パーソナルコンピュータ29を操作するだけで、マルチチャネル分光器11で得られる分光スペクトルに基づいてレーザ発振器コントローラ28、波形整形器コントローラ24及び3軸移動ステージコントローラ25の全て又はこれらのうちのいずれか一つを制御し、被加工物2に対し高精度でかつ効率的にレーザ加工を行うことができる。ここで、被加工物2の加工状態をモニタする方法は、第1実施形態に係る加工モニタ付きパルスレーザ加工装置1における場合と同様であるので、その説明を省略する。
【0054】
また、パーソナルコンピュータ29により、波形整形器コントローラ24、3軸移動ステージコントローラ25、移動ステージコントローラ26、電磁シャッタコントローラ27も全て操作できるため、レーザ加工の作業効率が向上する。なお、波形整形器コントローラ24、3軸移動ステージコントローラ25、レーザ発振器コントローラ28及びパーソナルコンピュータ29により制御手段が構成されている。また、波形整形器22は、波形整形手段として機能し、3軸移動ステージ23は、被加工物移動手段として機能する。
【0055】
本発明の加工モニタ付きパルスレーザ加工装置は、上記第1及び第2実施形態に限定されるものではない。例えば上記加工モニタ付きパルスレーザ加工装置1,21では、レーザ発振器3、ハーフミラー5、被加工物2及び反射ミラー7によりマイケルソン干渉計が構成されているが、図5に示すように、ミラー30及びビームスプリッタ31を設け、レーザ発振器3、ハーフミラー5、被加工物2、反射ミラー7、ミラー30及びビームスプリッタ31を図5に示すように配置することで、マッハツェンダー干渉計が構成されるようにしてもよい。この場合、レーザ発振器3から出力されるパルスレーザ光は、ハーフミラー5で照射光と参照光とに分岐され、照射光は、ハーフミラー5を透過して被加工物2に照射され、その反射光がビームスプリッタ31で反射される。一方、ハーフミラー5で反射された参照光は、反射ミラー7で反射された後、ビームスプリッタ31を透過する。そして、参照光と、照射光の反射光とが干渉され、その干渉光がマルチチャネル分光器11で分光される。これにより、干渉光の干渉スペクトルを得ることができる。なお、照射光の反射スペクトルを得るためには、ハーフミラー5からビームスプリッタ31までの参照光の光軸上に電磁シャッタ10を配置し、電磁シャッタ10を閉じた状態にしておけばよい。
【0056】
また加工モニタ付きパルスレーザ加工装置1,21においては、パルスレーザ光を照射光と参照光とに分岐する分岐手段としてハーフミラー5を用いているが、分岐手段は、ハーフミラー5に限定されるものではない。要するに、分岐手段は、パルスレーザ光を照射光と参照光とに分岐するものであればよい。従って、ハーフミラー5に代えてビームスプリッタを用いることもできる。
【0057】
更に加工モニタ付きパルスレーザ加工装置1,21においては、集光手段としてアクロマティックレンズ6を用いているが、アクロマティックレンズ6に代えて、照射光を被加工物2に集光して照射する反射鏡を用いてもよい。
【0058】
また、加工モニタ付きパルスレーザ加工装置1,21は、干渉スペクトルのみならず、反射スペクトルをも得ることができるものであるが、単に反射スペクトルを得るだけであれば、反射ミラー7は必ずしも必要なものではなく、電磁シャッタ10も必ずしも必要なものではない。また単に干渉スペクトルを得るだけであれば、電磁シャッタ10は、必ずしも必要なものではない。
【0059】
【実施例】
以下、本発明の内容を、実施例を用いてより具体的に説明する。
【0060】
(実施例1)
図1の加工モニタ付きパルスレーザ加工装置1において、レーザ発振器3から高強度フェムト秒パルス(パルス幅50fs、1パルス当りのパルスエネルギー256μJ、繰り返し周波数1kHz)を、被加工物2であるステンレス板に1分間連続して照射し、穴あけ加工を行った。なお、レーザ発振器3としてはチタンサファイヤレーザを用い、マルチチャネル分光器としては、オーシャンオプティクス社製HR2000を用いた。
【0061】
このとき、被加工物2であるステンレス板に照射されて反射された光パルスと、ハーフミラー5により照射前に予め分岐させておいた参照光パルスとを干渉させ、その干渉光をマルチチャネル分光器11で分光し、10秒毎の干渉スペクトルを得た。その結果、照射直後と1分後とでは、特定の波長範囲(790~840nm)における干渉スペクトルの波数が異なることを確認した(図6参照)。波数は反射光と参照光との光路差に依存するため、これを計数することにより、加工された穴深度を測定できることが明らかになった。このとき、穴深度は420μmであった。
なお、ステンレス板の加工部位を顕微鏡で観察し、穴深度を測定したところ、穴深度は、420μmであり、干渉スペクトルより算出した値と一致することが分かった。
このことから、本発明によれば、被加工物2に対しパルスレーザ光でレーザ加工を行いながら被加工物2の加工状態を的確にモニタすることができることが分かった。
【0062】
(実施例2)
電磁シャッタ10を閉じて参照光を遮断した状態で、高強度フェムト秒パルス(パルス幅50fs、1パルス当りのパルスエネルギー320μJ、繰り返し周波数1kHz)を、被加工物であるステンレス板に照射し続け、マルチチャネル分光器11により照射直後から1秒毎に反射光のパワースペクトルを9秒間測定した(図7参照)。
【0063】
その結果、照射を開始してから約2秒間は反射パワースペクトル分布が大きく変化した。なお、ステンレス板としては、表面に酸化皮膜が形成されたものを用いたが、実験後、光学顕微鏡でステンレス板表面の酸化皮膜が除去されていることから、ステンレス板表面の酸化皮膜が除去されている間に反射パワースペクトル分布が大きく変化したことが分かった。
一方、パルスエネルギーを0.3μJにしたこと以外は上記と同様にして低強度フェムト秒光パルスをステンレス板に照射し、マルチチャネル分光器11により反射光のパワースペクトルを測定したところ、ステンレス板には穴が形成されず、反射パワースペクトル分布も変化しないことが分かった。
【0064】
以上のことから、反射光のパワースペクトルの変化を観測することにより被加工物表面の物性変化をリアルタイムに計測できることが明らかになった。
【0065】
【発明の効果】
以上説明したように本発明の加工モニタ付きパルスレーザ加工装置及び加工状態のモニタ方法によれば、被加工物の所定部位において加工が進行しても、パルスレーザ光による加工部位とモニタ部位とを常に一致させることができるため、被加工物の加工状態を的確にモニタすることができる。
【0066】
また本発明のレーザ加工方法によれば、被加工物に対しパルスレーザ光でレーザ加工を行いながら加工状態を的確にモニタすることができるため、被加工物に対して高精度にレーザ加工を行うことができる。
【図面の簡単な説明】
【図1】本発明の加工モニタ付きパルスレーザ加工装置の一実施形態を示す概略図である。
【図2】加工中における照射光による加工部位とモニタ部位との位置関係を示す概略図である。
【図3】本発明のレーザ加工方法の第2実施形態に用いる被加工物の構成を示す側面図である。
【図4】本発明の加工モニタ付きパルスレーザ加工装置の他の実施形態を示す概略図である。
【図5】本発明の加工モニタ付きパルスレーザ加工装置の更に他の実施形態を示す概略図である。
【図6】実施例1に係る干渉スペクトルを示すグラフである。
【図7】実施例2に係る反射スペクトルを示すグラフである。
【図8】(a)は、従来のモニタ方法に係る加工直後のモニタ光によるモニタ部位と加工用レーザ光による加工部位との位置関係を示す概略図、(b)は、従来のモニタ方法に係る加工中のモニタ光によるモニタ部位と加工用レーザ光による加工部位との位置関係を示す概略図である。
【符号の説明】
1,21…加工モニタ付きパルスレーザ加工装置、2…被加工物、3…レーザ発振器、5…ハーフミラー(分岐手段、干渉手段)、6…アクロマティックレンズ(集光手段)、7…反射ミラー(干渉手段)、10…電磁シャッタ(参照光遮断手段)、11…マルチチャネル分光器(分光手段)、22…波形整形器(波形整形手段)、23…3軸移動ステージ(被加工物移動手段)、24…波形整形器コントローラ(制御手段)、25…3軸移動ステージコントローラ(制御手段)、28…レーザ発振器コントローラ(制御手段)、29…パーソナルコンピュータ(制御手段)。
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7