TOP > 国内特許検索 > 光パルス圧縮器および光関数発生器、光パルス圧縮方法および光関数発生方法 > 明細書

明細書 :光パルス圧縮器および光関数発生器、光パルス圧縮方法および光関数発生方法

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第4459547号 (P4459547)
公開番号 特開2004-317684 (P2004-317684A)
登録日 平成22年2月19日(2010.2.19)
発行日 平成22年4月28日(2010.4.28)
公開日 平成16年11月11日(2004.11.11)
発明の名称または考案の名称 光パルス圧縮器および光関数発生器、光パルス圧縮方法および光関数発生方法
国際特許分類 G02F   1/01        (2006.01)
FI G02F 1/01 Z
請求項の数または発明の数 13
全頁数 22
出願番号 特願2003-109708 (P2003-109708)
出願日 平成15年4月15日(2003.4.15)
審査請求日 平成18年4月11日(2006.4.11)
特許権者または実用新案権者 【識別番号】503360115
【氏名又は名称】独立行政法人科学技術振興機構
発明者または考案者 【氏名】中沢 正隆
【氏名】廣岡 俊彦
個別代理人の代理人 【識別番号】100107010、【弁理士】、【氏名又は名称】橋爪 健
審査官 【審査官】佐藤 宙子
参考文献・文献 特開平09-061765(JP,A)
OPTICS LETTERS,2003年 1月15日,Vol.28,No.2,78-80
調査した分野 G02F 1/01
H04B 10/00
JSTPlus(JDreamII)
IEEE Xplore
INSPEC(DIALOG)
特許請求の範囲 【請求項1】
入力光パルス列の繰り返し周波数で駆動される光位相変調器と、分散性媒質とを有し、入力された光パルスの周波数スペクトルの形状をその時間波形に変換する光フーリエ変換装置と、
前記光フーリエ変換装置の前に挿入され、入力光パルスのスペクトル幅を狭くする狭帯域光フィルタと
を備え、
入力光パルスとしてフーリエ変換限界のパルスを用い、
前記光フーリエ変換装置により、前記狭帯域光フィルタから出力された狭いスペクトル幅の光パルスを狭い時間幅の光パルスに変換する光パルス圧縮器。
【請求項2】
請求項1に記載の光パルス圧縮器において、
前記狭帯域光フィルタは、スペクトルの帯域が可変であり、
前記光フーリエ変換装置は、圧縮率が可変なパルス圧縮を実現することを特徴とする光パルス圧縮器。
【請求項3】
請求項1に記載の光パルス圧縮器において、
前記光位相変調器は、駆動周波数が入力光パルス列から再生されたクロック周波数で駆動され、入力光パルスに線形チャープを与え、
前記分散性媒質は、群速度分散を与える光パルス圧縮器。
【請求項4】
請求項1に記載の光パルス圧縮器において、
前記光フーリエ変換装置は、
前記分散性媒質が、前記狭帯域光フィルタから出力された光パルスに群速度分散を与え、
前記光位相変調器が、入力光パルス列から再生されたクロック周波数で駆動され、前記分散性媒質から出力された光パルスに線形チャープを与え、
前記分散性媒質が、前記光位相変調器から出力された光パルスを入力して再度群速度分散を与え、残留チャープを補償することを特徴とする光パルス圧縮器。
【請求項5】
請求項1に記載の光パルス圧縮器において、
前記光フーリエ変換装置は、
前記光位相変調器が、入力光パルス列から再生されたクロック周波数で駆動され、前記狭帯域光フィルタから出力された光パルスに線形チャープを与え、
前記分散性媒質が、前記光位相変調器から出力された光パルスに群速度分散を与え、
前記光位相変調器が、前記分散性媒質から出力された光パルスを入力して再度線形チャープを与え、残留チャープを補償することを特徴とする光パルス圧縮器。
【請求項6】
請求項1に記載の光パルス圧縮器において、
前記位相変調器の位相変調のチャープ率Kと前記分散性媒質の群速度分散Dとが、K=1/Dの関係を満たすことを特徴とする光パルス圧縮器。
【請求項7】
光パルス列を発生する光パルス発生器と、
前記光パルス発生器からの入力光パルス列の繰り返し周波数で駆動される光位相変調器と、分散性媒質とを有し、前記光パルス発生器から入力された光パルスの周波数スペクトルの形状をその時間波形に変換する光フーリエ変換装置と、
前記光フーリエ変換装置の前に挿入され、入力光パルスのスペクトルの形状を波形整形し、出力光パルスの時間波形を周波数特性により定めるための光フィルタと
を備え、
入力光パルスとしてフーリエ変換限界のパルスを用い、
前記光フーリエ変換装置において、前記光フィルタで波形整形されたスペクトルの形状をそのまま時間軸上で再生することにより、前記光フィルタの周波数特性によって、該周波数特性の関数形に応じた任意の時間波形を有する光パルスを発生する
光関数発生器。
【請求項8】
請求項に記載の光関数発生器において、
前記光位相変調器は、駆動周波数が入力光パルス列から再生されたクロック周波数で駆動され、入力光パルスに線形チャープを与え、
前記分散性媒質は、群速度分散を与える光関数発生器。
【請求項9】
請求項に記載の光関数発生器において、
前記光フーリエ変換装置は、
前記分散性媒質が、前記光フィルタから出力された光パルスに群速度分散を与え、
前記光位相変調器が、入力光パルス列から再生されたクロック周波数で駆動され、前記分散性媒質から出力された光パルスに線形チャープを与え、
前記分散性媒質が、前記光位相変調器から出力された光パルスを入力して再度群速度分散を与え、残留チャープを補償することを特徴とする光関数発生器。
【請求項10】
請求項に記載の光関数発生器において、
前記光フーリエ変換装置は、
前記光位相変調器が、入力光パルス列から再生されたクロック周波数で駆動され、前記光フィルタから出力された光パルスに線形チャープを与え、
前記分散性媒質が、前記光位相変調器から出力された光パルスに群速度分散を与え、
前記光位相変調器が、前記分散性媒質から出力された光パルスを入力して再度線形チャープを与え、残留チャープを補償することを特徴とする光関数発生器。
【請求項11】
請求項に記載の光関数発生器において、
前記位相変調器の位相変調のチャープ率Kと前記分散性媒質の群速度分散Dとが、K=1/Dの関係を満たすことを特徴とする光関数発生器。
【請求項12】
光位相変調器と分散性媒質とを有する光フーリエ変換装置と、狭帯域光フィルタとを備えた光パルス圧縮器を用いた光パルス圧縮方法であって、
入力光パルスとしてフーリエ変換限界のパルスを用い、
前記光フーリエ変換装置の前に前記狭帯域光フィルタを挿入して、それにより入力光パルスのスペクトル幅を狭くし、
入力光パルス列の繰り返し周波数で前記光位相変調器を駆動し、
前記光フーリエ変換装置により、前記狭帯域光フィルタから出力された狭いスペクトル幅の光パルスを狭い時間幅の光パルスに変換する
前記光パルス圧縮方法。
【請求項13】
光パルス発生器と、光位相変調器と分散性媒質とを有する光フーリエ変換装置と、光フィルタとを備えた光関数発生器を用いた光関数発生方法であって、
入力光パルスとしてフーリエ変換限界のパルスを用い、
前記光フーリエ変換装置の前に前記光フィルタを挿入して、それにより、出力光パルスの時間波形を周波数特性により定め、前記光パルス発生器からの入力光パルスのスペクトルの形状を波形整形し、
入力光パルス列の繰り返し周波数で前記光位相変調器を駆動し、
前記光フーリエ変換装置において、前記光フィルタで波形整形されたスペクトルの形状をそのまま時間軸上で再生することにより、前記光フィルタの周波数特性によって、該周波数特性の関数形に応じた任意の時間波形を有する光パルスを発生する
前記光関数発生方法。
発明の詳細な説明
【0001】
【発明の属する技術分野】
本発明は、超高速光通信ならびに光計測などに用いられる超短パルス技術において、パルス光源から出力された光パルスの時間幅を任意の比率で圧縮するとともに、さらには任意のパルス波形を得ることができる光パルス圧縮および光関数発生器に関するものである。
【0002】
【従来の技術】
一般的な光パルス圧縮技術には、大別して光ファイバと回折格子対を用いたパルス圧縮法(第1の従来技術)と、分散減少ファイバを用いたソリトン効果に基づくパルス圧縮法(第2の従来技術)がある。
【0003】
第1の従来技術は、強力な光パルスをファイバに入射することにより、ファイバのもつ正常分散と非線形性(自己位相変調効果)によってパルスをまず線形チャープを有する広帯域矩形パルスに変換する。次に回折格子対によって人工的に作り出すことができる異常分散によって該線形チャープパルスを分散補償することで入射パルス幅を大幅に圧縮するものである(非特許文献1及び2)。特に、非特許文献2では、波長1548 nmにおいて繰り返し周波数10 GHz、パルス幅7.1 psの光パルス列を720 fsに圧縮した例が報告されている。
【0004】
一方、第2の従来技術は、ファイバの異常分散値を伝搬方向に沿ってソリトンの状態が維持される程度に断熱的に減少させること(ゆるやかに分散を変化させること)によって、ソリトンのパルス幅を圧縮するものである。この場合、ソリトンはそのエネルギーを一定に保とうとするために、分散の変化に応じてパルス幅が自動的に変化する原理を利用している(非特許文献3及び4)。特に、非特許文献4では、分散減少ファイバを用いたパルス圧縮の例として、波長1550 nmにおいて繰り返し周波数10 GHz、パルス幅3 psの光パルス列を170 fsに圧縮した実験が報告されている。
【0005】
また、光関数の発生および光パルス波形整形装置(第3の従来技術)としては、レンズと回折格子あるいはアレイ導波路回折格子を用いることにより、パルスの各周波数成分ごとに独自の振幅および位相変化を与える方法が提案されている(非特許文献5及び6)。これらの場合には入力の時間波形およびそのスペクトルをそれぞれu(t)、U(ω)、出力の時間波形およびそのスペクトルをそれぞれv(t)、V(ω)とし、パルス波形整形の伝達関数を時間軸上でg(t)、スペクトル上でG(ω)とすると、周波数軸上の表現では
V(ω)=G(ω)U(ω)、
また時間軸上では
【0006】
【数1】
JP0004459547B2_000002t.gif
【0007】
で与えられる。
【0008】
【非特許文献1】
W. J. Tomlinson, R. J. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B, Vol. 1, pp. 139-149, 1984.
【非特許文献2】
K. Tamura, T. Komukai, T. Yamamoto, T. Imai, E. Yoshida, and M. Nakazawa, “High energy, sub-picosecond pulse compression at 10 GHz using a fiber/fiber-grating pulse compressor,” Electron. Lett. Vol. 31, pp. 2194-2195, 1995.
【非特許文献3】
S. V. Chernikov, D. J. Richardson, E. M. Dianov, and D. N. Payne, “Picosecond soliton pulse compressor based on dispersion decreasing fiber,” Electron. Lett. Vol. 28, pp. 1842-1844, 1992.
【非特許文献4】
M. Nakazawa, E. Yoshida, K. Kubota, and Y. Kimura, “Generation of 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion-decreasing, erbium-doped active soliton compressor,” Electron. Lett. Vol. 30, pp. 2038-2040, 1994.
【非特許文献5】
A. M. Weiner, J. P. Heritage, and E. M. Kirschner, “High-resolution femtosecond pulse shaping, J. Opt. Soc. Am. B, Vol. 5, pp. 1563-1572, 1988.
【非特許文献6】
K. Okamoto, T. Kominato, H. Yamada, and T. Goh, “Fabrication of frequency spectrum synthesizer consisting of arrayed-waveguide grating pair and thermo-optic amplitude and phase controllers,” Electron. Lett. Vol. 35, pp. 733-734, 1999.
【0009】
【発明が解決しようとする課題】
第1の従来技術のように、ファイバ・回折格子対を用いたパルス圧縮においては、パルスの圧縮率はパルスに誘起される位相変調の大きさで決まる。このため、ファイバ中の自己位相変調と正常分散を用いてスペクトルの広い線形チャープパルスを発生させることによって圧縮率を向上することができる。一般にこの方法は、ファイバが正常分散を呈する可視光、近赤外領域における高出力超短パルスの発生に有効な方法である。しかしながら、超高速光通信に用いられる光パルスは低パワーであるため、一般的には光パルスに大きな線形チャープを与えることができず、圧縮率が制限されてしまう。また、圧縮率を大きくとろうとするとチャープを補償するために必要な分散量も大きくなるが、このとき三次分散などの影響を無視することができず、被圧縮パルスに波形歪みが生じる。
【0010】
第2の従来技術のように、分散減少ファイバを用いたパルス圧縮においては、ソリトン効果を用いるため、ソリトン条件を満たすようパルス幅やピークパワーを正確に調整する必要がある。また分散減少ファイバの長さは断熱的なソリトン圧縮を行なうために一般に100m~数kmを用いる必要がある。また圧縮率が向上するとスペクトルの帯域幅が増加するが、分散が広帯域にわたってフラットな特性を有する分散減少ファイバの作成は難しく、高価な圧縮法になってしまう。
【0011】
また、第3の従来技術のように、周波数成分に分けた後に振幅・位相の処理を行なう光パルス波形整形方法は、伝達関数の周波数特性がパルスのスペクトルおよび位相を整形することから、この方法は周波数スペクトラムシンセサイザであり、単なる周波数・位相成分の異なる波形合成である。例えば矩形のパルス波形を得るためには、矩形波のフーリエ変換であるsinc関数の周波数特性を伝達関数に与える必要がある。このように、従来の光パルス波形整形装置ではシンプルな時間波形を実現するために周波数領域で各々のスペクトルに複雑な処理を必要とする。
【0012】
本発明は、これらの課題を解決するために、超高速光通信や光計測に用いる低パワーかつ高繰り返し周波数の超短パルス列を発生できる、小型でかつ機能性の高い光パルス圧縮器、および、簡単な構成で任意の時間波形を実現する光関数発生器を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の第1の解決手段によると、
入力光パルス列の繰り返し周波数で駆動される光位相変調器と、分散性媒質とを有し、入力された光パルスの周波数スペクトルの形状をその時間波形に変換する光フーリエ変換装置と、
前記光フーリエ変換装置の前に挿入され、入力光パルスのスペクトル幅を狭くする狭帯域光フィルタと
を備え、
前記光フーリエ変換装置により、前記狭帯域光フィルタから出力された狭いスペクトル幅の光パルスを狭い時間幅の光パルスに変換する光パルス圧縮器が提供される。
【0014】
本発明の第2の解決手段によると、
光パルス列を発生する光パルス発生器と、
前記光パルス発生器からの入力光パルス列の繰り返し周波数で駆動される光位相変調器と、分散性媒質とを有し、前記光パルス発生器から入力された光パルスの周波数スペクトルの形状をその時間波形に変換する光フーリエ変換装置と、
前記光フーリエ変換装置の前に挿入され、入力光パルスのスペクトルを波形整形する光フィルタと
を備え、
前記光フーリエ変換装置において、前記光フィルタで任意に波形整形されたスペクトルをそのまま時間軸上で再生することにより、任意の時間波形を有する光パルスを発生する
光関数発生器が提供される。
【0015】
本発明の第3の解決手段によると、
光位相変調器と分散性媒質とを有する光フーリエ変換装置と、狭帯域光フィルタとを備えた光パルス圧縮器を用いた光パルス圧縮方法であって、
前記光フーリエ変換装置の前に前記狭帯域光フィルタを挿入して、それにより入力光パルスのスペクトル幅を狭くし、
入力光パルス列の繰り返し周波数で前記光位相変調器を駆動し、
前記光フーリエ変換装置により、前記狭帯域光フィルタから出力された狭いスペクトル幅の光パルスを狭い時間幅の光パルスに変換する
前記光パルス圧縮方法が提供される。
【0016】
本発明の第4の解決手段によると、
光パルス発生器と、光位相変調器と分散性媒質とを有する光フーリエ変換装置と、光フィルタとを備えた光関数発生器を用いた光関数発生方法であって、
前記光フーリエ変換装置の前に前記光フィルタを挿入して、それにより前記光パルス発生器からの入力光パルスのスペクトルを波形整形し、
入力光パルス列の繰り返し周波数で前記光位相変調器を駆動し、
前記光フーリエ変換装置において、前記光フィルタで任意に波形整形されたスペクトルをそのまま時間軸上で再生することにより、任意の時間波形を有する光パルスを発生する
前記光関数発生方法が提供される。
【0017】
【作用】
本発明を用いることにより、光通信波長帯における低パワーかつ高繰り返し周波数のパルス列の圧縮がより効率的に可能となり、超高速光通信用の実用的・経済的かつ高品質な短パルス光源を実現することができる。また、光フィルタの振幅・位相特性に応じて任意の時間波形をもつパルス列を簡単に発生することができ、光計測や光信号処理用の高機能な光シンセサイザを実現することができる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて詳細に説明する。
A.第1実施の形態
図1は、光パルス圧縮器の第1の実施の形態の構成図である。この光パルス圧縮器は、光入力端子1、光カップラ2、狭帯域光フィルタ3、光増幅器4、光サーキュレータ5および5’、クロック信号抽出回路6、電気増幅器7、分散性媒質8、光位相変調器9、光出力端子10を備える。
【0019】
光入力端子1には、光カップラ2、狭帯域光フィルタ3、光増幅器4を介して光サーキュレータ5のポート5aが接続される。光サーキュレータ5のポート5aには、ポート5b、分散性媒質8および光サーキュレータ5’のポート5’bを介してポート5’aが接続される。光サーキュレータ5’のポート5’aとポート5’cは光位相変調器9を介してループ状に接続される。光サーキュレータ5のポート5bは、ポート5cを介して光出力端子10に接続される。信号の流れは図中破線のようになる。また、光カップラ2はクロック信号抽出回路6に接続され、さらに電気増幅器7を介して光位相変調器9の駆動回路に接続されている。光サーキュレータ5、5’、分散性媒質8および光位相変調器9は、光フーリエ変換装置Fに含まれる。
【0020】
光フーリエ変換装置Fは、光パルスを入射し、周波数軸上のスペクトルを時間軸上のパルス波形へ光フーリエ変換するものである。
光位相変調器9としては、例えば、LiNbOなどの電気光学効果を用いた位相変調器が好適に用いられる。光位相変調器9は、あるいはEA(Electro-Absorption)やSOA(Semiconductor Optical Amplifier)などにおける位相変調効果を用いてもよい。光位相変調器9には一般に偏波依存性のあるものが多いが、無偏波形の光デバイスあるいは偏波ダイバーシティーによる方法を採用して無偏波化を図ってもよい。
【0021】
なお、位相シフタ及び光遅延ファイバを設けて、その際位相変調が光パルスに最適に同期して印加されるように機能するようにしてもよい。もし変調のタイミングが温度などによりずれる場合には、位相シフタが自動的に位相シフト量を調整し、最適な変調を印加する技術を用いることができる。また、電気増幅器を設けて、位相シフタの出力により光位相変調器9を駆動するための駆動信号を出力するようにしてもよい。
【0022】
分散性媒質8としては、例えば、1.3μmの波長帯域付近に零分散領域が存在する群速度分散特性を有するような単一モード光ファイバあるいは回折格子対、ファイバブラッググレーティング等を用いることができる。
【0023】
また、図2は、光関数発生器の第1の実施の形態の構成図である。この光関数発生器は、光パルス圧縮器と同様に、光カップラ2、光フィルタ13、光増幅器4、光サーキュレータ5および5’、クロック信号抽出回路6、電気増幅器7、分散性媒質8、光位相変調器9、光出力端子10を備え、さらに光パルス発生器11を備える。光パルス圧縮器では入力光パルスのスペクトル幅を狭くするために狭帯域光フィルタ3を用いているが、光関数発生器では入力光パルスのスペクトルを波形整形するために振幅・位相特性が予め定めたように(適切に)設計された光フィルタ13を用いる。光パルス圧縮器と同符号の構成及び動作は、上述した通りである。
【0024】
光パルス発生器11は、光パルス列を発生するものである。光パルス発生器11は、例えば、レーザ等の光源から発生した光パルス列を光カップラ2へ出射する。光関数発生器は、光パルス発生器11が発生する光パルスの波形、及び、光フィルタ3の特性等を適宜設定することにより、各種の所望の出力波形を発生することができる。
【0025】
次に、この光パルス圧縮器および光関数発生器の動作の概要について説明する。
まず、光パルス圧縮器では、光パルス列を光入力端子1に入射する。一方、光関数発生器では、光パルス発生器11が光パルス列を発生する。以下の説明は、光パルス圧縮器および光関数発生器で、同様である。すなわち、入射された光パルス列は、光カップラ2を通して該光パルス列のクロック信号(正弦波信号)をクロック信号抽出回路6および電気増幅器7によって予め再生しておく。該光パルス列において各パルスはフーリエ変換限界(トランスフォームリミット)の条件を満たしている。ここでトランスフォームリミットなパルスとは、時間波形に対して一切過不足のないスペクトル幅を有するパルスであり、例えばガウス型パルスの場合には、時間パルス幅Δτとそのスペクトル幅Δνの積はΔνΔτ≒0.441を満たしている。次に該光パルス列を、光パルス圧縮器では狭帯域光フィルタ3に、光関数発生器では光フィルタ13にそれぞれ入力し、フィルタの通過前後でエネルギーが保存されるよう適切な利得を有する光増幅器4によって増幅する。ここで狭帯域光フィルタ3もしくは光フィルタ13の振幅・位相特性が、光フーリエ変換装置Fが光フーリエ変換することにより求める出力パルスの時間波形となる。増幅された光パルスは光サーキュレータ5のポート5aからポート5bを介して分散性媒質8に入力され、該光パルスに群速度分散が与えられる。群速度分散によって該光パルスの時間波形は周波数成分に応じて異なる時間遅延を与えられる。すなわち該光パルスのスペクトルの各周波数に異なる時間シフトが割り当てられる。群速度分散が与えられた光パルスは光サーキュレータ5’のポート5’bおよび5’aを介して光位相変調器9に入力され、光パルス列から再生されたクロック周波数で駆動する該光位相変調器9によって該光パルスに線形チャープが与えられる。このとき該光パルスの時間波形は周波数シフトを受け、各時間位置に異なる周波数が割り当てられる。すなわち該光パルスのスペクトルには上記時間シフトに応じて異なる周波数シフトが与えられ、周波数軸上で異なる時間成分が分別される。したがって時間軸上では該光パルスの各周波数成分が分別され、後述するように分散性媒質8の分散量Dに対して光位相変調器9のチャープ率KをK=1/Dに選ぶことによって、図1及び図2中Bにおける時間波形u(t)のフーリエ変換像U(ω)が生成される。ポート5’cおよび5’bを介してもう一度分散性媒質8に再入力され残留チャープが補償された該光パルスは、光サーキュレータ5のポート5b、5cおよび光出力端子10を介して外部に出力される。
【0026】
ここで、本発明において中心的な役割を果たす光フーリエ変換装置Fの動作について詳細に説明する。
図3に、光フーリエ変換装置Fの説明図を示す。本実施の形態の動作に関しては、光フーリエ変換装置3には光パルス列が入力され、光パルス列を構成する各パルスに注目して説明する。図中F1、F2、F3、F4における時間波形をそれぞれu(t)、u-(t)、u+(t)、v(t)とする。分散性媒質8の分散量をDとし、光位相変調器9のチャープ率をKとする。すなわち分散性媒質8が二次分散k”を有する長さLの光ファイバとするとD=k”Lであり、光位相変調器9の位相変調特性はexp(iKt2/2)で与えられる。
【0027】
光フーリエ変換装置Fの入力パルス波形u(t)と出力パルス波形v(t)の関係は以下のようにして求められる。まず、光位相変調器9の前に置かれた分散性媒質8において、出力パルスu-(t)は畳み込み積分により入力パルスu(t)を用いて次式で表される。
【0028】
【数2】
JP0004459547B2_000003t.gif
【0029】
次に、光位相変調器9の前後の信号u-(t)とu+(t)は
【0030】
【数3】
JP0004459547B2_000004t.gif
【0031】
で関係づけられる。さらに、光位相変調器9の後にもう一度置かれた分散性媒質8において出力パルスv(t)は入力パルスu+(t)を用いて、式(1)と同様に
【0032】
【数4】
JP0004459547B2_000005t.gif
【0033】
で与えられる。したがって光フーリエ変換装置Fの出力波形v(t)は式(1)~(3)により入力波形u(t)を用いて
【0034】
【数5】
JP0004459547B2_000006t.gif
【0035】
と表される。ここで光位相変調器のチャープ率をK=1/Dと選ぶと、式(4)は
【0036】
【数6】
JP0004459547B2_000007t.gif
【0037】
と書くことができる。ただしU(ω) [ω=t/D] はu(t)のフーリエ変換
【0038】
【数7】
JP0004459547B2_000008t.gif
【0039】
である。すなわち、光フーリエ変換装置Fの出力時間波形v(t)は、時間軸をt/D=ωとスケールを変換したときの、光フーリエ変換装置Fの入力波形のスペクトル形状に対応している。
【0040】
次に、光パルス波形が図1及び図2の構成でどのようにして整形されるかを図を用いて詳しく説明する。
【0041】
図4は、光パルスの時間波形およびスペクトルの概略図である。図4(a)~(c)は、それぞれ図1及び図2中のA~Cの各部分における光パルスの時間波形およびスペクトルの概略を示している。光入力端子1から入射された(すなわち図1及び図2中Aにおける)光パルスの時間波形をuin(t)、そのスペクトル形状をUin(ω)とする。このパルスが伝達関数G(ω)を有する狭帯域光フィルタ3もしくは光フィルタ13を通過した後の(すなわち図1及び図2中Bにおける)時間波形をu(t)、そのスペクトルをU(ω)とすると、
【0042】
【数8】
JP0004459547B2_000009t.gif
【0043】
が成り立つ。このとき図1及び図2中Bにおける光パルスを光フーリエ変換装置Fに入力すると、図1及び図2中Cにおいて得られる光フーリエ変換装置Fの出力信号の時間波形v(t)は、式(5)より入力信号のスペクトルU(ω)に比例する。したがって式(5)と(7)より
【0044】
【数9】
JP0004459547B2_000010t.gif
【0045】
を得る。式(8)から、狭帯域光フィルタ3もしくは光フィルタ13の振幅特性G(ω)によって整形されたスペクトル形状U(ω)=G(ω)Uin(ω)がそのまま出力の時間波形v(t)に反映されており、フィルタの形状に応じて任意の時間波形G(t)Uin(t)を実現することができる。
【0046】
ここで例として、もとの信号波形がガウス型で与えられるとし、上記の原理を応用して図1の構成でパルス圧縮を実現する方法について述べる。ガウス型の入力パルス波形uin(t)を
【0047】
【数10】
JP0004459547B2_000011t.gif
【0048】
とおくと、そのスペクトルUin(ω)は
【0049】
【数11】
JP0004459547B2_000012t.gif
【0050】
で与えられる。入力Uin(ω)がガウス型の場合、狭帯域光フィルタ3の振幅特性がガウス型であれば、狭帯域光フィルタ3を通過後の周波数スペクトルもガウス型である。すなわち狭帯域光フィルタ3の伝達関数を
【0051】
【数12】
JP0004459547B2_000013t.gif
【0052】
とすると(ただし、Ωfは、狭帯域光フィルタ3の帯域幅である。)、図1中Bにおける光フーリエ変換装置Fへの入力スペクトルは
【0053】
【数13】
JP0004459547B2_000014t.gif
【0054】
となる。ただしαはフィルタ3によって失われるエネルギーを補償するための利得である。したがって図1中Cにおいて得られる出力波形は式(5)においてω=t/Dと式(12)を変換することにより、そのパルス幅をT1とすると
【0055】
【数14】
JP0004459547B2_000015t.gif
【0056】
で与えられる。
ここでパルス幅T1
【0057】
【数15】
JP0004459547B2_000016t.gif
【0058】
で与えられる。入力パルス幅T0と式(14)の出力パルス幅T1の比率を圧縮率とすると、その圧縮率は
【0059】
【数16】
JP0004459547B2_000017t.gif
【0060】
となる。ここで、狭帯域光フィルタ3によるスペクトル幅の圧縮が光フーリエ変換によってそのままパルスの時間幅の圧縮に変換されているということがポイントである。すなわち、狭帯域光フィルタ3によってパルスのスペクトル幅が式(12)より(1+1/Ωf2T02)-1/2倍圧縮され、その結果光フーリエ変換によってパルス幅が式(15)に示すように|K|T02(1+1/Ωf2T02)-1/2倍圧縮されたパルスが出力波形として得られる。さらに式(15)からわかるように、光位相変調器9によって与えられるチャープKが大きいほど、また狭帯域光フィルタ3の帯域幅Ωfが狭いほど、圧縮率を向上することができるという重要な結論を得る。
【0061】
図5は、本発明の第1の実施の形態における、光パルス圧縮器の入力パルスの時間波形と圧縮された出力パルスの時間波形ならびに周波数チャープを示す図である。実線が時間波形、破線が周波数チャープを示す。挿入図は出力パルスの時間波形をdBスケールで表示したものである。
【0062】
この図は、上記実施の形態のパルス圧縮器におけるパルス圧縮の性能を示すために、繰り返し周波数10 GHz、パルス幅1 psのパルス列に対して数値計算を行なったものである。図1中Aにおける入力パルスの時間波形は、トランスフォームリミットなガウス型パルス(9)を仮定する。入力パルス幅T0と半値全幅TFWHM
TFWHM=2(ln2)1/2T0
なる関係にあるので、TFWHM=1.0 psはT0=0.6 psに相当する。フィルタ3の周波数特性は式(11)で与えられるとする。光位相変調器9のチャープ率をK=-2.77 ps-2とすると、分散性媒質8における分散量はD=1/K=-0.36 ps2となり、分散性媒質として通常の単一モードファイバ(Single-Mode Fiber: SMF) [k"=-20 ps2/km]を用いると、必要な長さはL=D/k"=18 mである。ここではSMFの非線形光学効果や高次分散は無視している。光位相変調器9の変調特性φ(t)は、パルスのピーク近傍でチャープ特性が線形で近似されるよう(すなわち位相変調特性が放物線で近似されるよう)、以下の正弦波の組み合わせで与えられるとしている。
【0063】
【数17】
JP0004459547B2_000018t.gif
【0064】
ここでωmは光パルス列の繰り返し周波数に同期した光位相変調器9の駆動周波数であり、光パルス列のビット間隔をTmとするとωm=2π/Tmである。また式(16)ではφ(t)がピークのまわりにできるだけ放物線になるように3倍の高調波まで考慮した。
【0065】
図5(a), (b), (c)は、それぞれフィルタの帯域がΩf=447 rad-GHz, 258 rad-GHz, 200 rad-GHzの場合に相当する。これらの条件は3dB帯域幅がそれぞれ118.5 GHz, 68.4 GHz, 53.0 GHzに対応し、パルスのスペクトル幅ΔfFWHM=441GHzに対し帯域幅ΔfFWHM/3.73、ΔfFWHM/6.45、ΔfFWHM/8.33に相当する。この図では、細実線、太実線、破線が、それぞれ図1中AおよびCにおける時間波形ならびに図1中Cにおける出力波形の周波数チャープを示している。また挿入図は図1中Cにおける出力時間波形をdBスケールで示したものである。
【0066】
解析の結果、(a), (b), (c)において圧縮比はそれぞれ3.86, 6.41, 7.69 となった。これは式(15)から求まる理論値(それぞれ3.86, 6.54, 8.40)とよく一致している。得られたパルスの時間帯域幅積(Time Bandwidth Product: TBP)はそれぞれ、0.441, 0.451, 0.484であった。フィルタの帯域が狭いときに出力波形が裾野の独特の広がりを有する。また、TBPが増加するのは、図1中Aにおいて、狭帯域光フィルタ3によってスペクトル幅が削られて、パルスの時間幅が式(16)の放物線近似が成り立たない領域まで広がることによって、パルスの裾野でフーリエ変換が正確に実行されないことに起因するものである。このため(a)では出力波形にチャープがないが、(b), (c)では3次以上の高次周波数チャープが発生することになる。なお位相変調特性の近似の精度を上げることによって狭帯域フィルタに対しても出力波形を改善し圧縮率をさらに向上することが可能である。またこの結果は、帯域が可変の狭帯域フィルタを用いて、同一の構成をもつ光パルス圧縮器で任意のパルス圧縮率を実現することができることを示している。
【0067】
ここで、本発明によるフーリエ変換を用いたパルス圧縮を、従来のファイバ・回折格子対によるパルス圧縮器と比較する。ファイバ・回折格子対によるパルス圧縮器は、位相変調特性exp(iKt2/2)を有する光位相変調器(正常分散+自己位相変調によるチャープ化)と分散量D(異常分散)の分散性媒質の組み合わせとしてモデル化される。ここでDは位相変調によるチャープをキャンセルするのに必要な分散量の大きさとして与えられる。入力がガウス型u(t)=Aexp(-t2/2T02)のとき、位相変調exp(iKt2/2)によるチャープをキャンセルするのに必要な分散量Dは次のようにして求まる。位相変調を受けたパルス
【0068】
【数18】
JP0004459547B2_000019t.gifの分散量Dによる波形変化v(t)は式(1)より
【0069】
【数19】
JP0004459547B2_000020t.gif
【0070】
と表される。指数関数の部分を実数項と位相項に分けて書くと
【0071】
【数20】
JP0004459547B2_000021t.gif
【0072】
となる。したがって式(17)においてチャープを含む位相項
【0073】
【数21】
JP0004459547B2_000022t.gif
【0074】
をゼロにするDは
【0075】
【数22】
JP0004459547B2_000023t.gif
【0076】
で与えられる。このときv(t)の実数部は式(17)、(19)より
【0077】
【数23】
JP0004459547B2_000024t.gif
【0078】
となる。したがって式(19)の条件のもとで得られるトランスフォームリミットなガウス型パルス
v(t)∝exp(-t2/2T12)
の時間幅T1は、式(20)よりT1=T0/(1+K2T04)1/2となる。すなわち圧縮率は
【0079】
【数24】
JP0004459547B2_000025t.gif
【0080】
である。
【0081】
図6に、光パルスの圧縮率の比較図を示す。この図は、本発明による光パルス圧縮器の圧縮率(実線)を、ファイバ・回折格子対を用いた光パルス圧縮器の圧縮率(破線)と比較した図である。また、この図は、式(15)と(21)より光フーリエ変換を用いたパルス圧縮器およびファイバ・回折格子対を用いたパルス圧縮器のチャープ率とパルス圧縮率の関係を比較したものである。ここでT0=0.6 psとしており、これは半値全幅TFWHM=1.0 psに相当する。どの|K|に対しても光フーリエ変換による圧縮器の圧縮率がファイバ・回折格子対による圧縮器の圧縮率を上回っており、フィルタの帯域が狭くなるにつれて圧縮率は増加している。これは次のような理由から説明できる。式(15)および(21)より、パルス幅T0を固定するといずれの圧縮法においても圧縮率はチャープ率の大きさ|K|に比例する。ファイバ・回折格子対による圧縮器では圧縮率の比例係数は式(21)よりT02で与えられる。一方光フーリエ変換による圧縮器では圧縮率の比例係数は式(15)よりフィルタの帯域幅Ωfに依存し、T0fで与えられる。したがってΩf >1/T0のとき(すなわちフィルタの帯域幅がパルスのスペクトル幅より狭いとき)、光フーリエ変換による圧縮器の圧縮率はファイバ・回折格子対による圧縮器の圧縮率を常に上回り、より優れた圧縮特性を示す。
【0082】
次に、光パルスの時間波形が図2の構成でどのようにして任意の波形に整形されるかを詳しく説明する。式(6)からわかるように、光フィルタ13の周波数特性G(ω)を適切に選ぶことによって、G(ω)の関数形に応じた任意の時間波形を生成することができる。ここでは例として入力パルスがガウス型であるとし、フィルタの振幅特性がエルミート多項式Hn(x)で与えられるとして、波形がエルミートガウス関数で表されるパルス列が生成できることを示す。
ガウスエルミート関数ψn(x)は、エルミート多項式Hn(x)を用いて次式で定義される。
【0083】
【数25】
JP0004459547B2_000026t.gif
【0084】
ここでエルミート多項式Hn(x)は次式で定義される多項式系列である。
【0085】
【数26】
JP0004459547B2_000027t.gif
【0086】
したがって例えばH2(x)=4x2-2である。このようにガウスエルミート関数はエルミート多項式とガウス関数の積として表されるので、ガウス型光パルスを、周波数特性がエルミート多項式で与えられるようなフィルタに通し光フーリエ変換することによって、ガウスエルミート関数を時間軸上で得ることができる。このときフィルタの振幅特性は(規格化定数を無視して)
【0087】
【数27】
JP0004459547B2_000028t.gif
【0088】
を満たせばよい。
【0089】
図7は、本発明の第1の実施の形態における、入力波形ならびに光関数発生器によって発生したエルミートガウス型波形とその位相を示す図である。この図は、本実施の形態の光関数発生器における波形整形の効果を示すために、上と同じ初期条件ならびに光フーリエ変換装置を用い、光フィルタ13の伝達関数を2次のエルミート多項式H2(T0ω)としたときの数値計算結果を示すものである。この図では、細実線、太実線、破線がそれぞれ図2中A、Cの各点における光パルスの時間波形ならびに図2中Cにおける出力波形の位相を示している。t=0近傍の位相の変化は、2次のガウスエルミート関数の中心部における位相反転を表している。このようにして、周波数特性が2次のエルミート多項式H2(T0ω)で与えられる光フィルタ13を用いることによって、出力にトランスフォームリミットな2次のエルミートガウス関数を得ることができる。
【0090】
B.第2実施の形態
図8は、光パルス圧縮器の第2実施の形態の構成図である。図8は図1中の光フーリエ変換装置Fにおいて分散性媒質8と光位相変調器9を入れ替え、さらに光サーキュレータ5’のポート5’aとポート5’cを結ぶループにおいて分散性媒質8のあとに光遅延素子12を挿入したものである。光位相変調器9には図1と同様、光カップラ2からクロック信号抽出回路6および電気増幅器7を介して再生されたクロック信号が駆動回路に供給されている。
【0091】
図9は、光関数発生器の第2実施の形態の構成図である。第1の実施の形態の光パルス圧縮器と光関数発生器との差異と同様に、第2の実施の形態の光パルス圧縮器の、光入力端子1に光パルス発生器11が置き換えられたものである。
【0092】
次に、この光パルス圧縮器および光関数発生器の動作を説明する。
まず、光パルス圧縮器では、光パルス列を光入力端子1に入射する。一方、光関数発生器では、光パルス発生器11が光パルス列を発生する。以下の説明は、光パルス圧縮器および光関数発生器で、同様である。すなわち、入射された光パルス列は、光カップラ2を通して該光パルス列のクロック信号をクロック信号抽出回路6および電気増幅器7によって予め再生しておく。次に該光パルス列を、光パルス圧縮器では狭帯域光フィルタ3に、光関数発生器では光フィルタ13にそれぞれ入力し、フィルタの通過前後でエネルギーが保存されるよう適切な利得を有する光増幅器4によって増幅する。増幅された光パルスは光サーキュレータ5のポート5aからポート5bを介して光位相変調器9に入力され、光パルス列から再生されたクロック信号に従ったタイミングで駆動する該光位相変調器によって光パルスに線形チャープが与えられる。すなわち該光パルスの各時間位置に異なる周波数シフトが割り当てられる。チャープを受けた該光パルスは光サーキュレータ5’のポート5’bおよび5’aを介して分散性媒質8を通過する。このとき該光パルスの時間波形には上記周波数シフトに応じた時間遅延が与えられ、時間軸上で異なる周波数成分が分別される。第1の実施の形態と同様に、光位相変調器9のチャープ率Kに対して分散性媒質8の分散量DをD=1/Kに選ぶことによって、図8及び図9中Bの時間波形u(t)のフーリエ変換像U(ω)が時間軸上で生成される。
【0093】
光フーリエ変換装置Fへの入力パルス波形u(t)と出力パルス波形v(t)の関係は以下のようにして求められる。u(t)が光位相変調器9によって位相変調を受けた後の時間信号u-(t)は式(2)と同様
【0094】
【数28】
JP0004459547B2_000029t.gif
【0095】
で与えられる。このパルスが光位相変調器9の後に置かれた分散性媒質8を通過した後のパルス波形u+(t)はu-(t)を用いて、式(1)と同様に
【0096】
【数29】
JP0004459547B2_000030t.gif
【0097】
と表される。式(25)より式(26)は入力パルス波形u(t)を用いて
【0098】
【数30】
JP0004459547B2_000031t.gif
【0099】
と表される。ここで分散性媒質8の分散量DをD=1/Kに選ぶと、式(27)は
【0100】
【数31】
JP0004459547B2_000032t.gif
【0101】
と書くことができる。ただしU(ω) [ω=t/D] はu(t)のフーリエ変換(式(6))である。上式における残留チャープexp(-iKt2/2)は、光位相変調器9によって上と同じ大きさの位相変調exp(iKt2/2)を再度印加することで取り除くことができる。パルス列は再び光位相変調器9に入射するため予め光遅延素子12によって適当な時間遅延を与えられる。遅延量はパルスのピークが光位相変調器9の位相変調特性のタイミングと同期するように設定する。このようにして残留チャープが完全に補償された光パルス
【0102】
【数32】
JP0004459547B2_000033t.gif
【0103】
は、光サーキュレータ5のポート5b、5cおよび光出力端子10を介して外部に出力される。
【0104】
図10は、本発明の第2の実施の形態における、光パルス圧縮器の入力パルスの時間波形と圧縮された出力パルスの時間波形(実線)ならびに周波数チャープ(破線)を示す図である。実線が時間波形、破線が周波数チャープを示す。挿入図は出力パルスの時間波形をdBスケールで表示したものである。この図は、上記実施の形態のパルス圧縮器におけるパルス圧縮の性能を示すために、第1の実施の形態のパルス圧縮に関する数値計算と同様のパラメータを用いて数値計算を行なったものである。図5と同様に、図10の(a), (b), (c)はそれぞれフィルタの帯域がΩf=447 rad-GHz, 258 rad-GHz, 200 rad-GHzの場合に相当する。また細実線、太実線、破線が、それぞれ図8中AおよびCにおける時間波形ならびに図8中Cにおける出力波形の周波数チャープを示している。さらに挿入図は図8中Cにおける出力時間波形を縦軸を対数スケールにして示したものである。その結果、(a), (b), (c)において圧縮比はそれぞれ3.86, 6.41, 7.69 となり、図5と同様大きな圧縮率が得られていることがわかる。また出力パルスの時間帯域幅積TBPはそれぞれ、0.441, 0.450, 0.482となり、図5よりもわずかながらよい結果が得られる。
【0105】
【発明の効果】
本発明によると、以上のように、超高速光通信や光計測に用いる低パワーかつ高繰り返し周波数の超短パルス列を発生できる、小型でかつ機能性の高い光パルス圧縮器、および、簡単な構成で任意の時間波形を実現する光関数発生器を提供することができる。
【0106】
特に、本発明の光パルス圧縮器及び方法によると、小型かつ簡単な構成で、入力パワーおよびパルス幅について広い範囲にわたって超高速・超短パルスの発生を可能にすることができる。また、本発明によると、帯域が可変である狭帯域フィルタを用いることによって、一つの装置で異なるパルス圧縮率を得ることができ、柔軟な構成をもつ光パルス圧縮器及び方法を実現することができる。
【0107】
また、特に、本発明の光関数発生器及び方法によると、周波数フィルタの振幅・位相特性を適切に設計することによって、フィルタの伝達関数の関数形に応じた任意の時間波形を有するパルスを簡単に発生することができる。本発明によると、パルス幅が数百フェムト秒の超短パルスやガウス型、エルミートガウス、矩形などの任意の時間波形を有するパルス列を得ることにより、超高速時分割多重光通信用の信号パルスや超高速計測におけるサンプリングパルスをはじめとする幅広い用途に利用することができるようにした光関数発生器及び方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の光パルス圧縮器を示す模式図である。
【図2】本発明の第1の実施の形態の光関数発生器を示す模式図である。
【図3】図1及び図2中の光フーリエ変換装置Fの構成を示す模式図である。
【図4】図1及び図2中A、B、Cの各部分における光パルスの時間波形およびスペクトルの概略を示す図である。
【図5】本発明の第1の実施の形態における、光パルス圧縮器の入力パルスの時間波形と圧縮された出力パルスの時間波形ならびに周波数チャープを示す図である。
【図6】本発明による光パルス圧縮器の圧縮率(実線)を、ファイバ・回折格子対を用いた光パルス圧縮器の圧縮率(破線)と比較した図である。
【図7】本発明の第1の実施の形態における、入力波形ならびに光関数発生器によって発生したエルミートガウス型波形とその位相を示す図である。
【図8】本発明の第2の実施の形態の光パルス圧縮器を示す模式図である。
【図9】本発明の第2の実施の形態の光関数発生器を示す模式図である。
【図10】本発明の第2の実施の形態における、光パルス圧縮器の入力パルスの時間波形と圧縮された出力パルスの時間波形(実線)ならびに周波数チャープ(破線)を示す図である。
【符号の説明】
1 光入力端子
2 光カップラ
3 狭帯域光フィルタ
4 光増幅器
5、5’ 光サーキュレータ
6 クロック信号抽出回路
7 電気増幅器
8 分散性媒質
9 光位相変調器
10 光出力端子
11 光パルス発生器
12 光遅延素子
13 光フィルタ
F 光フーリエ変換装置
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9