TOP > 国内特許検索 > 流体シリンダを用いたアクチュエータ及びその制御方法並びにチョークバルブ装置 > 明細書

明細書 :流体シリンダを用いたアクチュエータ及びその制御方法並びにチョークバルブ装置

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第4741950号 (P4741950)
登録日 平成23年5月13日(2011.5.13)
発行日 平成23年8月10日(2011.8.10)
発明の名称または考案の名称 流体シリンダを用いたアクチュエータ及びその制御方法並びにチョークバルブ装置
国際特許分類 F15B  11/02        (2006.01)
F15B  11/06        (2006.01)
F16K   1/52        (2006.01)
FI F15B 11/02 F
F15B 11/06 B
F16K 1/52 A
請求項の数または発明の数 10
全頁数 21
出願番号 特願2005-515339 (P2005-515339)
出願日 平成16年11月8日(2004.11.8)
国際出願番号 PCT/JP2004/016553
国際公開番号 WO2005/045257
国際公開日 平成17年5月19日(2005.5.19)
優先権出願番号 2003379205
優先日 平成15年11月7日(2003.11.7)
優先権主張国 日本国(JP)
審査請求日 平成19年9月27日(2007.9.27)
特許権者または実用新案権者 【識別番号】503360115
【氏名又は名称】独立行政法人科学技術振興機構
【識別番号】501401113
【氏名又は名称】川渕 一郎
発明者または考案者 【氏名】星野 聖
【氏名】川渕 一郎
個別代理人の代理人 【識別番号】100091443、【弁理士】、【氏名又は名称】西浦 ▲嗣▼晴
審査官 【審査官】北村 一
参考文献・文献 特開昭63-254203(JP,A)
特開平03-204402(JP,A)
特開平08-093951(JP,A)
調査した分野 F15B 11/00-11/22
特許請求の範囲 【請求項1】
シリンダ室と、
前記シリンダ室を第1のチャンバと第2のチャンバとに仕切るように前記シリンダ室内にスライド自在に配置されたピストンとを有する流体シリンダと、
流体圧源と前記第1のチャンバとの間に配置されて前記第1のチャンバ内の流体圧を調整する第1のチョークバルブ装置と、
前記流体圧源と前記第2のチャンバとの間に配置されて前記第2のチャンバ内の流体圧を調整する第2のチョークバルブ装置とを備え、
前記第1のチョークバルブ装置及び前記第2のチョークバルブ装置は、それぞれ前記流体圧源側から対応する前記チャンバ側に向かう入方向に流体が流れるのを許容する供給バルブ機構と、前記チャンバ側から前記流体圧源側に向かう出方向に前記流体を流すことを許容する排出バルブ機構とを備え、
少なくとも前記排出バルブ機構はバルブの開度が可変できることを特徴とする流体シリンダを用いたアクチュエータであって、
前記供給バルブ機構と前記排出バルブ機構とが、圧力制御バルブ機構と、前記圧力制御バルブ機構を通して前記流体圧源側から対応する前記チャンバ側に向かう入方向にのみ流体が流れるのを許容する一方向バルブ機構と、前記圧力制御バルブ機構を通して前記流体圧源側から前記チャンバ側に向かう入方向と前記チャンバ側から前記流体圧源側に向かう出方向の双方向に前記流体を流すことを許容する双方向バルブ機構とを備え、前記双方向バルブ機構が前記流体圧源から供給される前記流体の圧力によりバルブの開度が可変できるように構成された複合型バルブ機構内に併存していることを特徴とする流体シリンダを用いたアクチュエータ。
【請求項2】
前記双方向バルブ機構が、可動ニードルを備えたロッドと、前記可動ニードルが移動可能に貫通する貫通孔を備え且つ前記貫通孔を通って流れる前記流体の流量が前記可動ニードルの位置によって制御される絞り部材と、前記貫通孔を通る前記流体が増える方向に前記可動ニードルを移動させるための付勢力を前記ロッドに常時与えるバネ部材と、前記絞り部材の前記貫通孔を通る前記流体の流量が減少する方向に前記可動ニードルを移動させるために前記流体圧源から供給される前記流体の圧力を利用して前記バネ部材の前記付勢力に抗して前記ロッドを変位させる流体駆動ロッド変位機構とを備えていることを特徴とする請求項に記載の流体シリンダを用いたアクチュエータ。
【請求項3】
前記チョークバルブ装置は、対応する前記チャンバに接続される第1の接続口、前記流体圧源に接続される第2の接続口及び前記第1の接続口と前記第2の接続口との間に位置して前記流体が流れる内部流路を備えた装置本体と、前記装置本体に対して前記バネ部材を装着するバネ部材装着構造とを具備し、前記装置本体の前記内部流路内に前記絞り部材と前記可動ニードルを備えた前記ロッドの一部とが配置され、前記絞り部材の外周部には、前記内部流路を囲む前記装置本体の内壁部との間に配置されて前記内壁部を弁座とするように動作する前記一方向バルブ機構のバルブが装着されている請求項に記載の流体シリンダを用いたアクチュエータ。
【請求項4】
前記装置本体には前記内部流路に連通するシリンダ部が設けられ且つ前記ロッドには前記シリンダ部内をスライドするピストン部が装着されて前記流体駆動ロッド変位機構が構成され、前記シリンダ部から延び出る前記ロッドの外側部分に前記バネ部材の前記付勢力を作用させるように前記バネ部材装着構造が構成されている請求項に記載の流体シリンダを用いたアクチュエータ。
【請求項5】
前記絞り部材と前記シリンダ部との間に位置する流路に前記第2の接続部が連通するように前記第2の接続部が配置されている請求項に記載の流体シリンダを用いたアクチュエータ。
【請求項6】
前記バネ部材は、前記装置本体側に内端を有し前記ロッドの外側端部側に外端を有して圧縮状態で配置されるコイルバネ部材からなり、前記バネ部材装着構造は、前記ロッドの前記外側部分に固定されて前記ロッドと一緒に動き前記コイルバネ部材の内側に位置して前記コイルバネ部材の前記内端と係合する係合部を備えた筒状部材と、前記筒状部材の外側に位置し、前記装置本体に対して変位しないように設けられて前記コイルバネ部材の中間部分を保持するバネ部材中間部保持構造とからなり、前記バネ部材中間部保持構造は前記コイルバネ部材の前記中間部分の保持位置を変えることにより、前記係合部との間に挟持する前記コイルバネ部材の圧縮バネとして機能する区間のターン数を調整し得るように構成されていることを特徴とする請求項に記載の流体シリンダを用いたアクチュエータ。
【請求項7】
前記バネ部材中間部保持構造は、前記コイルバネ部材の隣接する2つのターン部の間に挿入される楔部材を備えており、前記楔部材は前記コイルバネ部材を前記筒状部材を中心にして回転させることが可能な状態で配置されている請求項に記載の流体シリンダを用いたアクチュエータ。
【請求項8】
請求項1に記載の流体シリンダを用いたアクチュエータの制御方法であって、前記第1及び第2のチョークバルブ装置の一方側から前記シリンダ室内に前記流体圧源から前記流体を供給して前記流体シリンダのピストンの位置を変位させる際に、前記第1及び第2のチョークバルブ装置の前記排出バルブ機構の双方向バルブ機構の前記出方向に向かう前記流体の流量を制限することにより前記流体シリンダのピストンの外力による動き易さを定めることを特徴とする流体シリンダを用いたアクチュエータの制御方法。
【請求項9】
前記チョークバルブ装置に前記流体圧源から積極的に前記流体を供給して、前記ロッドに設けた前記ピストン部を変位させることにより前記可動ニードルで前記絞り部材の前記貫通孔を閉鎖することにより前記流体シリンダのピストンを停止させることを特徴とする請求項に記載の流体シリンダを用いたアクチュエータの制御方法。
【請求項10】
シリンダ室と、前記シリンダ室を第1のチャンバと第2のチャンバとに仕切るように前記シリンダ室内にスライド自在に配置されたピストンとを有する流体シリンダと、流体圧源と前記第1のチャンバとの間に配置されて前記第1のチャンバ内の流体圧を調整する第1のチョークバルブ装置と、前記流体圧源と前記第2のチャンバとの間に配置されて前記第1のチャンバ内の流体圧を調整する第2のチョークバルブ装置とを備えてなる流体シリンダを用いたアクチュエータの前記第1及び第2のチョークバルブ装置に用いるのに適したチョークバルブ装置であって、前記流体圧源側から対応する前記チャンバ側に向かう入方向にのみ流体が流れるのを許容する一方向バルブ機構と、前記流体圧源側から前記チャンバ側に向かう入方向と前記チャンバ側から前記流体圧源側に向かう出方向の双方向に前記流体を流すことを許容する双方向バルブ機構とを備え、前記双方向バルブ機構が、可動ニードルを備えたロッドと、前記可動ニードルが移動可能に貫通する貫通孔を備え且つ前記貫通孔を通って流れる前記流体の流量が前記可動ニードルの位置によって制御される絞り部材と、前記貫通孔を通る前記流体が増える方向に前記可動ニードルを移動させるための付勢力を前記ロッドに常時与えるバネ部材と、前記絞り部材の前記貫通孔を通る前記流体の流量が減少する方向に前記可動ニードルを移動させるために前記流体圧源から供給される前記流体の圧力を利用して前記バネ部材の前記付勢力に抗して前記ロッドを変位させる流体駆動ロッド変位機構と、前記バネ部材の圧縮バネとして機能する区間のターン数を調整し得るバネ部材装着構造を備えていることを特徴とするチョークバルブ装置。
発明の詳細な説明 【技術分野】
【0001】
本発明は、流体シリンダを用いたアクチュエータ及びその制御方法並びにこのアクチュエータに用いるチョークバルブ装置に関するものである。
【背景技術】
【0002】
特開2003-311667公報に示されるように、ロボットの関節を動かすためのアクチュエータとしては、従来からサーボモータ等の電動モータが用いられている。これはモータであれば、比較的手軽に入手できるためである。しかしながらモータは、ロボット全体が大型化する問題があり、また重量があるためにロボットの機械的強度の設計も重要になる。エアシリンダ等の流体シリンダは、モータと比較して、小形軽量であり、また構造が単純でメンテナンスも容易である等の利点があるため、ロボット用のアクチュエータとして有用なものと考えられている。

【特許文献1】特開2003-311667公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかしながらエアシリンダのような流体シリンダの適用を阻む最も大きな欠点としては、任意の位置においてピストンを動かしにくくする性能すなわち剛性を発揮させることが難しいという欠点がある。これはモータと異なり力発生の応答性が低いために、ピストンの位置を保つために外力へ抗する力をすばやく発生できないことが主な原因であると考えられている。これを解消するために、摩擦ブレーキやラッチなどを付加する方法が存在するが、それらを付加するのであれば、モータのみを使う方が合理的である。したがって、極力単純な機構でこの剛性を与える方法が必要である。しかしながら、従来はこの要求に応えることができる技術は提案されていない。
【0004】
本発明の目的は、簡単な構成でエアシリンダ等の流体シリンダに剛性を与えことができる流体シリンダを用いたアクチュエータ及びその制御方法を提供することにある。
【0005】
本発明の他の目的は、少ない部品点数で構成することができる流体シリンダを用いたアクチュエータを提供することにある。
【0006】
本発明の他の目的は、剛性の調整が容易な流体シリンダを用いたアクチュエータを提供することにある。
【0007】
本発明の他の目的は、流体シリンダを用いたアクチュエータ及びその制御方法に用いるのに適したチョークバルブ装置を提供することにある。
【課題を解決するための手段】
【0008】
本発明の流体シリンダを用いたアクチュエータは、流体シリンダと、第1及び第2のチョークバルブ装置とを備えている。流体シリンダは、シリンダ室と、シリンダ室を第1のチャンバと第2のチャンバとに仕切るようにシリンダ室内にスライド自在に配置されたピストンとを有する。ここで流体シリンダとは、エアシリンダやオイルシリンダ等のように流体の圧力を駆動源として動作するシリンダを意味する。また第1のチョークバルブ装置は、流体圧源と第1のチャンバとの間に配置されて第1のチャンバ内へ入出する流体の流量を調整する。そして第2のチョークバルブ装置は、流体圧源と第2のチャンバとの間に配置されて第2のチャンバ内へ入出する流体の流量を調整する。ここで流体圧源は、第1及び第2のチョークバルブ装置に対してそれぞれ別個に設けてもよいが、第1及び第2のチョークバルブ装置に対して共通の1つの流体圧源を用いてもよいのは勿論である。
【0009】
本発明では、第1のチョークバルブ装置及び第2のチョークバルブ装置は、それぞれ流体圧源側から対応するチャンバ側に向かう入方向に流体が流れるのを許容する供給バルブ機構と、チャンバ側から流体圧源側に向かう出方向に流体を流すことを許容する排出バルブ機構とを備えている。そして少なくとも排出バルブ機構として、バルブの開度が可変できるものを用いる。
【0010】
流体シリンダへの流体の入出を止めたり、また流体シリンダに接続された流体の流路を細めたりすれば、圧縮される流体の反発力(スプリング効果)や、入出する流体の流量抵抗(ダンパ効果)によって、ピストンの運動の抵抗となる受動的な抗力が生じる。本発明はこの受動的な効力の発生に着目し、この抗力を流体シリンダの剛性として利用する。すなわち、流体シリンダにおける第1のチャンバと第2のチャンバから排出される流体が流れる流路において、流体の流れを適切に絞る(チョーク)ことにより、ピストンの運動に対する抗力を有効に発生し、この抗力を利用して流体シリンダに剛性を付与する(所定の位置でピストンが停止してピストンが外力によって動きにくくなる状態にする)。
【0011】
例えば、ピストンをある運動方向に移動させた後に所定の位置で剛性を付与するためには、次のようにする。まずピストンを移動させる際に内部圧力を上昇させる必要のある側のチャンバに対して設けられた一方のチョークバルブ側の流体圧源からの流体の供給量(流体圧)を高める。次に、ピストンが移動して来る側のチャンバから流出する流体が流れるチョークバルブ装置により流体の流れを適宜に絞ることにより流体シリンダに剛性を付与する。この流体の流れを絞ることは、対応するチョークバルブ装置に設けられた排出バルブ機構のバルブの開度を変えることにより実現できる。この排出バルブ機構のバルブの開度を早期に0または0に近い値にすれば、早期にピストンを停止させて流体シリンダには高剛性を付与することができる。逆に、このバルブの開度を適宜に小さくすれば(調整すれば)、流体シリンダには低剛性を付与することができる。
【0012】
チョークバルブ装置に設ける供給バルブ機構及び排出バルブ機構は、それぞれ別個の構造物として構成されたものを用いてもよいが、供給バルブ機構及び排出バルブ機構が一つの構造物の中に併存した複合形バルブ機構を用いることもできる。
【0013】
別個の供給バルブ機構及び排出バルブ機構を用いる場合、例えば、排出バルブ機構は、バルブの位置を連続的に変えることができる連続可変式アクチュエータと、バルブの位置を検出するバルブ位置検出手段と、バルブ位置検出手段の出力に基づいて連続可変式アクチュエータをフィードバック制御する制御手段とから構成することができる。このような排出バルブ機構を用いると、バルブの位置をフィードバック制御により定めるため、迅速に且つ高い精度でバルブの開度を可変することができる。
【0014】
また別個の供給バルブ機構及び排出バルブ機構を用いる場合の他の排出バルブ機構として、次の構成を備えたものを採用することができる。この排出バルブ機構は、並列接続された、排出流路の断面積が異なる複数種類の開閉バルブと、バルブ選択制御手段とを備えている。バルブ選択制御手段は、排出時に複数種類の開閉バルブから少なくとも1以上の開閉バルブを選択して選択した開閉バルブを開状態にする。このようにすると、選択した開閉バルブの数と種類の組み合わせにより、少ない数の開閉バルブを用いて、高速且つ高精度に、複数種類のバルブ開度(流体の絞り状態)を段階的に得ることができる。なお使用する複数種類の開閉バルブとして、排出流路の断面積が、最小の断面積の2(n=0,1,2,3,…)倍の断面積を持つものを複数種類用意すると、配置する開閉バルブの数に対して最多の開度段階を得ることができる。
【0015】
また複合型排出バルブ機構としては、例えば、弁座ブロックと、弁体ブロックと、静止ブロックとが組み合わされた第1のタイプの複合型排出バルブ機構を採用することができる。弁座ブロックは、並設された通路幅が一定の排出通路と通路幅が徐々に変化する供給通路とを有する。また弁体ブロックは、1つの流通通路と該流通通路に連続して設けられて該流通通路よりも断面積が大きい大形流通通路とを備えて弁座ブロックに対してスライド可能に設けられる。そして弁体ブロックは、供給時には供給通路を完全に開いて排出流路を完全に閉じ、排出時には供給通路を完全に閉じ、排出通路と流通通路の対向面積を連続的に可変できるように位置が制御される。静止ブロックは、弁体ブロックの位置の如何にかかわらず大形流通通路と常時連通する大形流通通路よりも断面積の小さい小形流通通路を備えた静止ブロックとを備えている。このような構成の複合型バルブ機構では、少ない部品点数で、しかも簡単な構造で、供給バルブ機構及び排出バルブ機構を1つの機構内に併存させることができる。
【0016】
上記の具体的なバルブ機構は、小形に構成することが可能である。そのため流体シリンダの両側に隣接してそれぞれ供給バルブ機構と排出バルブ機構とを配置することができる。その結果、流体圧源と両バルブ機構との間の流体チューブを不要なものとすることも可能になる。
【0017】
また第2のタイプの複合型排出バルブ機構としては、圧力制御バルブ機構と、圧力制御バルブ機構を通して流体圧源側から対応するチャンバ側に向かう入方向にのみ流体が流れるのを許容する一方向バルブ機構と、圧力制御バルブ機構を通して流体圧源側からチャンバ側に向かう入方向とチャンバ側から流体圧源側に向かう出方向の双方向に流体を流すことを許容する双方向バルブ機構とを備え、双方向バルブ機構が流体圧源から供給される流体の圧力によりバルブの開度が可変できるように構成されたものを用いることもできる。このような双方向バルブ機構を備えた複合形バルブ機構を用いると、対応するチャンバに流体を積極的に供給して流体シリンダのピストンを移動させている一方のチョークバルブ装置では、一方向バルブ機構と双方向バルブ機構の両方を介して流体がチャンバに供給される。この状態で、他方のチョークバルブ装置では一方向バルブ機構は閉鎖状態にあり、双方向バルブ機構の開度を調整して出方向の流体の流れを適切に絞ることにより、流体シリンダに適宜の剛性を付与することができる。より詳しく説明すると、流体シリンダへの流体の入出を止めたり、また流体シリンダに接続された流体の流路を細めたりすれば、圧縮される流体の反発力(スプリング効果)や、入出する流体の流量抵抗(ダンパ効果)によって、ピストンの運動の抵抗となる受動的な抗力が生じる。本発明はこの受動的な効力の発生に着目し、この抗力を流体シリンダの剛性として利用している。すなわち、流体シリンダにおける第1のチャンバと第2のチャンバに供給されるまたはこれらのチャンバから排出される流体が流れる流路において、流体の流れを適切に絞る(チョーク)ことにより、ピストンの運動に対する抗力を有効に発生し、この抗力を利用して流体シリンダに剛性を付与する(所定の位置でピストンが停止してピストンが外力によって動きにくくなる状態にする)。
【0018】
例えば、ピストンをある運動方向に移動させた後に所定の位置で剛性を付与するためには、ピストンを移動させる際に内部圧力を上昇させる必要のある側のチャンバに対して設けられた一方のチョークバルブ側の流体圧源からの流体の供給量(流体圧)を高め、ピストンが移動して来る側のチャンバから流出する流体が流れるチョークバルブ装置において流体の流れを適宜に絞ることにより流体シリンダに剛性を付与する。絞りは、そのチョークバルブ装置に流体圧源から供給する流体の圧力を変えることにより双方向バルブ機構の開度調整することにより実現できる。この圧力を高くすれば、早期にピストンを停止させて流体シリンダには高剛性を付与することができる。逆に、この圧力を低くするとピストンは高速で移動し流体シリンダには低剛性を付与することになる。このような機能を、本願明細書では、流体圧に基づいて流路断面積を自動的に小さくする機能と定義する。またピストンを高速で運動させるためには、高い圧力の空気を大量に流体シリンダの一方のチャンバに流入させなければならない。そこで本発明では、チャンバへの流体の流入または供給のみを自由とするための一方向バルブ機構をバイパス手段として双方向バルブ機構に対して併設している。
【0019】
双方向バルブ機構は、流体圧源から供給される流体の圧力により開度が調整可能であればどのような構成でもよい。しかしながら全体の重量を軽くして、しかも構造を簡単にするためには、バネ部材を用いるのが好ましい。そこで可動ニードルを備えたロッドと、可動ニードルが移動可能に貫通する貫通孔を備え且つこの貫通孔を通って流れる流体の流量が可動ニードルの位置によって制御される絞り部材と、貫通孔を通る流体が増える方向に可動ニードルを移動させるための付勢力をロッドに常時与えるバネ部材と、絞り部材の貫通孔を通る流体の流量が減少する方向に可動ニードルを移動させるために流体圧源から供給される流体の圧力を利用してバネ部材の付勢力に抗してロッドを変位させる流体駆動ロッド変位機構と、バネ部材の圧縮バネとして機能する区間のターン数を調整し得るバネ部材装着構造から双方向バルブ機構を構成することができる。ロッドを変位させて可動ニードルを絞り部材の貫通孔内で変位させることにより、貫通孔を双方向に流れる流体の流量を簡単に調整できる。
【0020】
ここでチョークバルブ装置は、対応するチャンバに接続される第1の接続口、流体圧源に接続される第2の接続口及び第1の接続口と第2の接続口との間に位置して流体が流れる内部流路を備えた装置本体と、この装置本体に対してバネ部材を装着するバネ部材装着構造とを具備した構成とすることができる。装置本体の内部流路内には、絞り部材及び可動ニードルを備えたロッドの一部が配置される。そして絞り部材の外周部には、内部流路を囲む装置本体の内壁部との間に配置されて内壁部を弁座とするように動作する一方向バルブ機構のバルブを装着するのが好ましい。このような構成にすると、双方向バルブ機構と一方向バルブ機構とを同心的に配置することができ、バルブ機構の構造をコンパクトでしかも簡単なものにすることができる。
【0021】
また前述の流体駆動ロッド変位機構は、バネ部材の付勢力に抗する力を流体の圧力を利用してロッドに作用させることができるものであればどのような構造であってもよい。例えば、装置本体の内部流路に連通するシリンダ部を設け、ロッドにはこのシリンダ部内をスライドするピストン部を装着して流体駆動ロッド変位機構を構成することができる。このようにすると、ロッドに沿って流体駆動ロッド変位機構を構成することができるので、装置本体の寸法を必要以上に大きくすることがなくなる。
【0022】
またバネ部材装着構造は、シリンダ部から延び出るロッドの外側部分にバネ部材の付勢力を作用させるように構成すればよい。具体的には、バネ部材としては、装置本体側に内端を有しロッドの外側端部側に外端を有して圧縮状態で配置されるコイルバネ部材を用いることができる。そしてバネ部材装着構造は、ロッドの外側部分に固定されてロッドと一緒に動きコイルバネ部材の内側に位置してコイルバネ部材の内端と係合する係合部を備えた筒状部材と、この筒状部材の外側に位置し、装置本体に対して変位しないように設けられてコイルバネ部材の中間部分を保持するバネ部材中間部保持構造とから構成することができる。ここでバネ部材中間部保持構造は、コイルバネ部材の中間部分の保持位置を変えることにより、係合部との間に挟持するコイルバネ部材の長さを調整し得るように構成するのが好ましい。このようにするとアクチュエータの用途に応じて使用するコイルバネ部材のターン数を簡単に調整することができて、アクチュエータの制御特性を任意に調整することが可能になる。ここでコイルバネ部材のターン数とは、螺旋状にコイル線材が成形されて形成されるコイルバネ部材の表面に並んで現れるコイル線材の本数である。なお同じ区間内に配置されるコイルバネ部材のターン数が小さくなるほど、コイルバネ部材が硬くなり、流体圧源から供給される流体の圧力に対応する流路の絞り量が小さくなる。
【0023】
このバネ部材端部保持構造は、コイルバネ部材の隣接する2つのターン部の間に挿入される楔部材を備えた構造にするのが好ましい。この楔部材は、コイルバネ部材を筒状部材を中心にして回転させることが可能な状態で配置する。コイルバネ部材を回転させると、楔部材のコイルバネ部材に対する相対的な位置が変わる。その結果、楔部材と係合部との間に位置するコイルバネ部材のターン数を変更して、コイルバネ部材の圧縮力を簡単かつ連続的に調整することが可能になる。
【0024】
なお絞り部材とシリンダ部との間に位置する流路に第2の接続部が連通するように第2の接続部を配置する。このような配置構成にすると、第2の接続部の両側にロッドに沿ってバルブ機構と流体駆動ロッド変位機構とを配置することができ、チョークバルブ装置をコンパクトに構成することができる。
【0025】
本発明の流体シリンダを用いたアクチュエータの制御方法では、第1及び第2のチョークバルブ装置の一方側からシリンダ室内に積極的に流体圧源から流体を供給して流体シリンダのピストンの位置を変位させる際に、第1及び第2のチョークバルブ装置の他方の排出バルブ機構の出方向に向かう流体の流量を制限することにより流体シリンダのピストンの外力による動き易さすなわち剛性を定める。
【0026】
また前述の第2のタイプの複合形バルブ機構を用いる本発明の流体シリンダを用いたアクチュエータの制御方法では、第1及び第2のチョークバルブ装置の入方向側からシリンダ室内に積極的に流体を流体圧源から供給してピストンの位置を変位させる際に、第1及び第2のチョークバルブ装置の双方向バルブ機構の出方向に向かう流体の流量を制限することによりピストンの剛性を定める。またこの方法では、出方向側のチョークバルブ装置に流体圧源から積極的に流体を供給して、ロッドに設けたピストン部を変位させることにより積極的に可動ニードルで絞り部材の貫通孔を閉鎖することにより流体シリンダのピストンを停止させることができる。この制御方法によれば、第1及び第2のチョークバルブ装置の双方向バルブ機構の開度を調整することにより、流体シリンダの剛性と停止位置とを簡単且つ任意に定めることができる。
【図面の簡単な説明】
【0027】
【図1】本発明の流体シリンダを用いたアクチュエータの第1の実施の形態の概念図である。
【図2】本発明の流体シリンダを用いたアクチュエータの第2の実施の形態の概念図である。
【図3】本発明の流体シリンダを用いたアクチュエータの第3の実施の形態の概念図である。
【図4A】図3の第3の実施の形態で用いる複合形バルブ機構(弁座ブロック、弁体ブロック及び静止ブロック)の吸排出が停止されている状態を示す半部断面図である。
【図4B】図3の実施の形態で用いる複合形バルブ機構(弁座ブロック、弁体ブロック及び静止ブロック)の供給時の状態を示す半部断面図である。
【図4C】図3の実施の形態で用いる複合形バルブ機構(弁座ブロック、弁体ブロック及び静止ブロック)の排出時の状態を示す半部断面図である。
【図5A】図3の複合形バルブ機構(弁座ブロック、弁体ブロック及び静止ブロック)の分解斜視図である。
【図5B】図5Aの内部を透視する透視分解斜視図である。
【図5C】図5Aの180度異なる方向から見た分解斜視図である。
【図6A】図5Aの弁座ブロックを弁体ブロック側から見た図である。
【図6B】図6Aの弁座ブロックのVIA-VIA線断面図である。
【図7A】図5Aの弁体ブロックを弁座ブロック側から見た図である。
【図7B】図7Aの弁体ブロックのVIIA-VIIA線断面図である。
【図8】本発明の流体シリンダを用いたアクチュエータの第4の実施の形態の概念図である。
【図9】図8の第4の実施の形態で用いる本発明のチョークバルブ装置(一方向バルブ機構および双方向バルブ機構)の一部分解斜視図である。
【図10A】図8の第4の実施の形態で用いるチョークバルブ装置(一方向バルブ機構および双方向バルブ機構)の分解斜視図である。
【図10B】図10Aの90度異なる方向から見た分解斜視図である。
【図11A】図8の第4の実施の形態で用いるチョークバルブ装置(一方向バルブ機構および双方向バルブ機構)の半部断面斜視図である。
【図11B】図11Aの状態を90度異なる方向から見た分解斜視図である。
【図12】図8の第4の実施の形態で用いるチョークバルブ装置(一方向バルブ機構および双方向バルブ機構)の縦断面図である。
【図13】図8の第4の実施の形態で用いるバネ部材中間部保持構造の半部断面平面図である。
【図14A】図8の第4の実施の形態で用いるチョークバルブ装置の絞り機構(双方向バルブ機構の開度が全開時)の拡大部分断面図である。
【図14B】図8の第4の実施の形態で用いるチョークバルブ装置の絞り機構(双方向バルブ機構の開度が半開時)の拡大部分断面図である。
【図14C】図8の第4の実施の形態で用いるチョークバルブ装置の絞り機構(双方向バルブ機構の開度が閉鎖時)の拡大部分断面図である。

【発明を実施するための最良の形態】
【0028】
以下、図面を参照して本発明の実施の形態を説明する。図1乃至図3及び図8は、本発明の流体シリンダを用いたアクチュエータの第1乃至第4の実施の形態の構成を概念的に示す概念図である。
【0029】
まず、第1乃至第4の実施の形態のアクチュエータの共通点について説明する。第1乃至第4の実施の形態の流体シリンダを用いたアクチュエータは、流体シリンダ1、第1のチョークバルブ装置3,103,203,303及び第2のチョークバルブ装置5,105,205,305とを備えている。流体シリンダ1は、シリンダ室7と、シリンダ室7を第1のチャンバ9と第2のチャンバ11とに仕切るようにシリンダ室7内にスライド自在に配置されたピストン12とを有する。この例では、流体シリンダ1としてエアシリンダを用いるものとして説明する。しかし流体シリンダ1としては流体の圧力を駆動源として動作するシリンダであればオイルシリンダ等を用いることができるのは当然である。
【0030】
第1のチョークバルブ装置3,103,203,303は、図示しない流体圧源と第1のチャンバ9との間に配置されて第1のチャンバ9内へ入出する流体の流量を調整する。ここで流体圧源は、第1のチャンバ側9の圧力が流体圧源から供給する流体の圧力よりも大きくなったときには、第1のチャンバ9側から流出した流体を受け入れるように構成されている。また第2のチョークバルブ装置5,105,205,305は、流体圧源と第2のチャンバ11との間に配置されて第2のチャンバ11内へ入出する流体の流量を調整する。なお、第2のチョークバルブ装置5,105,205,305は、第1のチョークバルブ装置3,103,203,303と同じ構造を有し同一の作用を発揮するため、詳細を省略した単なるブロック図として示す。そこで以下の説明では、第1のチョークバルブ装置3,103,203,303の構成を説明することによって、第2のチョークバルブ装置5,105,205,305の説明は省略する。
【0031】
本発明の実施の形態では、流体圧源は、第1及び第2のチョークバルブ装置3,103,203,303及び5,105,205,305に対してそれぞれ別個に設けられている。しかしながら、第1及び第2のチョークバルブ装置3,103,203,303及び5,105,205,305に対して共通の1つの流体圧源を用いることもできる。共通の1つの流体圧源を用いる場合には、共通の流体圧源と第1及び第2のチョークバルブ装置3,103,203,303及び5,105,205,305との間に切り替え手段を設けておけばよい。
【0032】
図1は、本発明の第1の実施の形態の流体シリンダを用いたアクチュエータの構成を概略的に示す図である。図1に示すように第1のチョークバルブ装置3及び第2のチョークバルブ装置5は、それぞれ図示しない流体圧源側から対応するチャンバ側に向かう入方向に流体が流れるのを許容する供給バルブ機構13と、チャンバ側から流体圧源側に向かう出方向に流体を流すことを許容する排出バルブ機構15とを備えている。供給バルブ機構13および排出バルブ機構15は、流体の入出を行う供給口14および排出口16をそれぞれ有する。本実施の形態では、排出バルブ機構15は、バルブの開度が可変できるように構成されている。バルブの開度を可変にするために、本実施の形態では、バルブの位置を連続的に変えることができる連続可変式アクチュエータACと、バルブの位置を検出するバルブ位置検出手段PSと、制御手段CMとを備えている。制御手段CMは、バルブ位置検出手段PSの出力に基づいて連続可変式アクチュエータACをフィードバック制御する。このような構成にすると、流体シリンダ1への流体の入出を止めたり、また流体シリンダ1に接続された流体の流路を細めたりすることにより、圧縮される流体の反発力(スプリング効果)や、入出する流体の流量抵抗(ダンパ効果)が発生するため、ピストン12の運動の抵抗となる受動的な抗力を生じさせることができる。本発明の実施の形態は、この抗力を流体シリンダの剛性として利用している。すなわち、流体シリンダ1における第1のチャンバ9と第2のチャンバ11から排出される流体が流れる流路において、排出される流体の流れを適切に絞る(チョーク)ことにより、ピストン12の運動に対する抗力が有効に発生し、この抗力を利用して流体シリンダ1に剛性を付与することができる(所定の位置でピストン12が停止してピストン12が外力によって動きにくくなる状態にすることができる)。
【0033】
例えば、ピストン12を第2のチャンバ11側から第1のチャンバ9側方向に移動させた後に所定の位置で剛性を付与するためには、まず第2のチョークバルブ装置5側の流体圧源からの流体の供給量(流体圧)を高めて、第2のチャンバ11の内部圧力を上昇させる。次に、ピストン12が移動して来る第1のチャンバ9側のチャンバから流出する流体が流れる第1のチョークバルブ装置3内の排出バルブ機構のバルブの開度を適宜に調節して流体の流れを適宜に絞ることにより流体シリンダに剛性を付与する。この流体の流れを絞ることは、第1のチョークバルブ装置3に設けられた排出バルブ機構15のバルブの開度を、制御手段CMからの制御指令に基づいて連続可変式アクチュエータACを連続的に動作させてことにより実現できる。この排出バルブ機構15のバルブの開度を早期に0または0に近い値にすれば、早期にピストン12を停止させて流体シリンダ1には高剛性を付与することができる。逆に、このバルブの開度を適宜に小さくすれば(調整すれば)、流体シリンダには低剛性を付与することができる。なお、本実施の形態では、排出バルブ機構15のみバルブの開度が可変できるように構成されているが、この構成は排出バルブ機構15だけでなく供給バルブ機構13に設けてもよい。このようにすれば、流体の入出制御を高い精度で行うことができるため、流体シリンダ1に所望の剛性を与えることができる。
【0034】
また図2は、本発明の第2の実施の形態を示す図であり、第1の実施の形態と同様に別個の供給バルブ機構及び排出バルブ機構を用いるタイプのものである。なお図2には、図1に示した第1の実施の形態の構成と同様の構成には、流体シリンダの構成部分を除いて、図1に付した符号の数に100の数を加えた数の符号を付し、説明を省略する場合もある。この実施の形態では、排出バルブ機構115として、並列接続された、排出流路の断面積が異なる複数種類の開閉バルブ115a,115b,115cと、バルブ選択制御手段120とを備えている。また供給バルブ機構113及び排出バルブ機構115は、流体の入出を行うために供給口114及び排出口116を有する。バルブ選択制御手段120は、排出時に複数種類の開閉バルブ115a,115b,115cから少なくとも1以上の開閉バルブを選択して選択した開閉バルブを開状態にする。このようにすると、選択した開閉バルブの数と種類の組み合わせにより、少ない数の開閉バルブを用いて、複数種類のバルブ開度(流体の絞り状態)を段階的に得ることができる。複数種類の開閉バルブとしては、例えば、排出流路の断面積が、最小の断面積の2(n=0,1,2,3,…)倍の断面積を持つものを用いることができる。本実施の形態では3つの開閉バルブの断面積はそれぞれ1:2:4の比率[最小の断面積の2(n=0,1,2,3,…)倍の断面積]で構成されている。この場合、各開閉バルブを個々に開閉するだけで、流体の排出量を0:1:2:3:4:5:6:7の比率に調整することができる。すなわち、n+1個の開閉バルブを配置し、それらを個々に開閉することにより2n+1種類の排出量を多段階に設定できるため、高速且つ高精度に排出流量ならびに剛性を調整することが可能になる。
【0035】
図3乃至図7は、複合型排出バルブ機構を用いた第3の実施の形態の流体シリンダを用いたアクチュエータの概略構成を示す図である。この実施の形態では、図4乃至図7に示すように、弁座ブロック223と、弁体ブロック227と、静止ブロック229とが組み合わされた第1の複合型排出バルブ機構203および第2の複合型排出バルブ機構205を採用する。第1及び第2の複合型排出バルブ機構203,205は、流体の入出を行う供給口214および排出口216を有している。
【0036】
ここで、図4A乃至図7Bにより、複合型排出バルブ機構203の構造とその動作を説明する。弁座ブロック223は、並設された通路幅が一定の供給通路223Aと通路幅が徐々に変化する排出通路223Bとを有する。具体的には、供給通路223Aは、弁座ブロック223内に直方体の空間を構成するように形成されている。これに対して排出通路223Bは、供給通路223A側と対向する側が上底でその反対側が下底となる台形柱の空間を構成するように形成されている(図5B)。後述の弁体ブロック227と接触する面とは反対側の位地に、供給通路223A、排出通路223Bとそれぞれ連通する供給口223C、排出口223Dが設けられている。また弁体ブロック227は、1つの流通通路227Aと流通通路227Aに連続して設けられて流通通路227Aよりも断面積が大きい大形流通通路227Bとを備えて弁座ブロック223に対してスライド可能に設けられている。そして弁体ブロック227は、流体供給時には供給通路223Aを完全に開いて排出通路223Bを完全に閉じ(図4B)、流体排出時には供給通路223Aを完全に閉じ(図4A)、排出通路223Bと流通通路227Aの対向面積を連続的に可変できるように位置が制御される。静止ブロック229は、弁体ブロック227の位置の如何にかかわらず大形流通通路227Bと常時連通する大形流通通路227Bよりも断面積の小さい小形流通通路229Aを備えた静止ブロックとを備えている。供給口223C及び排出口223Dは、小形流通通路229Aとほぼ同径の形状を有する。第3の実施の形態における複合型バルブ機構を用いると、少ない部品点数で、しかも簡単な構造で、供給バルブ機構及び排出バルブ機構を1つの機構内に併存させることができる。
【0037】
図8乃至図14は、第2のタイプの複合型排出バルブ機構を有する本発明の第4の実施の形態を示す図である。この実施の形態では、圧力制御バルブ機構313,313´と、この圧力制御バルブ機構313,313´を通して図示しない流体圧源側から対応するチャンバ側に向かう入方向にのみ流体が流れるのを許容する一方向バルブ機構17,17´と、圧力制御バルブ機構313,313´を通して流体圧源側からチャンバ側に向かう入方向とチャンバ側から流体圧源側に向かう出方向の双方向に流体を流すことを許容する双方向バルブ機構19,19´とを備えている。圧力制御バルブ機構313,313´は、流体圧源により流体の供給および排出をそれぞれ一方向に行う供給バルブおよび排出バルブが一体になった吸排出バルブからなり、供給バルブ及び排出バルブには流体の供給を行う供給口314及び流体の排出を行う排出口316が設けられている。
【0038】
この場合は、双方向バルブ機構19,19´として図示しない流体圧源から供給される流体の圧力によりバルブの開度が可変できるように構成されたものを用いることもできる。このような双方向バルブ機構を備えた複合形バルブ機構を用いると、対応するチャンバに流体を積極的に供給して流体シリンダ1のピストン12を移動させている一方のチョークバルブ装置では、一方向バルブ機構と双方向バルブ機構の両方を介して流体がチャンバに供給される。一方向バルブ機構17,17´は、流体圧源側から対応するチャンバ9,11側に向かう入方向にのみ流体が流れるのを許容している。双方向バルブ機構19,19´は、図示しない流体圧源側からチャンバ9,11側に向かう入方向とチャンバ9,11側から流体圧源側に向かう出方向の双方向に流体を流すことを許容し、流体圧源から供給される流体の圧力により開度の調整が可能に構成されている。このような双方向バルブ機構19,19´を備えたチョークバルブ装置303,305を用いると、対応するチャンバ9,11に流体を積極的に供給して流体シリンダ1のピストン12を移動させているチョークバルブ装置303,305の一方では、一方向バルブ機構17,17´と双方向バルブ機構19,19´の両方を介して流体がチャンバ9,11に供給される。
【0039】
この状態で、チョークバルブ装置303,305の他方では一方向バルブ機構17´,17は閉鎖状態にあり、双方向バルブ機構19´,19の開度を調整して出方向の流体の流れを適切に絞ることにより、流体シリンダ1に適宜の剛性を付与することができる。つまり、流体シリンダ1への流体の入出を止めたり、また流体シリンダ1に接続された流体の流路を細めたりすれば、圧縮される流体(この例ではエアー)の反発力(スプリング効果)や、入出する流体(この例ではエアー)の流量抵抗(ダンパ効果)によって、ピストン12の運動の抵抗となる受動的な抗力が生じる。その結果、流体シリンダ1における第1のチャンバ9と第2のチャンバ11に供給されるまたはこれらのチャンバ9,11から排出される流体が流れる流路において、流体の流れを適切に絞る(チョーク)ことにより、ピストン12の運動に対する抗力を有効に発生し、この抗力を利用して流体シリンダ1に剛性を付与することができる。すなわち、所定の位置でピストン12を停止させてピストン12を外力によって動きにくい状態または、全く動かない状態にすることができる。
【0040】
例えば、ピストン12を第2のチャンバ11側から第1のチャンバ9側方向に移動させた後に所定の位置で剛性を付与する場合は、内部圧力を上昇させる必要のある側の第2のチャンバ11に対して設けられた第2のチョークバルブ305側の流体圧源からの流体の供給量(流体圧)を高め、ピストン12が移動して来る側の第1のチャンバ9から流出する流体が流れる第1のチョークバルブ装置303において流体の流れを適宜に絞ることにより流体シリンダ1に剛性を付与する。絞りは、そのチョークバルブ装置に流体圧源から供給する流体の圧力を変えることにより双方向バルブ機構19,19´の開度を調整することにより実現する。この圧力を高くすれば、早期にピストン12を停止させて流体シリンダ1には高剛性を付与することができる。逆に、この圧力を低くするとピストン12は高速で移動し流体シリンダ1には低剛性を付与することができる。またピストン12を高速で運動させるためには、高い圧力の流体(エアー)を大量に流体シリンダ1の一方のチャンバ9,11に流入させなければならない。そのため、本実施の形態では、チャンバ9,11への流体の流入または供給のみを自由とするための一方向バルブ機構17,17´をバイパス手段として双方向バルブ機構19,19´に対して併設している。
【0041】
次に、本発明の流体シリンダを用いたアクチュエータに使用するチョークバルブ装置303,305の一例について説明する。図9は本発明の実施の形態で用いるチョークバルブ装置303,305の一部分解斜視図であり、図10Aは図9のチョークバルブ装置303,305の分解斜視図であり、図10Bは図10Aとは90度異なる方向から見た分解斜視図であり、図11Aは図9のチョークバルブ装置303,305の半部断面斜視図であり、図11Bは図11Aとは90度異なる方向から見た分解斜視図であり、図12は図9のチョークバルブ装置303,305の縦断面図である。これらの図において、符号30を付した部材は、チョークバルブ装置303,305のハウジングである。このハウジング30は、内部に流路本体32を備えている。流路本体32は、ハウジング30に対してビス38により固定されている。流路本体32は、内部に流路を有する筒状の本体部32Aと後に説明する筒状のシリンダ部49とを一体に備えている。本体部32Aの内部空間とシリンダ部49の内部空間とは連通している。本体部32Aの外周部には、径方向に周壁を貫通する貫通孔32Bが形成されており、また周方向に延びるオーリング嵌合溝32Cが形成されている。オーリング嵌合溝32Cには、オーリング48が嵌合されている。ハウジング30は、流路本体32に形成された貫通孔32Bに対応する位置に径方向に貫通する貫通孔30Aを備えている。またハウジング30には、貫通孔30Aと径方向に対向する位置に別の貫通孔30Bが形成されており、さらにハウジング30の後半部分には長手方向に並び径方向に対向する6つの貫通孔30Cが形成されている。これらの貫通孔30Cは、ハウジング30の軽量化に寄与し、また後述するコイルバネ部材29が変位する際の空気抜き孔として機能する。なお、コイルバネ部材29は、本発明のバネ部材として機能している。
【0042】
ハウジング30の前方側端部には、第1のジョイント部材34が固定されている。そして第1のジョイント部材34は、ハウジング30の前方端部に嵌合される環状の環状部34aを備えた本体部34Aを有している。環状部34aの外周部にはオーリング46が嵌合される環状の溝が形成されている。また第1のジョイント部材34の本体部34Aには管路接続用ノズル34Bが嵌合されている。この管路接続用ノズル34Bが、対応するチャンバ9,11に接続される第1の接続口33を構成している。またハウジング30の貫通孔30Aと流路本体32の貫通孔32Bとが整合して形成されて図示しない流体圧源に接続される第2の接続口35が構成されている。第2の接続口35には、チョークバルブ装置303,305と流体圧源とを接続する第2のジョイント部材36が嵌合されて固定されている。なおハウジング30の前方部分と流路本体32とにより第1の接続口33と第2の接続口35との間に位置して流体が流れる内部流路37を備えた装置本体39が構成されている。そして装置本体39に対しては、コイルバネ部材29を装着するバネ部材装着構造41が設けられている。
【0043】
ハウジング30の内部には、流路本体32と第1のジョイント部材34との間に、一般的にオリフィスと呼ばれる絞り部材27が配置されている。絞り部材27は、筒状の周壁部27Aと筒状の周壁部27Aの一端を塞ぐ底壁部27Bとを備えている。底壁部27Bには、可動ニードル21が移動可能に貫通する貫通孔25が形成されている。図14に示されるように、絞り部材27の外径寸法は、流路本体32の前方側開口部の内部に形成されたテーパー面に当接して後方への移動が阻止可能な寸法を有している。図14Aに拡大して示すように、絞り部材27の周壁部27Aの外周部には、環状の溝27Cが形成されている。この溝27Cには、内部流路37を囲む装置本体の内壁部(ハウジング30の内壁部)との間に配置されて内壁部を弁座とするように動作する一方向バルブ機構17,17´のゴム製のバルブ47が嵌合されて固定されている。このバルブ47は、リング形状を有しており、しかもハウジング30の前方側端面に開口する横断面形状がV字状をなす溝47Aを備えている。
【0044】
絞り部材27の貫通孔25を、可動ニードル21の一部が貫通している。可動ニードル21は、後述するロッド23の先端部に螺合されて固定される固定側ねじ付端部21Aと、このねじ付端部21Aよりも大径の部分21Bと、この部分に連続して前方側に向かって広がる環状のテーパー部21Cと、テーパー部21Cと連続して絞り部材27の内部に位置する部分21Dと、この部分21Dと連続して設けられてドライバスロット21Fが形成された頭部21Eとを有している。ドライバスロット21Fにマイナスドライバの先端を嵌合して回転させることにより、可動ニードル21はロッド23の先端に設けられた図示しないねじ孔部にねじ付端部21Aが螺合される。テーパー部21Cの前方に位置する部分21Dが貫通孔25に嵌合され、頭部21Eが絞り部材27の底壁部27Bと当接することにより、貫通孔25を通る流体の流れが完全に停止される。可動ニードル21の位置が変わってテーパー部21Cまたは部分21Dと貫通孔25の縁部との間の間隙寸法が変わることにより貫通孔25を通る流体の流量が調整される。この例では、可動ニードル21と絞り部材27とにより双方向バルブ機構19,19´が構成されている。
【0045】
ロッド23は、可動ニードル21が固定される先端部23Aと、後述するピストン部51が嵌合されて固定されるロッド本体23Bと、ハウジング30の外部に突出する突出端部23Cとを備えている。ロッド本体23Bの突出端部23C側の部分には、ロッド23の長手方向に沿って嵌合溝23Dが形成されている。ロッド23のロッド本体23Bに固定されたピストン部51は、流路本体32に一体に設けられたシリンダ部49内にスライド可能に嵌合されている。
【0046】
ロッド23は、コイルバネ部材29によって常時付勢されている。コイルバネ部材29は、絞り部材27の貫通孔25を通る流体の流量が増える方向に可動ニードル21を移動させるための付勢力をロッド23に常時与える。このアクチュエータ装置では、絞り部材27の貫通孔25を通る流体の流量が減少する方向に可動ニードル21を移動させるために流体圧源から供給される流体の圧力を利用してコイルバネ部材29の付勢力に抗してロッド23を変位させる流体駆動ロッド変位機構31を備えている。具体的には、流体駆動ロッド変位機構31は、装置本体39の内部流路37に連通するシリンダ部49と、ロッド23に固定されてシリンダ部49内をスライドするピストン部51とを備えている。流体圧源からの流体の圧力で流路本体32内の圧力の増加に応じて、コイルバネ部材29の付勢力に抗してピストン部51が絞り部材27から離れる方向に変位する。コイルバネ部材29は、バネ部材装着構造41によってハウジング30に対して装着されている。ピストン部51が絞り部材27から離れる方向に最大限変位すると、可動ニードル21が貫通孔25を完全に閉じる。
【0047】
バネ部材装着構造41は、シリンダ部49から延び出るロッド23の外側部分を構成する突出端部23Cにコイルバネ部材29の付勢力を作用させるように構成されている。この例で用いているコイルバネ部材29は、装置本体39側に内端を有しロッド23の外側端部側に外端を有して圧縮状態で配置される。バネ部材装着構造41は、筒状部材59と、バネ部材中間部保持構造61とから構成されている。筒状部材59は、主要部分がハウジング30の内部に配置され、シリンダ部49に対して一端が嵌合されている。筒状部材59の一端(内端)には係合部を構成するフランジ部59Aが一体に設けられており、このフランジ部59Aにはコイルバネ部材29の内端が係合している。筒状部材59の他端(外端)には、ロッド23に形成された嵌合溝23Dが形成された部分がきつく嵌合される嵌合孔59Bが形成されている。嵌合孔59Bが形成された部分59Cが、ロッド23の嵌合溝23Dの内側端部に隣接する面23Eと係合することにより、ロッド23と筒状部材59との位置決めが図られる。ロッド23と筒状部材59とは一緒になって変位する。
【0048】
バネ部材中間部保持構造61は、筒状部材59の部分59Cの外側に位置し、装置本体39に対して変位しないようにハウジング30の端部に固定され、コイルバネ部材29の中間部分29aを保持するように構成されている。この例のバネ部材中間部保持構造61では、コイルバネ部材29の中間部分29aの保持位置を変えることができるようになっている。具体的には、バネ部材中間部保持構造61は、図13に示すようにコイルバネ部材29の隣接する2つのターン部29bとターン部29cとの間に挿入される楔部材64と、楔部材64に取付られた狭持片65とから構成されている。楔部材64は、ハウジング30に接着剤で固定されている。楔部材64をハウジング30に固定する方法としては、溶接等の適宜の取り付け手段を用いても良いのはもちろんである。狭持片65は、コイルバネ部材29のターン部の一部分を狭持するようにねじにより楔部材64に取り付けられている。これにより、コイルバネ部材29が回転しなくなる。狭持片65を楔部材64から取り外した状態で、この楔部材64は、コイルバネ部材29を、筒状部材59を中心にして回転させることが可能な状態で配置されている。コイルバネ部材29を回転させると、楔部材64のコイルバネ部材29に対する相対的な位置が変わる。その結果、楔部材64と係合部を構成するフランジ部59Aとの間に位置するコイルバネ部材29のターン数を変更して、アクチュエータの制御特性を任意に調整することが可能になる。また、コイルバネ部材29は、狭持片65の楔部材64が固定される面と反対の面を支点として変位することになる。
【0049】
図14A~図14Cは、上記実施の形態で用いる第1のチョークバルブ装置303の双方向バルブ機構19の開度がそれぞれ全開、半開及び閉鎖の各状態における絞り部材27の拡大部分断面図である。図14A~図14Cを用いて第1のチョークバルブ装置303におけるバルブ機構17,19について説明する。この実施の形態では、可動ニードル21のストロークは最大で10mm移動可能に設定されている。チャンバ9,11内の流体の圧力が0の状態では、可動ニードル21が最も左に位置し、双方向バルブ機構19の開度は全開となっている(図14A)。同時に一方向バルブ機構17の開度も全開となっている。チャンバ9,11内の流体の圧力が0より大きくなるに従って可動ニードル21は右に移動し(図14B)、同時に双方向バルブ機構の開度も閉まる方向に小さくなる。チャンバ9,11内の流体の圧力が一定圧力以上になると、図14Cに示すように可動ニードル21は最も右に位置して、双方向バルブ機構19は全閉状態となる。
【0050】
楔部材64のコイルバネ部材29に対する相対的な位置を変更する際には、双方向バルブ機構19の開度が全開となるために可動ニードル21が最も左に位置する状態において、コイルバネ部材29の付勢力が零となりかつコイルバネ部材29の内端とフランジ部59Aの接触が保たれるため、ロッド23と筒状部材59との間の相対的な勘合位置も同時に変更する。勘合位置の変更は、ロッド23と筒状部材59を結合する結合ねじ43を一旦緩め、嵌合溝23Dに沿って筒状部材59をスライドさせることにより行う。なお、適切な固定位置は、図12に示す筒状部材59の外端部とロッド23の外端部との間の長さL2を見ることにより容易に判断可能である。
【0051】
次に本発明の実施の形態における流体シリンダ1を用いたアクチュエータの制御方法について説明する。例えば、第2のチョークバルブ装置305の入方向側からシリンダ室7内に積極的に流体を流体圧源から供給してピストン12の位置を変位させる際に、第1のチョークバルブ装置303の双方向バルブ機構19の出方向に向かう流体の流量を制限することによりピストンの剛性を定めるものとする。この場合には、第1のチョークバルブ装置303に流体圧源から積極的に流体を供給して、ロッド23に設けたピストン部51を変位させることにより積極的に可動ニードル21で絞り部材27(オリフィス)の貫通孔を閉鎖することにより流体シリンダ1のピストンを停止させることができる。このようにすると、チョークバルブ装置303,305の双方向バルブ機構19,19´の開度を調整することにより、流体シリンダ1の剛性と停止位置とを簡単且つ任意に定めることができる。
【産業上の利用可能性】
【0052】
本発明によれば、チョークバルブ装置の排出バルブ機構のバルブの開度を調整することにより、流体シリンダに剛性を付与することができる。そのため本発明により、流体シリンダをロボット等の制御機器の駆動用アクチュエータとして現実的に利用することが可能になる。
図面
【図1】
0
【図2】
1
【図3】
2
【図4A】
3
【図4B】
4
【図4C】
5
【図5A】
6
【図5B】
7
【図5C】
8
【図6A】
9
【図6B】
10
【図7A】
11
【図7B】
12
【図8】
13
【図9】
14
【図10A】
15
【図10B】
16
【図11A】
17
【図11B】
18
【図12】
19
【図13】
20
【図14A】
21
【図14B】
22
【図14C】
23