TOP > 国内特許検索 > 音響装置及び音響調整方法 > 明細書

明細書 :音響装置及び音響調整方法

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第4750153号 (P4750153)
公開番号 特開2009-288354 (P2009-288354A)
登録日 平成23年5月27日(2011.5.27)
発行日 平成23年8月17日(2011.8.17)
公開日 平成21年12月10日(2009.12.10)
発明の名称または考案の名称 音響装置及び音響調整方法
国際特許分類 G10L  21/02        (2006.01)
G10L  21/04        (2006.01)
H04R  25/00        (2006.01)
FI G10L 21/02 301B
G10L 21/04 120E
H04R 25/00 L
請求項の数または発明の数 14
全頁数 23
出願番号 特願2008-138827 (P2008-138827)
出願日 平成20年5月28日(2008.5.28)
審査請求日 平成20年5月29日(2008.5.29)
特許権者または実用新案権者 【識別番号】503360115
【氏名又は名称】独立行政法人科学技術振興機構
発明者または考案者 【氏名】寅市 和男
【氏名】中村 光晃
【氏名】諸岡 泰男
個別代理人の代理人 【識別番号】100080089、【弁理士】、【氏名又は名称】牛木 護
【識別番号】100137800、【弁理士】、【氏名又は名称】吉田 正義
【識別番号】100148253、【弁理士】、【氏名又は名称】今枝 弘充
【識別番号】100148079、【弁理士】、【氏名又は名称】梅村 裕明
審査官 【審査官】菊池 智紀
参考文献・文献 特開2006-020906(JP,A)
特表2007-508751(JP,A)
特開平11-196496(JP,A)
特開平10-126895(JP,A)
特開2001-204098(JP,A)
大山健二 他,"聴覚障害補償へのディジタル技術の利用 -ラウドネス補償型ディジタル補聴器の開発-",日本音響学会誌,1991年10月 1日,VOl.47,No.10,p.766-711
調査した分野 G10L 21/00-21/06
H04R 25/00-25/04
H03G 1/00-11/08
JSTPlus(JDreamII)
特許請求の範囲 【請求項1】
ユーザが検知した最小の音圧レベルである知覚音圧レベルを周波数帯域毎に特定し、該ユーザの聴覚特性を検査する聴覚検査手段と、
該ユーザに聴取させる音楽が音響信号として入力部から入力され、前記音響信号の周波数特性を、前記聴覚検査手段からの出力結果に基づいて前記ユーザの聴覚特性に適した周波数特性に調整する調整手段とを備え、
前記聴覚検査手段は、一般的なユーザが周波数帯域毎に聞き取った最小の音圧レベルを表した統計的な標準音圧曲線を記憶しており、該標準音圧曲線の標準音圧レベルと、前記知覚音圧レベルとの比である音圧係数を、前記ユーザが検査した周波数帯域毎に算出し、
検査した前記周波数帯域の間毎に該音圧係数と周波数帯域との関係式を生成し、これら複数の前記関係式を基に知覚音圧レベル傾向を推測し、その推測結果から前記ユーザが聞き取り難い前記音響信号の周波数帯域の音圧レベルを、前記調整手段によって増幅させる
ことを特徴とする音響装置。
【請求項2】
前記聴覚検査手段は、
検査音に対するユーザからの応答があるまで、周波数帯域毎に前記検査音の音圧レベルを増加させながら前記ユーザに対して該検査音を提示する検査音出力手段と、
前記ユーザからの応答により前記周波数帯域毎に前記知覚音圧レベルを特定する特定手段とを備え、
前記調整手段は、
入力された前記音響信号を複数の周波数帯域に分離する帯域分離部を備え、前記帯域分離部にて分離した前記周波数帯域毎に前記ユーザが聞き取り難い周波数帯域の音圧レベルを、前記推測結果を基に増減させる
ことを特徴とする請求項1記載の音響装置。
【請求項3】
前記聴覚検査手段は、
前記音圧係数と周波数帯域との関係式に基づいて、前記知覚音圧レベルが特定された周波数帯域以外の周波数帯域における前記ユーザ固有の知覚音圧レベル傾向を算出して全周波数帯域の前記知覚音圧レベル傾向を示した知覚音圧曲線を、前記推測結果として生成する生成手段を備え、
前記調整手段は、前記知覚音圧曲線に基づいて各前記周波数帯域毎に音圧レベルを増減させる
ことを特徴とする請求項2記載の音響装置。
【請求項4】
前記知覚音圧曲線は周波数に関するn次多項式で表し、該n次多項式に基づき各周波数における音圧調整レベルを生成する
ことを特徴とする請求項3記載の音響装置。
【請求項5】
前記聴覚検査手段には、予め生成した複数の前記知覚音圧曲線が記憶されている
ことを特徴とする請求項3又は4記載の音響装置。
【請求項6】
前記聴覚検査手段に記憶された複数の前記知覚音圧曲線のうち、所望の前記知覚音圧曲線をユーザに選択させるための選択手段を備える
ことを特徴とする請求項5に記載の音響装置。
【請求項7】
前記検査音出力手段は、聴覚特性検査のための微小音を発生させる微小音発生手段と、前記ユーザが前記微小音を知覚したとき、前記ユーザに確認信号を入力させるための確認信号入力手段とを備える
ことを特徴とする請求項2~6のうちのいずれか1項記載の音響装置。
【請求項8】
聴覚検査手段によって、ユーザが検知した最小の音圧レベルである知覚音圧レベルを周波数帯域毎に特定し、該ユーザの聴覚特性を検査する聴覚検査ステップと、
一般的なユーザが周波数帯域毎に聞き取った最小の音圧レベルを表した統計的な標準音圧曲線を記憶した前記聴覚検査手段によって、該標準音圧曲線の標準音圧レベルと、前記知覚音圧レベルとの比である音圧係数を、前記ユーザが検査した周波数帯域毎に算出する算出ステップと、
該ユーザに聴取させる音楽が音響信号として入力部から入力され、調整手段によって、前記音響信号の周波数特性を、前記聴覚検査ステップを行う前記聴覚検査手段からの出力結果に基づいて前記ユーザの聴覚特性に適した周波数特性に調整する調整ステップとを備え、
前記調整ステップでは、検査した前記周波数帯域の間毎に前記音圧係数と周波数帯域との関係式を生成し、これら複数の前記関係式を基に知覚音圧レベル傾向を推測し、その推測結果から前記ユーザが聞き取り難い前記音響信号の周波数帯域の音圧レベルを、前記調整手段によって増幅させる
ことを特徴とする音響調整方法。
【請求項9】
前記聴覚検査ステップは、
検査音に対するユーザからの応答があるまで、周波数帯域毎に前記検査音の音圧レベルを増加させながら前記ユーザに対して該検査音を提示する検査音出力ステップと、
前記ユーザからの応答により前記周波数帯域毎に前記知覚音圧レベルを特定する特定ステップとを備え、
前記調整ステップは、
帯域分離部によって、前記入力部からの前記音響信号を複数の周波数帯域に分離し、前記調整手段によって、前記帯域分離部にて分離した前記周波数帯域毎に前記ユーザが聞き取り難い周波数帯域の音圧レベルを、前記推測結果を基に増減させる
ことを特徴とする請求項8記載の音響調整方法。
【請求項10】
前記聴覚検査ステップは、
前記音圧係数と周波数帯域との関係式に基づいて、前記知覚音圧レベルが特定された周波数帯域以外の周波数帯域における前記ユーザ固有の知覚音圧レベル傾向を算出して全周波数帯域の前記知覚音圧レベル傾向を示した知覚音圧曲線を、前記推測結果として生成する生成ステップを、前記特定ステップの後に備え、
前記調整ステップは、
前記知覚音圧曲線に基づいて各前記周波数帯域毎に音圧レベルを増減させる
ことを特徴とする請求項9記載の音響調整方法。
【請求項11】
前記知覚音圧曲線は周波数に関するn次多項式で表し、該n次多項式に基づき各周波数における音圧調整レベルを生成する
ことを特徴とする請求項10記載の音響調整方法。
【請求項12】
前記聴覚検査ステップは、複数の前記知覚音圧曲線を予め生成して記憶しておく
ことを特徴とする請求項10又は11記載の音響調整方法。
【請求項13】
前記聴覚検査ステップは、予め複数ユーザの前記知覚音圧曲線をそれぞれ生成して記憶しておき、音響信号再生時にユーザが、前記記憶された複数の知覚音圧曲線の中からユーザに適した知覚音圧曲線を選択させて前記音圧レベルを調整する
ことを特徴とする請求項10~12のうちいずれか1項記載の音響調整方法。
【請求項14】
前記聴覚検査ステップは、微小音発生手段によって微小音を発生させ、前記ユーザが前記微小音を知覚したとき、前記ユーザに確認信号入力手段を介して確認信号を入力させ、前記知覚音圧レベルを特定する
ことを特徴とする請求項8~13のうちのいずれか1項記載の音響調整方法。
発明の詳細な説明 【技術分野】
【0001】
本発明は、音響装置及び音響調整方法に関し、例えば所定のサンプリング周波数でサンプリングされた時間方向に並ぶ離散データ間を補間してアナログ信号を生成する際に適用して好適なものである。
【背景技術】
【0002】
従来、オーディオ装置においては、例えばCD(Compact Disc)やDVD(Digital Versatile Disc)等の記録媒体を再生する際に、音量摘み(ボリューム摘み)が操作されることにより、スピーカから出力される音量が変化し、ユーザが難聴者や高齢者であっても、再生音を聞き取り易くできる(例えば、特許文献1参照)。

【特許文献1】特開2004-260518号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかしながら、実際には難聴者や高齢者であっても、全ての周波数帯域が聞き取り難いわけではなく、ある特定の周波数帯域のみが聞き取り難い場合もある。このような場合には、単に音量を増加させると、聞き取り易い周波数帯域の音量も増加することによって、他の周波数帯域が聞き取り難くなり、その結果、音質が劣ってしまうという問題があった。そこで、各ユーザの聴覚特性や音楽の種類等に応じてユーザの聴覚特性に適した音質に調整できることが望まれている。
【0004】
本発明は以上の点を考慮してなされたもので、ユーザの聴覚特性に応じた良好な音質で再生することができる音響装置及び音響調整方法を提案することを目的とする。
【課題を解決するための手段】
【0005】
かかる課題を解決するため本発明の請求項1の音響装置は、ユーザが検知した最小の音圧レベルである知覚音圧レベルを周波数帯域毎に特定し、該ユーザの聴覚特性を検査する聴覚検査手段と、該ユーザに聴取させる音楽が音響信号として入力部から入力され、前記音響信号の周波数特性を、前記聴覚検査手段からの出力結果に基づいて前記ユーザの聴覚特性に適した周波数特性に調整する調整手段とを備え、前記聴覚検査手段は、一般的なユーザが周波数帯域毎に聞き取った最小の音圧レベルを表した統計的な標準音圧曲線を記憶しており、該標準音圧曲線の標準音圧レベルと、前記知覚音圧レベルとの比である音圧係数を、前記ユーザが検査した周波数帯域毎に算出し、検査した前記周波数帯域の間毎に該音圧係数と周波数帯域との関係式を生成し、これら複数の前記関係式を基に知覚音圧レベル傾向を推測し、その推測結果から前記ユーザが聞き取り難い前記音響信号の周波数帯域の音圧レベルを、前記調整手段によって増幅させることを特徴とする。

【0006】
また、本発明の請求項2の音響装置は、前記聴覚検査手段は、検査音に対するユーザからの応答があるまで周波数帯域毎に前記検査音の音圧レベルを増加させながら前記ユーザに対して該検査音を提示する検査音出力手段と、前記ユーザからの応答によ前記周波数帯域毎に前記知覚音圧レベルを特定する特定手段とを備え、前記調整手段は、入力された前記音響信号を複数の周波数帯域に分離する帯域分離部を備え、前記帯域分離部にて分離した前記周波数帯域毎に前記ユーザが聞き取り難い周波数帯域の音圧レベルを、前記推測結果を基に増減させることを特徴とする。

【0007】
また、本発明の請求項3の音響装置は、前記聴覚検査手段は、前記音圧係数と周波数帯域との関係式に基づいて、前記知覚音圧レベルが特定された周波数帯域以外の周波数帯域における前記ユーザ固有の知覚音圧レベル傾向を算出して全周波数帯域の前記知覚音圧レベル傾向を示した知覚音圧曲線を、前記推測結果として生成する生成手段を備え、前記調整手段は、前記知覚音圧曲線に基づいて各前記周波数帯域毎に音圧レベルを増減させることを特徴とする。

【0008】
また、本発明の請求項4の音響装置は、前記知覚音圧曲線は周波数に関するn次多項式で表し、該n次多項式に基づき各周波数における音圧調整レベルを生成することを特徴とする。
【0009】
また、本発明の請求項5の音響装置は、前記聴覚検査手段には、予め生成した複数の前記知覚音圧曲線が記憶されていることを特徴とする。
【0010】
また、本発明の請求項6の音響装置は、 前記聴覚検査手段に記憶された複数の前記知覚音圧曲線のうち、所望の前記知覚音圧曲線をユーザに選択させるための選択手段を備えることを特徴とする。
【0011】
また、本発明の請求項7の音響装置は、 前記検査音出力手段は、聴覚特性検査のための微小音を発生させる微小音発生手段と、前記ユーザが前記微小音を知覚したとき、前記ユーザに確認信号を入力させるための確認信号入力手段とを備えることを特徴とする。
【0012】
また、本発明の請求項8の音響調整方法は、聴覚検査手段によって、ユーザが検知した最小の音圧レベルである知覚音圧レベルを周波数帯域毎に特定し、該ユーザの聴覚特性を検査する聴覚検査ステップと、一般的なユーザが周波数帯域毎に聞き取った最小の音圧レベルを表した統計的な標準音圧曲線を記憶した前記聴覚検査手段によって、該標準音圧曲線の標準音圧レベルと、前記知覚音圧レベルとの比である音圧係数を、前記ユーザが検査した周波数帯域毎に算出する算出ステップと、該ユーザに聴取させる音楽が音響信号として入力部から入力され、調整手段によって、前記音響信号の周波数特性を、前記聴覚検査ステップを行う前記聴覚検査手段からの出力結果に基づいて前記ユーザの聴覚特性に適した周波数特性に調整する調整ステップとを備え、前記調整ステップでは、検査した前記周波数帯域の間毎に前記音圧係数と周波数帯域との関係式を生成し、これら複数の前記関係式を基に知覚音圧レベル傾向を推測し、その推測結果から前記ユーザが聞き取り難い前記音響信号の周波数帯域の音圧レベルを、前記調整手段によって増幅させることを特徴とする。
【0013】
また、本発明の請求項9の音響調整方法は、記聴覚検査ステップは、検査音に対するユーザからの応答があるまで周波数帯域毎に前記検査音の音圧レベルを増加させながら前記ユーザに対して該検査音を提示する検査音出力ステップと、前記ユーザからの応答によ前記周波数帯域毎に前記知覚音圧レベルを特定する特定ステップとを備え、前記調整ステップは、帯域分離部によって、前記入力部からの前記音響信号を複数の周波数帯域に分離し、前記調整手段によって、前記帯域分離部にて分離した前記周波数帯域毎に前記ユーザが聞き取り難い周波数帯域の音圧レベルを、前記推測結果を基に増減させることを特徴とする。

【0014】
また、本発明の請求項10の音響調整方法は、前記聴覚検査ステップは、前記音圧係数と周波数帯域との関係式に基づいて、前記知覚音圧レベルが特定された周波数帯域以外の周波数帯域における前記ユーザ固有の知覚音圧レベル傾向を算出して全周波数帯域の前記知覚音圧レベル傾向を示した知覚音圧曲線を、前記推測結果として生成する生成ステップを、前記特定ステップの後に備え、前記調整ステップは、前記知覚音圧曲線に基づいて各前記周波数帯域毎に音圧レベルを増減させることを特徴とする。
【0015】
また、本発明の請求項11の音響方法は、前記知覚音圧曲線は周波数に関するn次多項式で表し、該n次多項式に基づき各周波数における音圧調整レベルを生成することを特徴とする。
【0016】
また、本発明の請求項12の音響調整方法は、前記聴覚検査ステップは、複数の前記知覚音圧曲線を予め生成して記憶しておくことを特徴とする。
【0017】
また、本発明の請求項13の音響方法は、前記聴覚検査ステップは、予め複数ユーザの前記知覚音圧曲線をそれぞれ生成して記憶しておき、音響信号再生時にユーザが、前記記憶された複数の知覚音圧曲線の中からユーザに適した知覚音圧曲線を選択させて前記音圧レベルを調整することを特徴とする。
【0018】
また、本発明の請求項14の音響方法は、前記聴覚検査ステップは、微小音発生手段によって微小音を発生させ、前記ユーザが前記微小音を知覚したとき、前記ユーザに確認信号入力手段を介して確認信号を入力させ、前記知覚音圧レベルを特定することを特徴とする。
【発明の効果】
【0019】
本発明の請求項1の音響装置及び請求項8の音響調整方法によれば、聴覚検査によってユーザにとって聞き取り難い特有の周波数帯域がどこであるのか否かを容易に判別し、当該ユーザが聞き取り難い音響信号の周波数特性を調整することで、音楽を全周波数帯域においてユーザが聞き取り易い音圧レベルに調整することができ、かくしてユーザの聴覚特性に応じた良好な音質で再生することができる。
【発明を実施するための最良の形態】
【0020】
以下図面に基づいて本発明の実施の形態を詳述する。
【0021】
(1)オーディオ装置の全体構成
図1において、1は聴覚特性適合機能付きのオーディオ装置を示し、音響装置としてのオーディオ装置1は、音響処理部2aに聴覚検査手段としての聴覚検査部2bが接続されており、当該聴覚検査部2bにおけるユーザの聴覚検査の結果に基づき音響処理部2aによって各周波数帯域毎に音圧レベルを自動的に調整し、各ユーザに適した音質で音楽を再生し得るようになされている。
【0022】
実際上、このオーディオ装置1は、入力部3によって例えばCDやDVD等の種々の記録媒体を再生し、その結果得られる時間方向に並ぶ複数の離散データを音響処理部2aへ順次送出する。因みに、離散データとは、例えば滑らかに変化する連続的な信号を一定の時間間隔で標本化し、その結果得られたサンプリングデータを量子化することにより得られた離散的なデータである。
【0023】
音響処理部2aは、複数の周波数帯域に離散データを分離する帯域分離部4と、これら複数の周波数帯域毎に音圧レベルを調整する音圧調整部5と、各周波数帯域毎に設定された所定の標本化関数(後述する)を用いて各周波数帯域毎に補間処理を個別に実行する補間処理部6と、各周波数帯域毎に生成した補間処理信号を合成することにより、合成信号としてのアナログ信号を生成する帯域合成部7とから構成されている。そして、オーディオ装置1は、帯域合成部7からのアナログ信号に基づいて出力部8において音を発する。
【0024】
かかる構成に加えて、音圧調整部5には、聴覚検査部2bが接続されており、各周波数帯域毎に音圧レベルを個別に増加させるための帯域別音圧係数データが聴覚検査部2bから送出され得る。ここで、聴覚検査部2bは、当該聴覚検査部2b全体の動作を統括的に制御する制御部9に、確認信号入力部10と検出音出力部11と比率演算部12とが接続されており、当該比率演算部12には帯域別音圧係数算出部13が接続された構成を有する。
【0025】
制御部9は、複数の周波数毎にユーザが絶対に聞き取ることができないと思われる音圧レベルから徐々に検査音の音圧レベルを上昇させてゆき、ユーザが始めて聞き取ることができるようになった音圧レベルをユーザからの聴取応答によって判定し、この聴取応答時点での音圧レベルをユーザの知覚音圧レベルとして特定し得る。
【0026】
ここで、ユーザからの聴取応答は、確認信号入力部10を用いて行われる。すなわちユーザは検査音が聞こえない場合には確認信号入力部10のスイッチを離し、聞こえた場合に確認信号入力部10のスイッチを押す。制御部9は、確認信号入力部10のスイッチが押されると、確認信号入力部10から確認信号を受け取るようになされている。
【0027】
従って、特定手段としての制御部9は、各周波数毎に検出音の音圧レベルを徐々に上昇させてゆき、確認信号入力部10からの確認信号を受け取ったタイミングに基づいてユーザが検出音を聴取し得た音圧レベルを、当該周波数の知覚音圧レベルとして特定し得る。制御部9は、各周波数毎に得られた知覚音圧レベルを知覚音圧レベルデータとして比率演算部12へ送出する。
【0028】
因みに、この実施の形態の場合においては、スイッチ構造の確認信号入力部10を用いて、ユーザ自身のスイッチ操作によって知覚音圧レベルを特定するようにした場合について述べたが、本発明はこれに限らず、例えば鼓膜の状態や脳波等の生物学的反応を検知する確認信号入力部によって各ユーザ毎に知覚音圧レベルを特定する等この他種々の確認信号入力部を用いて知覚音圧レベルを特定するようにしてもよい。
【0029】
ここで聴覚検査部2bには、一般的なユーザがどの周波数で音が聞き取り難く、音圧レベルをどの程度増幅させたかを示す統計的な音圧レベル増幅傾向を示した標準音圧曲線が、複数のユーザの聴覚検査を基に予め作成され、図示しないメモリに記憶されている。
【0030】
この実施の形態の場合、図2に示すように、標準音圧曲線C1は、例えば0kHzから4kHzまでの周波数帯域において音圧レベルが徐々に減少してゆき4kHz付近で最小値を示し、4kHzから16kHzまでの周波数帯域において音圧レベルが徐々に増加し、16kHzから40kHzまでの周波数帯域において音圧レベルが急激に増加している。
【0031】
すなわち、この標準音圧曲線C1は、一般的なユーザが最も音を聞き取り易い周波数が4kHz付近であって、この4kHz付近では音圧レベルを全く増加させていないことを示している。また、標準音圧曲線C1から一般的なユーザは、4kHz付近から低音域の周波数帯域にゆくに従って音が聞き取り難くなり、音圧レベルを次第に増加させていったことを示している。また、この標準音圧曲線C1から一般的なユーザは、4kHz付近から高音域の周波数帯域にゆくに従って音が聞き取り難くなり、音圧レベルを次第に増加させていったことを示している。
【0032】
比率演算部12は、各周波数毎に知覚音圧レベルデータを制御部9から受け取ると、知覚音圧レベルと同じ周波数における標準音圧レベルを標準音圧曲線C1から特定し、知覚音圧レベルと、特定した標準音圧レベルとに基づいて各周波数帯域における音圧係数を算出する。具体的には、図2に示すように、所定の周波数f1における知覚音圧レベルをA1とし、同じ周波数f1における標準音圧レベルをA0とした場合、音圧係数H(f1)は、H(f1)=A1/A0で求めることができる。比率演算部12は、音圧係数H(f)を算出すると、これを音圧係数データとして帯域別音圧係数算出部13へ送出する。
【0033】
また、比率演算部12は、所定の周波数f1に隣接し、聴覚検査が行われた次の周波数f2においても、当該周波数f2での知覚音圧レベルB1と、同じ周波数f2での標準音圧レベルB0とから音圧係数H(f2)=B1/B0を求め、これを音圧係数データとして帯域別音圧係数算出部13へ送出する。
【0034】
帯域別音圧係数算出部13は、比率演算部12から受け取ったこれら音圧係数データに基づいて、音圧係数H(f)と周波数fとの関係を示す式、H(f)=a・f+bを用いて、a及びbを算出するようになされている。
【0035】
具体的に帯域別音圧係数算出部13は、周波数f1と音圧係数H(f1)とを上記式に代入して、H(f1)=a・f1+bとする。また、帯域別音圧係数算出部13は、周波数f2と音圧係数H(f2)とを上記式に代入して、H(f2)=a・f2+bとする。そして、帯域別音圧係数算出部13は、これらH(f1)=a・f1+bの式と、H(f2)=a・f2+bの式とから式中のa及びbの値(例えばaの求めた値をa1、bの求めた値をb1とする)を求め、周波数f1及び周波数f2間を結んぶ音圧係数線、H(f)=a1・f+b1を生成し得るようになされている。なお上記説明では周波数fの一次式の関係H(f)=a・f+bで示したが、さらに高性能な調整を行うために、周波数fのn次多項式式、例えば、H(f)=a・f2+b・f+cの様な二次式で近似することも本発明の範囲を逸脱するものではない。二次式の場合は3点の周波数における音圧から係数a,b,cを決定することができる。
【0036】
次いで、帯域別音圧係数算出部13は、周波数f1から周波数f2までの間の所定の周波数f3における音圧係数H(f3)を、次式、H(f3)=a1・f3+b1から求め、求めた音圧係数H(f3)を周波数f3での標準音圧レベルに乗算することにより、当該周波数f3における知覚音圧レベルを求めるようになされている。かくして、帯域別音圧係数算出部13は、音圧係数線と、周波数と、そのときの標準音圧レベルとを基に、知覚音圧レベルを検査していない各周波数での知覚音圧レベルを推測し得るようになされている。そして、帯域別音圧係数算出部13は、これら低音域から高音域まで全周波数帯域の知覚音圧レベル傾向を推定した知覚音圧曲線C2を生成し、これを知覚音圧データとして音響処理部2aの音圧調整部5へ送出する。
【0037】
因みに、この実施の形態の場合、例えばあるユーザに対して聴覚検査を行ったところ、図2に示すような、知覚音圧レベル傾向を示した知覚音圧曲線C2が生成された。この知覚音圧曲線C2では、0kHzで知覚音圧レベルが標準音圧レベルよりも高いものとなり、0kHzから4kHzまでの周波数帯域において音圧レベルが標準音圧曲線C1に比べて急激に減少してゆき、4kHzから16kHzまでの周波数帯域において音圧レベルが標準音圧曲線C1に比べて急激に増加するような形となっている。
【0038】
このことから、聴覚検査を行ったユーザは、低音域及び高音域の周波数帯域にゆくに従って、一般的なユーザに比べて音圧レベルを増加させたことが分かり、これは低音域や高音域の周波数帯域へゆくに従って一般的なユーザよりも音が聞き取り難いことを示している。そして、音響処理部2aは、聴覚検査部2bから受け取った聴覚検査の結果に基づいて生成した知覚音圧曲線C2を基に、低音域や高音域の周波数帯域へゆくに従って各周波数毎に音圧レベルを個別に増幅させるようになされている。
【0039】
図3に示すように、音圧調整部5には、帯域分離部4で分離された各周波数帯域に対応して複数の増幅器5a,5b,5c…が設けられており、各増幅器5a,5b,5c…内には検出音の周波数や他の所定周波数に対応させて複数の増幅回路が設けられている。そして、例えば増幅器5aは、帯域別音圧係数算出部13から知覚音圧データを受け取ると、知覚音圧データに基づく知覚音圧曲線C2から各増幅回路に対応した周波数での知覚音圧レベルを特定し、各増幅回路毎に知覚音圧レベルに基づいて帯域別信号の音圧レベルを増幅させ得る。このようにして、各増幅器5a,5b,5c…では、それぞれの周波数帯域において所定の周波数毎に知覚音圧レベルに基づいて帯域別信号の音圧レベルを増幅し得る。
【0040】
因みに、この実施の形態の場合においては、所定の周波数からなる検査音を出力し、各増幅器5a,5b,5c…によって、対応する周波数部分の音圧レベルを、当該周波数での知覚音圧レベルに基づいて増幅するようにした場合について述べたが、本発明はこれに限らず、所定の下限周波数から所定の上限周波数までの周波数帯域からなる検出音を出力し、各増幅器5a,5b,5c…によって、対応する周波数帯域部分の音圧レベルを、当該周波数帯域での知覚音圧レベルに基づいて増幅するようにしてもよい。
【0041】
また、各増幅器5a,5b,5c…は、知覚音圧データに基づいて音響信号としての各帯域別信号を所定の音圧レベルにまで増幅させて各帯域別調整信号を生成すると、これら各帯域別調整信号を補間処理部6へ送出するようになされている。このように、音圧調整部5は、聴覚検査部2bにおける聴覚検査の結果から得られたユーザの聴覚特性に応じて、ユーザが聞き取り難い周波数ついてのみ音圧レベルを増加させ、その結果、音楽を全周波数帯域においてユーザが聞き取り易い音圧レベルに調整し得るようになされている。
【0042】
因みに、このオーディオ装置1は、上述したように音圧調整部5において各周波数毎に音圧レベルが調整できることに加えて、補間処理部6においても音圧レベルを調整し得るようになされている。なお、補間処理部6における音圧レベルの調整は、音圧調整部5によって音圧レベルの調整が行われた後に、更に実行するようにしてもよく、補間処理部6のみ、或いは音圧調整部5のみで音圧レベルの調整を実行してもよい。
【0043】
以下、補間処理部6において実行される補間処理について説明する。ここで、補間処理部6には、帯域分離部4で分離した各周波数帯域に対応して複数の帯域別補間部6a,6b,6c…が設けられており、聴覚検査部2bの制御部9からの補間処理選択命令によって、各帯域別調整信号を補間処理する所定の標本化関数(後述する)が各帯域別補間部6a,6b,6c…毎に設定され得る。これにより、帯域別補間部6a,6b,6c…は、ユーザの聴覚特性に応じて制御部9が設定した標本化関数に従い、各周波数帯域の帯域別調整信号毎に所定の補間処理を個別に実行し、各帯域別調整信号を構成する帯域別データ間を補間してサンプリング周波数を擬似的に上げ、その結果得られた補間処理信号を帯域合成部7へ送出する。
【0044】
例えば、図2に示すように、高音域の周波数帯域において音圧レベルを増加させた聴覚結果が得られた場合には、例えば高音域の特定の周波数帯域で音圧レベルが所定の閾値以上に増加されると、ユーザが高音域を聞き取り難い状態であると判断し、当該高音域での音圧レベルが増幅するような標本化関数を自動的に選択し得る。これにより、音響処理部2aは、各帯域別調整信号毎に高音域が増幅するように、帯域別データ間を補間する補間値を調整し、各周波数帯域の音圧レベルを増減させ得るようになされている。
【0045】
帯域合成部7は、各帯域別補間部6a,6b,6c…において生成された複数の補間処理信号を合成することにより全周波数帯域からなる1つのアナログ信号を生成し、これを出力部8へ送出する。因みに、この実施の形態においては、高周波の離散間隔で信号生成することと、アナログ信号を生成することを同一の処理として「アナログ信号の生成」と称して説明を行うものとする。このようにしてオーディオ装置1は、各周波数帯域毎に調整された補間処理信号を生成でき、かくしてアナログ信号の各周波数帯域の音圧レベルが、聴覚検査に基づいて自動的にユーザ毎に細かく調整され、ユーザ所望の音質からなる音楽を出力部8から再生し得るようになされている。
【0046】
(2)帯域別補間部における補間処理
次に各帯域別補間部6a,6b,6c…で実行される補間処理の概略について以下説明する。なお、関数の値が局所的な領域で0以外の有限の値を有し、それ以外の領域で0となる場合を「有限台」と称して説明を行うものとする。帯域別補間部6a,6b,6c…において用いられる標本化関数sN(t)は基本標本化関数f(t)及び制御標本化関数c0(t)から構成されている。ここで、離散データの標本位置をtとし、例えば当該離散データの標本位置[-2,2]間での基本標本化関数f(t)及び制御標本化関数c0(t)からなる標本化関数s2(t)は、次式、
【0047】
【数1】
JP0004750153B2_000002t.gif
によって表され、一般的な制御標本化関数をck(t)とし、ck(t)=cr(t-k)+cr(-t-k)と置いたときは、当該離散データの標本位置[-N,N]間で標本化関数sN(t)は次式
【0048】
【数2】
JP0004750153B2_000003t.gif
によって表される。なお、αkは後述する可変パラメータを示し、ユーザによって設定可能な任意の数値を示すもので、α1=α2=α3…のようにkによって可変しないものである。因みに、N=2のときの標本化関数s2(t)については、説明の便宜上、単に標本化関数sN(t)として以下説明する。
【0049】
この標本化関数sN(t)は、可変パラメータαの数値が反映した補間値を算出できることから、可変パラメータαの数値を変更することにより、各周波数帯域毎に補間処理信号を調整し得るようになされている。基本標本化関数f(t)及び制御標本化関数c0(t)は、図4に示すような波形を示し、可変パラメータαの数値に応じて制御標本化関数c0(t)が示す波形の振幅が増減して可変し得る。
【0050】
基本標本化関数f(t)は、微分可能性に着目した有限台の関数であり、例えば全域において1回だけ微分可能であって、横軸に沿った標本位置tが-1から+1(すなわち、区間[-1,1])にあるときに0以外の有限な値を有し、他の区間は恒等的に0で表される関数である。具体的には基本標本化関数f(t)は、代表的関数形式が2次式であり、全範囲で1回だけ微分可能な凸形状の波形を示し、t=0の標本位置でのみ1になり、t=±1に向けて0に収束してt=±2の標本位置までそのまま0になるという特徴を有する。
【0051】
また、この基本標本化関数f(t)は、有限台のn次インパルス応答関数でよく、標本点間を区分した点で連続なn次の区分多項式函数であれば良い。具体的には、このような基本標本化関数f(t)は、2次の区分多項式函数の場合、次式、
【0052】
【数3】
JP0004750153B2_000004t.gif
によって表される。そして、この基本標本化関数f(t)を用いて帯域別調整信号を構成する各帯域別データに基づく重ね合わせを行うことにより、帯域別調整信号の帯域別データ間の値を1回だけ微分可能な関数を用いて仮補間することができる。
【0053】
一方、制御標本化関数c0(t)は、微分可能性に着目した有限台の関数であり、例えば全域において1回だけ微分可能であって、横軸に沿った標本位置tが-2から+2(すなわち、区間[-2,2])にあるときに0以外の有限な値を有し、他の区間では恒等的に0で表される関数である。また、制御標本化関数c0(t)は、全範囲で1回だけ微分可能な波形を示し、t=0,±1,±2の各標本位置で0なるという特徴を有する。
【0054】
また、この制御標本化関数c0(t)は、有限台のn次インパルス応答関数でよく、標本点間を区分した点で連続なn次の区分多項式函数であれば良い。ここで、制御標本化関数c0(t)は、上述したように制御標本化関数c0(t)=cr(t)+cr(-t)で表され、このcr(t)は具体的に次式、
【0055】
【数4】
JP0004750153B2_000005t.gif
によって表される。そして、この制御標本化関数c0(t)を用いて帯域別調整信号の各帯域別データに基づく重ね合わせを行うことにより、帯域別調整信号の帯域別データ間の値を1回だけ微分可能な関数を用いて仮補間することができる。
【0056】
標本化関数sN(t)は、基本標本化関数f(t)と制御標本化関数c0(t)との線形結合で表され、実際の補間演算は基本標本化関数f(t)と離散データ(標本値)との畳み込み演算で算出した仮の補間値(以下、これを基本補間値と呼ぶ)と、制御標本化関数c0(t)と離散データ(標本値)との畳み込み演算で算出した仮の補間値(以下、これを制御補間値と呼ぶ)とを線形加算することにより、帯域別調整信号の帯域別データ間の値を1回だけ微分可能な関数を用いて補間することができる。
【0057】
因みに、この基本標本化関数f(t)と制御標本化関数c0(t)との線形結合では、下記の6つの条件が成立する関数であることを特徴としている。第1としては、S2(0)=1,S2(±1)=S2(±2)=0となること。第2としては、偶関数、すなわちy軸に関して対称となること。第3としては、標本位置区間[-∞,-2]、[2,∞]で恒等的に0であること。第4としては、各区間[n/2,(n+1)/2](-4≦n≦3)においては高々二次の多項式であること。第5としては、全区間ではC1級、すなわち連続的一回微分可能であること。第6としては、標本位置区間[-1/2,1/2]において、次式
【0058】
【数5】
JP0004750153B2_000006t.gif
となること。
【0059】
ここで、制御標本化関数c0(t)には、例えば高音域の周波数帯域において音圧レベルが所定の閾値以上に増加したことを知覚音圧曲線C2(図2)から判定したときに任意の数値からなる可変パラメータαが自動的に乗算されたり、或いは、図示しない設定部によってユーザにより設定された任意の数値からなる可変パラメータαが乗算され得る。
【0060】
そして、これにより制御標本化関数c0(t)は、t=0,±1,±2の標本位置で0としたまま、標本位置-2から+2までの間で当該可変パラメータαの数値に応じてその波形の振幅が変形され得る。その結果、制御標本化関数c0(t)は、離散データ(標本値)との畳み込み演算による算出結果を変更させ得る。このように、可変パラメータαは、数値が変更されることで、標本化関数sN(t)によって算出した補間処理信号の周波数特性を変化させることができ、各周波数帯域毎に高域成分の信号レベルを調整し得るようになされている。
【0061】
従って、オーディオ装置1では、各周波数帯域毎に、制御標本化関数c0(t)に乗算される可変パラメータαを変化させることによって補間処理信号を調整し、これら各周波数帯域毎に生成された複数の補間処理信号を合成してアナログ信号を生成することにより、高音域が各周波数帯域毎に細かく調整されたユーザ所望の音質からなるアナログ信号を生成し得るようになされている。
【0062】
(3)帯域別補間部の回路構成
(3-1)帯域別補間部における補間処理の概略説明
3つの帯域別補間部6a,6b,6cは、補間処理に用いる標本化関数sN(t)の可変パラメータαが個別に設定されている点と、当該補間処理する帯域別調整信号が異なる点とで相違するものの、その他の点については同一構成を有することから、以下、そのうち所定の帯域別調整信号に対して補間処理する1つの帯域別補間部6aに着目して説明する。
【0063】
図5に示すように、帯域別補間部6aは、帯域別調整信号を構成する所定数(この場合4つ)の帯域別データを順次抽出して保持するデータ抽出部15と、データ抽出部15で抽出保持された所定数の帯域別データを一度に受け取り、これら帯域別データを用いて補間処理を実行する関数処理部14とから構成され、増幅器5aから順次入力される帯域別データ間を所定の時間間隔でデータ補間し得るようになされている。
【0064】
関数処理部14は、標本化関数sN(t)のうち基本標本化関数f(t)の項と帯域別データとの畳み込み演算を処理する基本項演算部16と、標本化関数sN(t)のうち制御標本化関数c0(t)の項と帯域別データとの畳み込み演算を処理する制御項演算部17と、制御項演算部17の算出結果に可変パラメータαを乗算する係数乗算部18と、基本項演算部16の算出結果と係数乗算部18の算出結果とを線形加算する加算演算部19とから構成されている。
【0065】
この実施の形態の場合、データ抽出部15は、順次入力される帯域別データの中から直前の4つの帯域別データを抽出し、次に新たな帯域別データが入力されるまでこの4つの帯域別データを保持して、これら4つの帯域別データを基本項演算部16及び制御項演算部17へそれぞれ送出する。
【0066】
基本項演算部16は、所定の記憶手段(図示せず)に基本標本化関数f(t)を記憶しており、帯域別データ間の補間位置が指定されると、この補間位置と帯域別データとの間の距離に基づいて基本標本化関数f(t)の値を計算する。この基本項演算部16は、データ抽出部15から送出される4つの帯域別データ毎にそれぞれ基本標本化関数f(t)の値が計算され得る。また、基本項演算部16は、帯域別データ毎に得られた4つの基本標本化関数f(t)の値毎にそれぞれ対応する帯域別データの値を乗算した後、これら4つの帯域別データに対応する畳み込み演算を行い、この畳み込み演算の算出結果を加算演算部19へ送出する。
【0067】
これと同時に制御項演算部17は、所定の記憶手段(図示せず)に制御標本化関数c0(t)を記憶しており、補間位置が指定されると、この補間位置と帯域別データとの間の距離に基づいて制御標本化関数c0(t)の値を計算する。この制御項演算部17は、データ抽出部15から送出される4つの帯域別データ毎にそれぞれ制御標本化関数c0(t)の値が計算され得る。また、制御項演算部17は、帯域別データ毎に得られた4つの制御標本化関数c0(t)の値毎にそれぞれ対応する帯域別データの値を乗算した後、これらを加算することにより4つの帯域別データに対応する畳み込み演算を行い、この畳み込み演算の算出結果を係数乗算部18へ送出する。
【0068】
係数乗算部18は、制御項演算部17から受け取った制御標本化関数c0(t)の畳み込み演算の算出結果に、ユーザの聴覚検査を基に選定された可変パラメータαを乗算し、その結果得られた可変パラメータ乗算結果を加算演算部19へ送出する。加算演算部19は、基本項演算部16から受け取った基本標本化関数f(t)の畳み込み演算の算出結果と、係数乗算部18から受け取った可変パラメータ乗算結果とを線形加算することにより、4つの帯域別データに対応する演算結果を得る。この線形加算によって得られる値は、所定の2つの帯域別データ間の補間位置における補間値となる。因みに、この補間位置は、予め設定された所定の時間間隔、具体的には帯域別データの入力間隔に対応する周期Tの1/Nの周期(=T/N)毎にその値が更新される。
【0069】
(3-2)4つの帯域別データに基づいて補間値を求める具体例
次に、時間的に連続して並ぶ4つの帯域別データに基づいて所定の2つの帯域別データ間の補間値を算出する補間処理について、連続する4つの帯域別データと、補間位置である着目点との位置関係を示す図6を用い、以下説明する。この図6では、標本位置t1、t2、t3、t4のそれぞれに対応して順次入力される帯域別データd1、d2、d3、d4の各値をY(t1)、Y(t2)、Y(t3)、Y(t4)とし、標本位置t2及びt3間の所定位置(すなわち補間位置(t2から距離b))t0に対応した補間値yを求める場合を考える。
【0070】
本実施の形態で用いる標本化関数sN(t)は、t=±2の標本位置で0に収束するため、t=±2までの帯域別データd1、d2、d3、d4を考慮に入れればよい。従って、図6に示す補間値yを求める場合には、t=t1、t2、t3、t4に対応した4つの帯域別データd1、d2、d3、d4のみを考慮すればよいことになり、演算量を大幅に削減することができる。しかも、t=±3以上の各帯域別データ(図示せず)については、本来考慮すべきであるが演算量や精度等を考慮して無視しているというわけではなく、理論的に考慮する必要がないため、打ち切り誤差は発生しない。
【0071】
図7に示すように、データ抽出部15は、3つのシフト回路20a,20b,20cを備えており、連続する帯域別データが入力されると、各シフト回路20a,20b,20c毎に当該帯域別データを例えばCDのサンプリング周期(44.1kHz)でシフトし、各シフト回路20a,20b,20cで直前の帯域別データd1、d2、d3、d4をそれぞれ1つ抽出保持し得る。すなわち、データ抽出部15は、連続する4つの帯域別データd1、d2、d3、d4が入力されると、最新の帯域別データd4をそのまま基本項演算部16の基本項計算回路21a及び制御項演算部17の制御項計算回路22aへそれぞれ送出する。
【0072】
また、データ抽出部15は、連続する4つの帯域別データd1、d2、d3、d4からなる帯域別データ列をシフト回路20aに送出し、当該シフト回路20bによって帯域別データ列をシフトして最新の帯域別データd4から1つ前の帯域別データd3を抽出し、これを基本項演算部16の基本項計算回路21b及び制御項演算部17の制御項計算回路22bへそれぞれ送出する。
【0073】
さらに、データ抽出部15は、残りのシフト回路20b、20cにも帯域別データ列を順次送出してゆき、シフト回路20bで帯域別データ列をさらにシフトさせて最新の帯域別データd4から2つ前の帯域別データd2を基本項計算回路21c及び制御項計算回路22cへそれぞれ送出するとともに、シフト回路20cで帯域別データ列をさらにシフトさせて最新の帯域別データd4から3つ前の帯域別データd1を基本項計算回路21d及び制御項計算回路22dへそれぞれ送出する。
【0074】
ここで図8及び図9は、本実施の形態の基本項演算部16及び制御項演算部17における所定の補間位置t0に対する補間処理の概略を示す図である。補間処理の内容としては、上述したように先ず始めに、基本項演算部16における基本補間値を算出する演算処理(以下、これを単に基本補間値算出処理と呼ぶ)と、制御項演算部17及び係数乗算部18における制御補間値を算出する演算処理(以下、これを単に制御補間値算出処理と呼ぶ)とが実行される。以下、これら図8及び図9を用い、基本補間値算出処理と制御補間値算出処理とについて説明する。
【0075】
(3-2-1)基本補間値算出処理
基本補間値算出処理の内容としては、図8(A)~(D)に示すように、各標本位置t1、t2、t3、t4毎に、基本標本化関数f(t)のt=0(中心位置)におけるピーク高さを一致させ、このときの補間位置t0におけるそれぞれの基本標本化関数f(t)の値を求めることになる。
【0076】
図8(A)に示す標本位置t1における帯域別データd1に着目すると、補間位置t0と標本位置t1との距離は1+bとなる。従って、標本位置t1に基本標本化関数f(t)の中心位置を合わせたときの補間位置t0における基本標本化関数の値はf(1+b)となる。実際には、帯域別データd1の値Y(t1)に一致するように基本標本化関数f(t)の中心位置のピーク高さを合わせるため、上述したf(1+b)をY(t1)倍した値f(1+b)・Y(t1)が求めたい値となる。f(1+b)の計算は基本項演算部16の基本項計算回路21aで行われ、f(1+b)にY(t1)を乗算する計算は基本項演算部16の基本項乗算回路23aで行われる(図7)。
【0077】
同様に、図8(B)に示す標本位置t2における帯域別データd2の値Y(t2)に着目すると、補間位置t0と標本位置t2との距離はbとなる。従って、標本位置t2に基本標本化関数f(t)の中心位置を合わせたときの補間位置t0における基本標本化関数の値はf(b)となる。実際には、帯域別データd2の値Y(t2)に一致するように基本標本化関数f(t)の中心位置のピーク高さを合わせるため、上述したf(b)をY(t2)倍した値f(b)・Y(t2)が求めたい値となる。f(b)の計算は基本項演算部16の基本項計算回路21bで行われ、f(b)にY(t2)を乗算する計算は基本項演算部16の基本項乗算回路23bで行われる(図7)。
【0078】
図8(C)に示す標本位置t3における帯域別データd3の値Y(t3)に着目すると、補間位置t0と標本位置t3との距離は1-bとなる。従って、標本位置t3に基本標本化関数f(t)の中心位置を合わせたときの補間位置t0における基本標本化関数の値はf(1-b)となる。実際には、帯域別データの値Y(t3)に一致するように基本標本化関数f(t)の中心位置のピーク高さを合わせるため、上述したf(1-b)をY(t3)倍した値f(1-b)・Y(t3)が求めたい値となる。f(1-b)の計算は基本項演算部16の基本項計算回路21cで行われ、f(1-b)にY(t3)を乗算する計算は基本項演算部16の基本項乗算回路23cで行われる(図7)。
【0079】
図8(D)に示す標本位置t4における帯域別データd4の値Y(t4)に着目すると、補間位置t0と標本位置t4との距離は2-bとなる。従って、標本位置t4に基本標本化関数f(t)の中心位置を合わせたときの補間位置t0における基本標本化関数の値はf(2-b)となる。実際には、帯域別データd4の値Y(t4)に一致するように基本標本化関数f(2-b)の中心位置のピーク高さを合わせるため、上述したf(2-b)をY(t4)倍した値f(2-b)・Y(t4)が求めたい値となる。f(2-b)の計算は基本項演算部16の基本項計算回路21dで行われ、f(2-b)にY(t4)を乗算する計算は基本項演算部16の基本項乗算回路23dで行われる(図7)。
【0080】
そして、基本項演算部16は、補間位置t0の着目点に対応して得られた4つの値f(1+b)・Y(t1)、f(b)・Y(t2)、f(1-b)・Y(t3)、f(2-b)・Y(t4)を、基本項畳み込み回路24において畳み込み演算し、所定の周波数帯域における基本補間値yaが計算される。因みに、この実施の形態の場合、補間位置t0の着目点に対応して得られた値f(1+b)・Y(t1)及びf(2-b)・Y(t4)は、図8(A)及び(D)に示すように0となるため、基本補間値yaは、{f(b)・Y(t2)}+{f(1-b)・Y(t3)}となる。
【0081】
(3-2-2)制御補間値算出処理
一方、制御補間値算出処理の内容としては、図9(A)~(D)に示すように、各標本位置t1、t2、t3、t4毎に、制御標本化関数c0(t)のt=0(中心位置)を一致させて、各制御標本化関数c0(t)に対応した帯域別データd1、d2、d3、d4の値Y(t1)、Y(t2)、Y(t3)、Y(t4)を乗算し、このときの補間位置t0におけるそれぞれの制御標本化関数c0(t)の値を求めることになる。
【0082】
図9(A)に示す標本位置t1における帯域別データd1の値Y(t1)に着目すると、補間位置t0と標本位置t1との距離は1+bとなる。従って、標本位置t1に制御標本化関数c0(t)の中心位置を合わせたときの補間位置t0における制御標本化関数の値はc0(1+b)となる。実際には、帯域別データd1の値Y(t1)に対応させて制御標本化関数c0(t)の波形高さを合わせるため、上述したc0(1+b)をY(t1)倍した値c0(1+b)・Y(t1)が求めたい値となる。c0(1+b)の計算は制御項演算部17の制御項計算回路22aで行われ、c0(1+b)にY(t1)を乗算する計算は制御項演算部17の制御項乗算回路25aで行われる(図7)。
【0083】
同様に、図9(B)に示す標本位置t2における帯域別データd2の値Y(t2)に着目すると、補間位置t0と標本位置t2との距離はbとなる。従って、標本位置t2に制御標本化関数c0(t)の中心位置を合わせたときの補間位置t0における制御標本化関数の値はc0(b)となる。実際には、帯域別データd2の値Y(t2)に対応させて制御標本化関数c0(t)の波形高さを合わせるため、上述したc0(b)をY(t2)倍した値c0(b)・Y(t2)が求めたい値となる。c0(b)の計算は制御項演算部17の制御項計算回路22bで行われ、c0(b)にY(t2)を乗算する計算は制御項演算部17の制御項乗算回路25bで行われる(図7)。
【0084】
図9(C)に示す標本位置t3における帯域別データd3の値Y(t3)に着目すると、補間位置t0と標本位置t3との距離は1-bとなる。従って、標本位置t3に制御標本化関数c0(t)の中心位置を合わせたときの補間位置t0における制御標本化関数の値はc0(1-b)となる。実際には、帯域別データd3の値Y(t3)に対応させて制御標本化関数c0(t)の波形高さを合わせるため、上述したc0(1-b)をY(t3)倍した値c0(1-b)・Y(t3)が求めたい値となる。c0(1-b)の計算は制御項演算部17の制御項計算回路22cで行われ、c0(1-b)にY(t3)を乗算する計算は制御項演算部17の制御項乗算回路25cで行われる(図7)。
【0085】
図9(D)に示す標本位置t4における帯域別データd4の値Y(t4)に着目すると、補間位置t0と標本位置t4との距離は2-bとなる。従って、標本位置t4に制御標本化関数c0(t)の中心位置を合わせたときの補間位置t0における制御標本化関数の値はc0(2-b)となる。実際には、帯域別データd4の値Y(t4)に対応させて制御標本化関数c0(2-b)の波形高さを合わせるため、上述したc0(2-b)をY(t4)倍した値c0(2-b)・Y(t4)が求めたい値となる。c0(2-b)の計算は制御項演算部17の制御項計算回路22dで行われ、c0(2-b)にY(t4)を乗算する計算は制御項演算部17の制御項乗算回路25dで行われる(図7)。
【0086】
そして、補間位置t0の着目点に対応して得られた4つの値c0(1+b)・Y(t1)、c0(b)・Y(t2)、c0(1-b)・Y(t3)、c0(2-b)・Y(t4)は、制御項演算部17の制御項畳み込み回路26によって畳み込み演算された後、係数乗算部18において可変パラメータαが乗算され、これにより所定の周波数帯域における制御補間値ybが計算される。
【0087】
(3-2-3)補間値演算処理
加算演算部19は、基本項演算部16により算出された着目点に対応する基本補間値yaと、制御項演算部17及び係数乗算部18により算出された着目点に対応する制御補間値ybとを線形加算することにより、所定の周波数帯域における補間位置t0の補間値yを出力し得るようになされている。このようにして、帯域別データd2及びd3間の他の全ての補間位置も同様に補間値が算出されるとともに、帯域別補間部6b,6cにおいても中音域及び高音域の各周波数帯域毎に設定された標本化関数を用いて同様の補間処理手法が実行され得る。
【0088】
(3-3)可変パラメータの数値を変更したときの補間処理結果
かかる構成に加えて、音響処理部2aは、知覚音圧曲線C2の閾値や、ユーザの設定に基づいて係数乗算部18の可変パラメータαの数値が各帯域別補間部6a,6b,6c毎に適宜変更されることにより、各帯域別補間部6a,6b,6c毎に標本化関数sN(t)の値が変更され、各周波数帯域毎に補間値yを調整し得る。その結果、帯域合成部7において生成されるアナログ信号は、各周波数帯域毎に可変パラメータαの数値が変更されることにより周波数特性が調整され得るようになされている。ここでは、可変パラメータαを変更した際に、標本化関数sN(t)がどのように変化するかについて、図4に示した基本標本化関数f(t)が示す波形と、制御標本化関数c0(t)が示す波形とを合成した波形に着目して以下説明する。
【0089】
基本標本化関数f(t)が示す波形と、制御標本化関数c0(t)が示す波形とを合成した標本化関数sN(t)の波形は、図10に示すように、可変パラメータαの数値によって大きく異なるものとなる。この実施の形態の場合、可変パラメータαを-1.5、-0.25、1.5に順次変化させてゆくと、-2≦t≦-1の領域と、1≦t≦2の領域とでは、標本化関数sN(t)の波長の振幅が次第に大きくなり波形の極性が反転することを確認した。一方、-1≦t≦0の領域と、0≦t≦1の領域とでは、標本化関数sN(t)の波長の振幅が次第に小さくなり波形の極性が反転することを確認した。
【0090】
因みに、テスト曲としてCDに記録されたヴァイオリン曲「Zigeunerweisen(ツィゴイナーヴァイゼン)」を23秒間再生して得られた離散データを、低音域、中音域及び高音域の周波数帯域に分離せずにそのまま補間処理した。このとき、可変パラメータαを-0.25、-1.5及び1.5にそれぞれ設定し、各標本化関数sN(t)で補間処理したアナログ信号の周波数特性について比較したところ、図11に示すような結果が得られた。
【0091】
図11に示したように、これら可変パラメータαの数値を変えた各標本化関数sN(t)による補間処理では、従来のシャノンの標本化関数を用いると再生し難い20kHz以上の高音域の信号が、可変パラメータαの数値にかかわらず、再生できることが確認できた。このような特性を有する波形は、低音域、中音域及び高音域等の種々の周波数帯域に離散データを分離した各帯域別調整信号を補間処理したときであっても同様に高音域側の信号が再生されることから、従来のシャノンの標本化関数を用いた場合に比べて、低音域、中音域及び高音域等の各周波数帯域の範囲毎にその範囲内での高音域成分を再生させ得る。
【0092】
また、可変パラメータαを1.5、-1.5又は-0.25に設定したときには、各信号レベルの波形が互いに異なるものとなった。そして、このような特性を有する波形は、低音域、中音域及び高音域等の種々の周波数帯域に離散データを分離した各帯域別調整信号を補間処理したときであっても同様に形成されることから、可変パラメータαの数値を各周波数帯域毎に適宜変更することにより、低音域、中音域及び高音域等の各周波数帯域の範囲内でそれぞれ個別に信号レベルを調整することができる。
【0093】
このように、音響処理部2aは、各周波数帯域毎に標本化関数sN(t)の可変パラメータαが変更されることで、各周波数帯域毎に微細な信号レベルの調整ができることにより、周波数特性の一段と細かな調整をユーザに対して容易に行わせることができる。かくして、オーディオ装置1では、可変パラメータαを各周波数帯域毎にそれぞれ変化させることによって各補間処理信号を個別に調整し、この調整された複数の補間処理信号を合成してアナログ信号を生成することにより、高音域が各周波数帯域毎に細かく調整されたアナログ信号を生成できる。
【0094】
(4)動作及び効果
以上の構成において、聴覚検出部2bでは各周波数の検出音毎に徐々に音圧レベルを上昇させてゆき、確認信号入力部10からの確認信号を受け取ったタイミングに基づいてユーザが検出音を聴取し得た音圧レベルを知覚音圧レベルとして各周波数毎に特定する。これにより音響処理部2aでは、知覚音圧レベルと標準音圧レベルとの音圧レベルの相違からユーザにとって聞き取り難い特有の周波数帯域がどこであるのか否かを判別し、各周波数帯域毎に個別に設けた増幅器5a,5b,5c…によって、当該ユーザが聞き取り難い周波数帯域についてだけ音圧レベルを確実に増幅させることで、ユーザが聞き取り易い音圧レベルに全周波数帯域を調整することができ、かくしてユーザの聴覚特性に応じた良好な音質で音楽等を再生させることができる。
【0095】
また、聴覚検出部2bでは、統計的な音圧レベル増幅傾向を示した標準音圧曲線C1が予め記憶されており、この標準音圧曲線C1と知覚音圧レベルとに基づいて各周波数毎に音圧係数を算出し、これら音圧係数と周波数と標準音圧レベルとの関係から、聴覚検査で知覚音圧レベルを直接特定した周波数以外の他の周波数での知覚音圧レベルを推定する。従って、音響処理部2aでは、知覚音圧レベルを検査していない周波数であっても、ユーザが聞き取り難い周波数を推定し、これに応じて細かく音圧レベルを増幅させることができ、かくしてユーザの聴覚特性に応じた良好な音質で音楽等を再生させることができる。
【0096】
さらに、具体的に聴覚検出部2bでは、微小音発生手段としての検出音出力部11から発生した微小な検出音(微小音)をユーザが知覚したとき、ユーザ自身が反応して自らの意思で確認信号入力部10をスイッチ操作させるようにしたことにより、ユーザ自身が感じる最小の音圧レベルを正確、かつ確実に特定することができ、かくしてユーザの聴覚特性に応じた良好な音質で音楽等を再生させることができる。
【0097】
(5)他の実施の形態
なお、本発明は、本実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、知覚音圧曲線C2を年齢や性別あるいは家族の個々人等のユーザに関する種々のカテゴリーに応じて予め複数生成しておき、これら複数の知覚音圧曲線C2を聴覚検査部に記憶しておくようにしてもよい。この場合、図12に示すように、このオーディオ装置100は、帯域別音圧係数算出部13において予め生成した複数の知覚音圧曲線C2を記憶する記憶部102と、当該記憶部102に記憶した複数の知覚音圧曲線C2を選択する選択ボタン等からなる選択部103とを聴覚検査部101に備える。
【0098】
選択部102は、音楽等を再生させる音響信号再生時、ユーザによる選択操作に応じて所定の選択信号を生成し、これを記憶部101に送出する。これにより記憶部102は、予め記憶した複数の知覚音圧曲線C2のなかから、選択信号に応じた所定の知覚音圧曲線C2を選択し、これを音圧調整部5に送出する。かくして音圧調整部5は知覚音圧曲線C2を用いて上述した同様の処理を実行し得る。以上の構成によれば、このオーディオ装置1では、音響信号再生時に、ユーザに対して選択操作のみを行わせるだけで、ユーザの聴覚特性に応じた良好な音質で音楽等を再生させることができ、その都度、ユーザが聴覚検査を行う手間を省かせることができる。
【0099】
なお、上述した実施の形態においては、知覚音圧曲線C2を生成して当該知覚音圧曲線C2から知覚音圧レベルを特定し、この知覚音圧レベルを基に対応する周波数の帯域別調整信号を増幅させるようにした場合について述べたが、本発明はこれに限らず、知覚音圧曲線C2を生成せずに聴覚検査によって特定した知覚音圧レベルだけを直接用いて、対応する周波数の帯域別調整信号を増幅させるようにしてもよい。
【0100】
また、上述した実施の形態においては、ユーザが聞き取り難い周波数を知覚音圧レベルに基づいて増幅させ、全周波数帯域においてユーザが聞き取り易い音圧レベルに調整するようにした場合について述べたが、本発明はこれに限らず、ユーザが聞き取り易い周波数を知覚音圧レベルに基づいて減衰させ、全周波数帯域においてユーザが聞き取り易い音圧レベルに調整するようにしてもよく、要は、知覚音圧レベルに基づいて音圧レベルを増減させて、全周波数帯域においてユーザが聞き取り易くできればよい。
【0101】
さらに、上述した実施の形態においては、補間処理として、標本化関数sN(t)を用いた補間処理を適用するようにした場合について述べたが、これに限らず、標本化関数を用いた補間処理だけでなく、この他種々の補間処理を適用してもよい。
【0102】
また、ここでは、基本標本化関数f(t)及び制御標本化関数c0(t)からなる標本化関数sN(t)を用い、当該制御標本化関数c0(t)に乗算される可変パラメータαの数値を変更することにより補間処理信号を調整するようにした場合について述べたが、これに限らず、当該標本化関数sN(t)に加えて、シャノンの標本化関数を選択させるようにしたり、予め設定された各種標本化関数を単に選択させるようにして補間処理信号を調整するようにしてよい。
【0103】
また、例えば、標本化関数sN(t)を全域で1回だけ微分可能な有限台の関数としたが、微分可能回数を2回以上に設定してもよい。さらに、上述した実施の形態においては、標本化関数sN(t)を用いて補間処理を行うことにより合成信号としてアナログ信号を生成するようにした場合についてのべたが、本発明はこれに限らず、標本化関数sN(t)を用いて補間処理を行うことにより単にオーバーサンプリングした合成信号を生成し、その後にアナログデジタル変換器でアナログ信号を生成するようにしてもよい。
【0104】
さらに、上述した実施の形態においては、標本化関数sN(t)はt=±2で0に収束するようにした場合について述べたが、これに限らず、t=±3以上で0に収束するようにしてもよい。例えば、t=±3で0に収束するようにした場合には、データ抽出部15によって直前の6つの離散データを抽出し、関数処理部14によってこれら6つの離散データに対して標本化関数sN(t)の値が計算され得る。
【0105】
さらに、上述した実施の形態においては、基本項演算部16に基本標本化関数f(t)を記憶し、これとは別に制御項演算部17に制御標本化関数c0(t)を記憶しておき、それぞれ基本標本化関数f(t)及び制御標本化関数c0(t)毎に帯域別データd1、d2、d3、d4に対する畳み込み演算を行って基本補間値yaと制御補間値ybとを算出した後、基本補間値yaと制御補間値ybとを線形加算して補間値yを算出するようにした場合について述べたが、これに限らず、基本標本化関数f(t)及び制御標本化関数c0(t)を予め線形加算して一つの標本化関数sN(t)として記憶しておき、可変パラメータαを変更した標本化関数sN(t)を用い、帯域別データd1、d2、d3、d4に対する畳み込み演算を行って補間値yを直接算出するようにしてもよい。
【図面の簡単な説明】
【0106】
【図1】オーディオ装置の回路構成を示すブロック図である。
【図2】標準音圧曲線と知覚音圧曲線とを示すグラフである。
【図3】音圧調整部、補間処理部及び帯域合成部の詳細構成を示すブロック図である。
【図4】本発明の帯域別補間部で用いる基本標本化関数の波形と、制御標本化関数の波形との関係を示す概略図である。
【図5】帯域別補間部の回路構成を示すブロック図である。
【図6】4つの帯域別データと着目点との位置関係を示す概略図である。
【図7】帯域別補間部の詳細構成を示すブロック図である。
【図8】本発明による帯域別補間部による基本標本化関数を用いた補間処理を示す概略図である。
【図9】本発明による帯域別補間部による制御標本化関数を用いた補間処理を示す概略図である。
【図10】可変パラメータを変化させたときの標本化関数の波形を示す概略図である。
【図11】可変パラメータを変化させたときの周波数特性を示す概略図である。
【図12】他の実施の形態によるオーディオ装置の回路構成を示すブロック図である。
【符号の説明】
【0107】
1 オーディオ装置(音響装置)
2a 聴覚検査部(聴覚検査手段)
2b 音響処理部(調整手段)
9 制御部(特定手段)
10 確認信号入力部(確認信号入力手段)
11 検出音出力部(検査音出力手段、微小音発生手段)
13 帯域別音圧係数算出部(生成手段)
103 選択部(選択手段)
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11