TOP > 国内特許検索 > リニア・アクチュエータ > 明細書

明細書 :リニア・アクチュエータ

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第3887689号 (P3887689)
公開番号 特開2007-046734 (P2007-046734A)
登録日 平成18年12月8日(2006.12.8)
発行日 平成19年2月28日(2007.2.28)
公開日 平成19年2月22日(2007.2.22)
発明の名称または考案の名称 リニア・アクチュエータ
国際特許分類 F16H  25/20        (2006.01)
FI F16H 25/20 A
請求項の数または発明の数 9
全頁数 17
出願番号 特願2005-233166 (P2005-233166)
出願日 平成17年8月11日(2005.8.11)
審査請求日 平成18年4月18日(2006.4.18)
特許権者または実用新案権者 【識別番号】504147243
【氏名又は名称】国立大学法人 岡山大学
発明者または考案者 【氏名】清水 一郎
【氏名】關 正憲
【氏名】多田 直哉
【氏名】▲吉▼田 彰
早期審査対象出願または早期審理対象出願 早期審査対象出願
個別代理人の代理人 【識別番号】100072051、【弁理士】、【氏名又は名称】杉村 興作
【識別番号】100101096、【弁理士】、【氏名又は名称】徳永 博
【識別番号】100107227、【弁理士】、【氏名又は名称】藤谷 史朗
【識別番号】100114292、【弁理士】、【氏名又は名称】来間 清志
【識別番号】100119530、【弁理士】、【氏名又は名称】冨田 和幸
審査官 【審査官】原 泰造
参考文献・文献 登録実用新案第3058197(JP,U)
調査した分野 F16H 19/00-37/16
F16H 49/00
B30B 1/00- 7/04
B30B 12/00-13/00
B30B 15/30-15/34
B66F 7/00- 7/28
B66F 13/00-19/02
特許請求の範囲 【請求項1】
少なくとも1つの支持部材に、回転可能に担持される少なくとも1本の回転軸と、軸方向への移動可能に担持される少なくとも1本の移動軸とを設け、
回転軸は、その少なくとも片側に第1伝動手段を有し、回転軸の所定部分に、第1伝動手段とともに同一方向に回転する第2伝動手段をもち、
移動軸は、その少なくとも片側に、回転軸に設けた第1伝動手段と係合する第3伝動手段を有し、移動軸の所定部分に、第3伝動手段とともに同一方向に回転する第1雄ねじ部をもち、先端に軸方向への位置決め制御を行うヘッド部を有し、
少なくとも移動軸の第1雄ねじ部が螺合する第1雌ねじ孔と、回転軸の第2伝動手段と連係動作する第4伝動手段をもち、第1雄ねじ部に沿って、支持部材に対する相対移動が可能な少なくとも1つの移動部材を設け、
移動軸のヘッド部における軸方向移動量は、回転軸の回転に伴う移動部材および移動軸の一の軸方向へ移動する距離と、回転軸の回転が第1および第3伝動手段を通じて移動軸に伝達されて移動軸が回転することにより、前記一の軸方向へ移動する移動部材に対して移動軸が一の軸方向とは逆向きの軸方向に移動する距離との差であることを特徴とするリニア・アクチュエータ。
【請求項2】
第1及び第3伝動手段はいずれも歯車である請求項1記載のリニア・アクチュエータ。
【請求項3】
前記回転軸と前記移動軸は平行に配置され、第2伝動手段は第2雄ねじ部であり、第4伝動手段は第2雌ねじ孔である請求項1または2記載のリニア・アクチュエータ。
【請求項4】
移動軸のヘッド部の軸方向移動量は、第1および第2雄ねじ部のピッチ比と、第1及び第3伝動手段の歯数比とで決定される請求項3記載のリニア・アクチュエータ。
【請求項5】
回転軸の第2雄ねじ部が、右ねじまたは左ねじで形成され、移動軸の第1雄ねじ部が、第2雄ねじ部とは逆向きのねじで形成され、第1伝動手段を一方向に回転させると、回転軸が第1伝動手段とともに共回転して移動部材を前進させ、移動部材が回転軸の第2雄ねじ部に沿って移動軸を前進させる方向に移動させると同時に、第1伝動手段との係合動作で第1伝動手段とは逆向きに第3伝動手段が回転して、移動軸を、移動部材の移動方向とは逆向きの方向に移動させるように構成する請求項3または4記載のリニア・アクチュエータ。
【請求項6】
回転軸の第2雄ねじ部と移動軸の第1雄ねじ部が、ともに右ねじで形成され、第1伝動手段と第3伝動手段の間に、これらと係合動作する第5伝動手段を設け、第1伝動手段を一方向に回転させると、回転軸が第1伝動手段とともに共回転して移動部材を前進させ、移動部材が回転軸の第2雄ねじ部に沿って移動軸を前進させる方向に移動させると同時に、第5伝動手段を介した第1伝動手段との係合動作で第1伝動手段と同じ向きに第3伝動手段が回転して、移動軸を、移動部材の移動方向とは逆向きの方向に移動させるように構成する請求項3または4記載のリニア・アクチュエータ。
【請求項7】
移動軸を1本とし、回転軸を2本とする請求項1~6のいずれか1項記載のリニア・アクチュエータ。
【請求項8】
平行配置した2本の回転軸の第1伝動手段を挟んで移動軸の第3伝動手段とは反対側に、両回転軸の第1伝動手段と係合動作する第6伝達手段を設け、該第6伝動手段は、駆動軸を介して駆動手段に連結される請求項7記載のリニア・アクチュエータ。
【請求項9】
前記回転軸と前記移動軸は直交して配置され、第2伝動手段はピニオンであり、第4伝動手段はラックである請求項1または2記載のリニア・アクチュエータ。
発明の詳細な説明 【技術分野】
【0001】
この発明は、リニア・アクチュエータに関し、特に電動モータなどの回転力を動力源とし、特殊(高価)な機械要素を用いることなく、差動機構を介した直線運動に変換することにより、小さな入力トルクから大きな直線運動出力を発生させるとともに、回転量を比例的に直線運動へ変換することによって精密に位置決めし、かつ完全に静止することが必要な材料試験機や精密扛重機、切削加工機における工作物移動装置など、さらには小型化が可能である利点を活かし、構成要素寸法と比較して大きな直線方向力が必要とされるマニピュレータ装置などに用いることができる、直動機構に関するものである。
【背景技術】
【0002】
従来、材料試験機や扛重機などにおける直線運動力発生機構としては、必要とされる力が非常に大きい場合には、油圧シリンダを用い、一方、必要とされる力が比較的小さくてもよい場合には、回転運動を直線運動に変換する機構として、ねじとナット、歯車、リンクなどの組合せを用いるのが一般的である。特に、後者に関しては、さらに次のように大別される。
(1)ねじとナットを直接組み合わせたもの
(2)差動ねじ機構を用いたもの
(3)ラックピニオン機構を用いたもの
(4)ウォーム機構を用いたもの
(5)クランク機構を用いたもの
(6)パンタグラフ機構を用いたもの
【0003】
まず、油圧シリンダにおいては、シリンダ径を大きくすることにより、数百kN以上の大荷重を発生することが可能であるため、大型の材料試験機や扛重機などに広く用いられている。しかしながら、油圧シリンダは、変位を制御することが極めて困難であるという欠点を有する。また、変位を停止させると、油圧シリンダの機構上、シリンダのパッキンからの油漏れを完全に防ぐことができないために、徐々に荷重が低下する。さらに、材料試験において、変位停止時にクリープ現象などで試験材料内の応力が低下すると、停止位置もそれに応じて変化してしまう。
【0004】
このため、正確な変位制御が必要な材料試験などにおいては、前項(1)で述べたように、モータなどの動力によってねじを回転させ、そのねじと螺合されているナットを取り付けたクロスヘッドを移動させ、直線運動に変換する機構を用いることが多い(図1)。しかしながら、前項(1)のねじとナットを用いた装置では、小さな回転トルクを大きな直線運動力へ変換するために、容積の大きいギヤボックスを用いて減速させる必要がある。また、大きな直線運動力を得るためには、太いねじを用いる必要があるが、ねじが太くなるほどピッチも大きくなるため、精密な変位制御が困難となる。すなわち、前項(1)の装置では、大きな直線運動力と精密な変位制御を両立させることが難しい。
【0005】
同様に、ねじ、歯車などを用いた前項(2)~(6)で述べた機構について、それぞれの長所および短所を挙げる。
【0006】
前項(2)の差動ねじ機構を用いた装置は、図2に示すように、2つのねじ部のピッチを異ならせることにより、これらのねじ部を同時に回転させた際に、各ねじ部にそれぞれ取り付けた針間の距離を精密に変化させることができ、結果的に回転を微少な直線運動へ変換することができる。しかしながら、この方法では、相対的な直線方向移動量の差を取り出すために、回転させるねじ軸に対していずれの針も移動することになり、装置への組み込みが難しい。また、ピッチの異なるねじを組み合わせるために、製造上複雑な工程が必要となる。さらに、最大直線運動力は、ピッチの小さい方のねじに依存し、ピッチが小さい分だけねじ山の実用強度も低くなるという問題がある。
【0007】
前項(3)のラックピニオン機構を用いた装置は、図3に示すように、比較的軽いものを粗動させる際に広く用いられている。回転運動を直線運動に変換する機構としては一般的であるが、歯車の噛み合っている領域が小さく限られているので、大きな力を伝達する用途には適していない。
【0008】
前項(4)のウォームギヤとねじを組み合わせた機構を用いた装置は、図4に示すように、回転運動を直線運動に変換する機構が実際に用いられている。ウォームギヤの長所は、平歯車と比べて大きな減速比が得られる点と、停止時の保持力が大きい点である。しかしながら、ウォームギヤは、すべり接触であり、熱を発生しやすいために摩耗が進行しやすく、バックラッシが大きくなる。また、機械効率が低いために平歯車と比べて負荷容量が小さいという欠点を有する。さらに、装置を小型化しようとすると、ウォームギヤの噛み合いが少なくなるため、強度や耐久性が低下する。
【0009】
前項(5)のクランク機構を用いた装置は、回転運動を往復直線運動に変換する機構として古くから用いられており、プレス機械の圧縮力伝達機構としては最も広く使われている(図5)。しかしながら、前項(5)の装置は、その機構上、発生しうる力はストローク位置によって変化し、ストローク中央では加圧力が最も小さくなる。すなわち、ストロークの途中で停止させたり、変速させる用途には適してなく、変位制御は困難である。
【0010】
前項(6)のパンタグラフ機構を用いた装置は、図6に示すように、部品点数が少なく、特殊な減速機構を用いることなく大きな直線運動力が得られるという長所を有する。しかしながら、前項(6)の装置は、回転量と直線変位が比例しないため、精密な変位制御を行うことは難しい。
【0011】
このため、本発明者らは、差動的なねじ機構を用いて、大きな直線運動力と精密な変位制御を両立させるための検討を行った。
【0012】
例えば特許文献1には、入力軸と、2つのねじ部を有する中間軸と、該中間軸と軸平行に配置され、軸の一部にねじ部を有する出力軸と、中間軸の一のねじ部に螺合するナット及び出力軸のねじ部に螺合するナットを連結するコラムとからなり、2つのねじ部の差動作用を利用して変位制御することが記載されている。
【0013】
特許文献1記載の変位制御方法は、同一回転軸(中間軸)に設けられた2つのねじ部のリード差により差動作用を生じさせるものであるが、最終的には回転出力を得るための機構であって、回転トルクを直線運動力に変換する機構ではない。
【0014】
また、特許文献2には、差動レバーを利用して直線的な微変位を行い高精度に位置決めするためのサブマイクロマニプレータが記載されているが、精密な直線運動を達成するためには、半径の大きな歯車を有する直動レバーやピッチの小さなウォームが必要になり、構成が複雑になるという問題がある。
【0015】
さらに、特許文献3には、ハウジングと駆動スリーブの間に中間アクチュエータ部材を装着した構成を有し、ねじ機構により回転を直線運動に変換し、また、回転量に対して直線運動量を比例的に変化させることができる差動式リニア・アクチュエータが記載されているが、この中間アクチュエータ部材は、複雑な構成を有しており、加工が難しいという問題がある。
【0016】
さらにまた、特許文献4には、遊星歯車伝動装置の回転駆動運動を直線運動に変換する構成を有し、歯車の歯数やねじのピッチを変えることにより、入力直線運動の移動出力比を変えることが可能であり、回転量に対し直線移動量を比例的に変化させることができるブレーキ操作装置が記載されているが、このブレーキ装置は、2つの電動モータが必要であるため、装置の小型化や軽量化を図ることは難しいという問題点がある。
【0017】
加えて、特許文献5には、ベースと支持板と可動体と主軸モータとねじ軸と、第一のねじをもつ差動円筒と第二のねじと差動円筒を支持板およびねじ軸とに対して回転させるモータとを有し、そのモータの回転によって差動円筒をねじ軸とともに支持板に対して上下移動させる差動機構を備えたプレス装置が記載されているが、この装置は、2個のモータが必要であり、装置の小型化や軽量化の点で不利である。

【特許文献1】特開昭59-77162号公報
【特許文献2】特開昭61-131882号公報
【特許文献3】特開平6-323394号公報
【特許文献4】特表2000-507332号公報
【特許文献5】特開2005-66652号公報
【発明の開示】
【発明が解決しようとする課題】
【0018】
この発明の目的は、特に電動モータなどの回転力を動力源とし、特殊(高価)な機械要素を用いることなく、差動機構を介した直線運動に変換することにより、小さな入力トルクから大きな直線運動出力を発生させるとともに、回転量を比例的に直線運動へ変換することによって精密に位置決めし、かつ完全に静止することが必要な材料試験機や精密扛重機、切削加工機における工作物移動装置など、さらには小型化が可能であるリニア・アクチュエータを提供することにある。
【課題を解決するための手段】
【0019】
上記目的を達成するため、この発明の要旨は以下のとおりである。
(I)少なくとも1つの支持部材に、回転可能に担持される少なくとも1本の回転軸と、軸方向への移動可能に担持される少なくとも1本の移動軸とを設け、
回転軸は、その少なくとも片側に第1伝動手段を有し、回転軸の所定部分に、第1伝動手段とともに同一方向に回転する第2伝動手段をもち、
移動軸は、その少なくとも片側に、回転軸に設けた第1伝動手段と係合する第3伝動手段を有し、移動軸の所定部分に、第3伝動手段とともに同一方向に回転する第1雄ねじ部をもち、先端に軸方向への位置決め制御を行うヘッド部を有し、
少なくとも移動軸の第1雄ねじ部が螺合する第1雌ねじ孔と、回転軸の第2伝動手段との連係動作する第4伝動手段をもち、第1雄ねじ部に沿って、支持部材に対する相対移動が可能な少なくとも1つの移動部材を設け、
移動軸のヘッド部における軸方向移動量は、回転軸の回転に伴う移動部材および移動軸の一の軸方向へ移動する距離と、回転軸の回転が第1および第3伝動手段を通じて移動軸に伝達されて移動軸が回転することにより、前記一の軸方向へ移動する移動部材に対して移動軸が一の軸方向とは逆向きの軸方向に移動する距離との差であることを特徴とするリニア・アクチュエータ。
【0020】
(II)第1及び第3伝動手段はいずれも歯車である上記(I)記載のリニア・アクチュエータ。
【0021】
(III)前記回転軸と前記移動軸は平行に配置され、第2伝動手段は第2雄ねじ部であり、第4伝動手段は第2雌ねじ孔である上記(I)または(II)記載のリニア・アクチュエータ。
【0022】
(IV)移動軸のヘッド部の軸方向移動量は、第1および第2雄ねじ部のピッチ比と、第1及び第3伝動手段の歯数比とで決定される上記(III)記載のリニア・アクチュエータ。
【0023】
(V)回転軸の第2雄ねじ部が、右ねじまたは左ねじで形成され、移動軸の第1雄ねじ部が、第2雄ねじ部とは逆向きのねじで形成され、第1伝動手段を一方向に回転させると、回転軸が第1伝動手段とともに共回転して移動部材を前進させ、移動部材が回転軸の第2雄ねじ部に沿って移動軸を前進させる方向に移動させると同時に、第1伝動手段との係合動作で第1伝動手段とは逆向きに第3伝動手段が回転して、移動軸を、移動部材の移動方向とは逆向きの方向に移動させるように構成する上記(III)または(IV)記載のリニア・アクチュエータ。
【0024】
(VI)回転軸の第2雄ねじ部と移動軸の第1雄ねじ部が、ともに右ねじで形成され、第1伝動手段と第3伝動手段の間に、これらと係合動作する第5伝動手段を設け、第1伝動手段を一方向に回転させると、回転軸が第1伝動手段とともに共回転して移動部材を前進させ、移動部材が回転軸の第2雄ねじ部に沿って移動軸を前進させる方向に移動させると同時に、第5伝動手段を介した第1伝動手段との係合動作で第1伝動手段と同じ向きに第3伝動手段が回転して、移動軸を、移動部材の移動方向とは逆向きの方向に移動させるように構成する上記(III)または(IV)記載のリニア・アクチュエータ。
【0025】
(VII)移動軸を1本とし、回転軸を2本とする上記(I)~(VI)のいずれか1項記載のリニア・アクチュエータ。
【0026】
(VIII)平行配置した2本の回転軸の第1伝動手段を挟んで移動軸の第3伝動手段とは反対側に、両回転軸の第1伝動手段と係合動作する第6伝達手段を設け、該第6伝動手段は、駆動軸を介して駆動手段に連結される上記(VII)記載のリニア・アクチュエータ。
【0027】
(IX)前記回転軸と前記移動軸は直交して配置され、第2伝動手段はピニオンであり、第4伝動手段はラックである上記(I)または(II)記載のリニア・アクチュエータ。
【発明の効果】
【0028】
この発明によれば、特殊(または高価)な機械要素を用いることなく、回転運動を差動機構を介した直線運動に変換することにより、小さな入力トルクから大きな直線運動出力を発生させるとともに、回転量を比例的に直線運動へ変換することによって精密に位置決め制御することができる。
【0029】
また、回転軸と移動軸とを平行に配置する構造にすれば、アクチュエータ全体をコンパクトにすることができる。
【0030】
さらに、この発明は、移動軸のヘッド部における軸方向移動量が、移動部材および移動軸の一の軸方向へ移動する距離と、前記一の軸方向へ移動する移動部材に対して移動軸が一の軸方向とは逆向きの軸方向に移動する距離との差によって定められるため、回転軸の第2雄ねじ部や移動軸の第1雄ねじ部のピッチを大きく設定することができる結果、大荷重を負荷することができる。
【0031】
さらにまた、この発明のアクチュエータは、例えば歯車のような伝動手段と、回転軸や移動軸のようなねじとの組み合わせで主として構成すれば、構成が単純になり、しかも、これらの部材は安価に入手することができる。
【0032】
従来でも、高精度かつ高出力なリニア・アクチュエータの製造は、高価な材料で構成するとともに、高精度に研削仕上げされたねじを用いれば可能であったが、そのように高価なねじを用いることができる用途は限られており、しかも、通常のボールねじは高精度であるものの高出力が難しく、広く用いられている安価な台形ねじでは高出力であるがリード角が大きいために精度が悪くなり、結果として、高精度に研削仕上げされたねじを用いたとしても、高出力と高精度の双方を満足させることは困難であった。これに対し、この発明では、安価な台形ねじを用いても比較的精度良く変位を制御することができるという効果がある。
【0033】
また、台形ねじを用いて小さい変位を得ようとすれば、台形ねじの回転を極めて遅くする必要があるために、静摩擦と動摩擦の切り替わりによる摩擦力変動や、モータの回転速度を低下させることによる発生トルクの低下などを引き起こしていたが、この発明では、差動機構の採用により、変位が小さい場合にも、移動軸の軸方向移動量と比較して、ねじ面上の移動速度は比較的速くできるので、摩擦力の変動が抑制され、かつモータの回転速度を速い状態で維持することができ、その結果、精密な位置決め制御が可能になる。
【発明を実施するための最良の形態】
【0034】
この発明に従う実施形態について図面を参照しながら以下に説明する。
図7は、この発明に従うリニア・アクチュエータの要部構成を示したものであり、図8(a)~(c)はそれぞれ図7のA-A断面、B-B断面およびC-C断面を示したものである。
【0035】
この発明のリニア・アクチュエータ1は、少なくとも1つの支持部材、図7では、4つの支持部材2,3、7,8、回転軸4、移動軸5および移動部材6とで主に構成されている。
【0036】
図7では、2つの支持部材2,3は、所定の間隔をおいて互いに平行に配置されているとともに、さらに、支持部材2,3の強度を高める上で、支持部材2,3の両端をそれぞれ連結するさらに別の2つの支持部材7,8を設け、合計4つの支持部材2,3,7,8で、全体として矩形の平面形状を形成した場合を示している。なお、これらの支持部材の個数や形状等については、必要に応じて適宜変更することができる。
【0037】
また、これらの支持部材2,3に、軸方向に移動させることなく回転可能に担持される少なくとも1本(図7では2本)の回転軸4と、軸方向への直線移動可能に担持される少なくとも1本(図7では1本)の移動軸5とが平行に設けられている。
【0038】
回転軸4を軸方向に移動させることなく回転可能に担持する手段としては、例えば、図7および図8(a)に示すように、前記支持部材2,3のそれぞれに貫通孔9を形成し、これらの貫通孔9の内周面に複数個の剛球からなる軸受10を配設することにより、回転軸4を回転可能に担持するとともに、支持部材2、3に隣接する回転軸4の両側部分に、ストッパーとして、外径を拡大したフランジ部11を設けることが好ましい。
【0039】
また、移動軸5を軸方向に直線移動可能に担持する手段としては、フランジ部を設けないこと以外は回転軸4を担持する手段と同様に構成しさえすればよい。
【0040】
回転軸4は、その少なくとも片側に第1伝動手段12、好適には歯車を有し、回転軸の所定部分、図7では支持部材2,3間に位置する部分に、第1伝動手段12とともに同一方向に回転する第2伝動手段、図7では第2雄ねじ部13を有する。第2雄ねじ部13は、軸回りに特定方向、例えば図7では、図の右側から眺めて、右ねじになるような方向にねじ切りして形成したものである。
【0041】
移動軸5は、その少なくとも片側に、回転軸4に設けた第1伝動手段12と係合する第3伝動手段14、好適には歯車を有し、移動軸の所定部分、図7では支持部材2,3間に位置する部分に、第3伝動手段14とともに同一方向に回転する第1雄ねじ部15をもち、先端に、軸方向への位置決め制御を行うヘッド部28を有する。第1ねじ部15、軸回りに特定方向、例えば図7では、図の右側から眺めて、左ねじになるような方向にねじ切りして形成したものである。
【0042】
移動部材6は、回転軸4の第2伝動手段である第2雄ねじ部13と、移動軸5の第1雄ねじ部15とが、それぞれ螺合する第4伝動手段である第2雌ねじ孔16と、第1雌ねじ孔17をもち、第2および第1雄ねじ部13、15に沿って、支持部材2に対し相対移動可能に構成される。
【0043】
そして、この発明では、移動軸5ヘッド部28における軸方向移動量が、回転軸4の回転に伴う移動部材6および移動軸5の一の軸方向xへ移動する距離と、回転軸の回転が第1伝動手段12および第3伝動手段14を通じて移動軸5に伝達されて移動軸5が回転することにより、前記一の軸方向xへ移動する移動部材6に対して移動軸5が一の軸方向xとは逆向きの軸方向yに移動する距離との差によるものであり、この構成を採用することにより、特殊(高価)な機械要素を用いることなく、差動機構を介した直線運動に変換することにより、小さな入力トルクから大きな直線運動出力を発生させるとともに、回転量を比例的に直線運動へ変換することによって精密に位置決め制御することができる。
【0044】
次に、図7に示すリニア・アクチュエータの動作機構を以下で詳細に説明する。
図7のリニア・アクチュエータは、例えば電動モータのような駆動手段(図示せず)が第1伝動手段12(図7では第1歯車)に連結され、駆動手段を作動させることによって、第1歯車12を、図7の右側から眺めて、反時計回りに回転させる。なお、図7では、移動部材6を回転軸4に沿って円滑に移動させるため、移動軸5を挟んで2本の回転軸4,4を平行に配設した場合を示してあるが、このように回転軸4の配設本数は必要に応じて適宜変更することができる。また、この発明では、第1歯車12を複数個配設することも可能であり、この場合には、これらの第1歯車12を同じ回転速度で同時入力するように構成すれば、歯車の1歯あたりの負荷容量を減らすことができるため、さらに大きな動力を伝達することができる。
【0045】
次いで、第1歯車12が反時計回りに回転すると、これとともに共回転する回転軸4もまた、反時計回りに回転する。このとき、回転軸4は、軸受10を介して両支持部材2,3によって回転可能に担持されている。
【0046】
回転軸4は、その第2雄ねじ部13が、移動部材6の第2雌ねじ部16に螺合されており、第2雄ねじ部13が、図1の右側から眺めて、右ねじであって、回転軸4が反時計回りに回転することに伴って、支持部材2に対し、移動部材6が回転軸4に沿って、図1の軸方向x(左方向)に移動する。この移動部材6には、移動軸5の第1雄ねじ部15が、移動部材6の第1雌ねじ部17に螺合されているため、移動部材6の軸方向xへの移動距離と同じだけ移動軸5も軸方向xに移動することになる。なお、この発明では、回転軸4は1本でも動作可能であるが、図1に示すように、複数本配設することが移動部材6に作用する余分なモーメントを防止できる点で好ましい。また、移動部材6は、1個でもよいが、高い直線運動力に耐え得るようにするためには、回転軸4および移動軸5の雄ねじ部13,15と螺合する雌ねじの歯数が多くなるようにするため、複数個にするか、あるいは板厚を厚くすることが好ましい。
【0047】
一方、図7に示す移動軸5は、軸受10を介して両支持部材2,3によって回転および直動(直線移動)可能に担持されており、第1歯車12の回転力は、第1歯車12と係合する第3伝動手段14(図1では第2歯車)に伝達され、第2歯車14は、第1歯車12の回転力によって、時計回りに回転し、第2歯車14が時計回りに回転すると、これとともに共回転する移動軸5もまた、時計回りに回転する。移動軸5は、その第1雄ねじ部15が、移動部材6の第1雌ねじ部17に螺合されており、第1雄ねじ部15が、図1の右側から眺めて、左ねじであって、移動軸5が時計回りに回転することに伴って、移動部材6に対し移動軸5が、図1の軸方向xとは逆向きの軸方向y(右方向)に移動することになる。
【0048】
この結果、移動軸5は、回転軸4の回転に伴う移動部材6および移動軸5の一の軸方向xへ移動する距離と、回転軸4の回転が第1歯車12および第2歯車14を通じて移動軸に伝達されて移動軸が回転することにより、移動部材6に対して移動軸5が一の軸方向xとは逆向きの軸方向yに移動する距離との差の分だけ軸方向に移動することになり、移動軸のヘッド部28は、この機構において直線運動力を出力する部位であり、結果として移動軸5においては、前述した移動部材6による軸方向xへの移動量から、回転による移動部材6に対する軸方向yへの移動量を差し引いた分だけ、軸方向xへ直線移動する、いわゆる差動的な出力を得ることができる。
【0049】
このような軸方向xへの差動を達成するには、第1歯車12および第2歯車14の歯数比と、回転軸4の第2雄ねじ部13と移動軸5の第1雄ねじ部15のピッチ比を適切に組み合わせることが必要になる。例えば、第1歯車12と第2歯車14の歯数が等しい場合には、移動軸5のピッチを回転軸4のピッチよりも小さくすれば、結果的に移動軸5を軸方向xに移動させることができる。また、回転軸4のピッチと移動軸5のピッチが等しい場合には、第2歯車14の歯数を第1歯車12の歯数よりも多くすれば、結果的に移動軸5を軸方向xに移動させることができる。
【0050】
その他の場合においても、各歯車12,14の歯数比と、回転軸4および移動軸5のねじ部13、15のピッチ比を適切に決定することにより、移動軸5の軸方向xへの差動を達成することが可能になる。
【0051】
なお、この実施形態では、第2歯車14は、移動軸5とともに直動(軸方向への移動)するので、その際にも、第2歯車14と第1歯車12の係合状態が維持できるように、第2歯車14には軸方向に長い形状のものを用いた場合を示しているが、上記係合状態を維持できる構成であればよく、上記構成だけには限定されない。
【0052】
また、図9は、図8(c)に示す2本の回転軸4と1本の移動軸5の配置構成の変形例を示したものである。
【0053】
この実施例では、1個の電動モータなどによる回転入力が、入力軸18の片側に連結されている第6伝達手段である入力歯車19を、図9では時計回りに回転させる。この入力歯車19は、歯数が等しい2個の第1歯車12と直接的に噛み合っており、これらを同時に反時計回りに回転させる。さらに、これらの第1歯車12は、第2歯車14と直接的に噛み合っており、第2歯車14を時計回りに回転させる。モータのトルクが大きい場合、あるいは入力歯車19と第1歯車12の減速比を充分に大きくできる場合には、この実施例のように配置することによって、2個の第1歯車12に対して等しい回転を与えることができるので効率的であり、加えて、図8(c)の装置構成のように、回転軸4と移動軸5を一列に配置した場合と比較して、装置構成を小型化することができる。
【0054】
また、この発明のアクチュエータを構成する各部材については、次のように変更することも可能である。
【0055】
直線運動を出力する移動軸5の配設本数は複数本にすることも可能である。この際、複数本の移動軸5は、同時に直動することから、その先端にスラストベアリングなどを介して昇降板を取り付ければ、高い可搬力を有する昇降装置として用いることができる。
【0056】
第2歯車14は、移動軸5に回転を伝達するだけであれば、例えば、移動軸5と第2歯車14との間にボールスプラインなどを設けて、第2歯車14が移動軸5に対してスライド移動可能に構成すれば、第2歯車14として軸方向に長いものを用いなくても、第1歯車12との係合状態を維持でき、加えて、軽量化も図れる点で好ましい。また、この構成を採用する場合には、第1及び第2歯車12,14として、平歯車よりも伝達容量が大きい「はすば歯車」を用いることも可能になる。
【0057】
また、上記実施例では、第1及び第2伝動手段12,14として歯車を用いた場合を示してあるが、直動と回転の双方を許容するのであれば、無端ベルトなどの他の伝動手段を用いてもよい。
【0058】
さらに、図7では、移動軸5のヘッド部28での出力が、外向き方向(図の軸方向x)への直線運動力を発生させる場合を示しているが、各歯車12,14の歯数比と、回転軸4および移動軸5のねじ部13、15のピッチ比の関係を、図7の場合とは反対になるように設定することにより、移動軸5のヘッド部28での出力が、内向き方向(図の軸方向y)への直線運動力を発生させるように変更することも可能である。例えば、移動軸5の第1雄ねじ部15と回転軸4の第2雄ねじ部13のピッチ比を等しくし、第2歯車14の歯数を第1歯車12の歯数よりも少なくすることで達成できる。
【0059】
また、図7では、両支持部材2,3を固定し、移動部材6を軸方向へ移動可能にした場合を示しているが、反対に、移動部材6を固定し、両支持部材2,3を移動可能に構成することもできる。
【0060】
さらに、図7では、駆動手段による回転力を、第1歯車12に入力する場合を示しているが、第2歯車14に入力するように構成してもよい。
【0061】
また、図10は、他の実施形態を示したものである。
ところで、図7では、回転軸4の第2雄ねじ部13が右ねじ、移動軸5の第1雄ねじ部15が左ねじのものを用いた場合を示したが、左ねじのものは汎用的ではなく入手しにくい場合も多い。
【0062】
このような場合には、図10および図11(a)~(d)に示すように、回転軸4の第2雄ねじ部13と移動軸5の第1雄ねじ部15が、ともに右ねじで形成され、支持部材2と別の支持部材27とで回転可能に担持した回転軸26に連結された第5伝動手段である第3歯車20を第1歯車12と第2歯車14の間に設け、第1歯車12を一方向(図10では反時計方向)に回転させると、回転軸4が第1歯車12とともに共回転して、移動部材6が回転軸4の第2雄ねじ部13に沿って移動軸5を前進させる方向(軸方向x)に移動させると同時に、第3歯車20を介した第1歯車12との係合動作で第1歯車12と同じ向き(図10では反時計方向)に第2歯車14が回転して、移動軸5を、移動部材6の移動方向(軸方向x)とは逆向きの方向(軸方向y)に移動させるように構成すればよい。なお、本発明では、回転軸4の第2雄ねじ部13と移動軸5の第1雄ねじ部15のいずれもが左ねじで形成した場合を除外しているわけではなく、かかる場合も含まれることは言うまでもない。
【0063】
なお、上記構成において、アクチュエータ全体を小型化する必要がある場合には、第3歯車20の外径寸法をできるだけ小さくすることが望ましい。その場合、歯数の等しい複数個の第3歯車20を配設することが、伝達トルクの減少を防止する上で好適である。また、第3歯車20として軸方向に長いものを用いれば、大きな外径をもつ第2歯車14を軸方向に長くしなくても、これらの歯車12と歯車20間および歯車14と歯車20間の係合状態を維持することができ、この結果、全体重量が低減される。
【0064】
上記実施例ではいずれも、移動軸5は直線運動すると同時に回転もする。このような回転は、移動軸5と作用対象との間をスラストベアリング介して接続することによって、作用対象の回転を防止できるが、移動軸5自体を回転させないようにしたい場合には、例えば、図12および図13(a)~(d)に示すように、1対の支持部材2,3を固設し、これら両支持部材2,3で、一対の第4伝動手段である第4歯車21a,21bを連結した回転入力軸22と移動軸5とを担持し、移動軸5と回転軸4とで担持される2対の回転部材23aと23b、24aと24bを配設し、回転入力軸22の第4歯車21a,21bと、3本の回転軸4の第1歯車12a,12bとの間に、リング状の第5歯車25a,25bを回転可能に配置し、回転入力軸22に入力された回転力は、第4歯車21a,21bを介して第5歯車25a,25bに伝達されて、図13(c)に示す矢印方向に回転し、これら第5歯車25a,25bの回転により、3個の第1歯車12a,12bが回転しながら第2歯車14a,14bの回りを転動することにより、回転部材23a、23b、24a、24bと移動部材6とが移動軸5の回りに回転し、回転軸4の回転による移動部材6の一の軸方向(軸方向x)への移動量と、移動軸5の回りの回転による移動部材6に対する移動軸5の逆向きの軸方向(軸方向y)への移動量との差によって、移動軸5の軸方向xへの差動を達成することができる。
【0065】
また、移動部材6と支持部材2,3の位置関係について、本発明では、図7に示すように、移動部材6が支持部材2,3間にある場合だけには限定されず、図14(a)~(d)に示すように、支持部材2,3の外側に配置することもできる。
さらに、その他の実施形態として、回転軸4と移動軸5とを、図15(a)~(d)に示すように、1つの支持部材33のみで担持するように構成することは可能である。
【0066】
ここまでは、前記回転軸と前記移動軸が平行に配置した場合について説明してきたが、本発明では、図16(a)~(d)に示すように、前記回転軸を前記移動軸に対し直交して配置することもできる。この場合、第2伝動手段を、第2雄ねじ部13とする代わりに、ピニオン29とするとともに、第4伝動手段を、第2雌ねじ孔16とする代わりに、ラックとして構成することが好ましい。
【0067】
なお、上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。
【産業上の利用可能性】
【0068】
この発明によれば、特殊(または高価)な機械要素を用いることなく、差動機構を介した直線運動に変換することにより、小さな入力トルクから大きな直線運動出力を発生させるとともに、回転量を比例的に直線運動へ変換することによって精密に位置決め制御することができる。
【0069】
また、回転軸と移動軸とを平行に配置する構造にすることにより、アクチュエータ全体をコンパクトにすることができる。
【0070】
さらに、この発明は、移動軸のヘッド部における軸方向移動量が、移動部材および移動軸の一の軸方向へ移動する距離と、前記一の軸方向へ移動する移動部材に対する移動軸の一の軸方向とは逆向きの軸方向へ移動する距離との差によって定められるため、回転軸の第2雄ねじ部や移動軸の第1雄ねじ部のピッチを大きく設定することができる結果、大荷重を負荷することができる。
【0071】
さらにまた、この発明のアクチュエータは、例えば歯車のような伝動手段と、回転軸や移動軸のようなねじとの組み合わせで主として構成されているため、構成が単純であり、しかも、これらの部材は安価で入手することができる。
【0072】
従来でも、高精度かつ高出力なリニア・アクチュエータの製造は、高価な材料で構成するとともに、高精度に研削仕上げされたねじを用いれば可能であったが、そのようなねじを用いることができる用途は限られており、しかも、通常のボールねじは高精度であるものの高出力が困難であり、広く用いられている安価な台形ねじでは高出力であるが精度が悪くなり、結果として、高精度に研削仕上げされたねじを用いたとしても、高出力と高精度の双方を満足させることはできなかった。これに対し、この発明では、安価な台形ねじを用いても比較的精度良く変位を制御することができるという効果がある。
【0073】
また、台形ねじを用いて小さい変位を得ようとすれば、台形ねじの回転を極めて遅くする必要があるために、静摩擦と動摩擦の切り替わりによる摩擦力変動や、モータの回転速度を低下させることによる発生トルクの低下などを引き起こしていたが、この発明では、差動機構の採用により、変位が小さい場合にも、移動軸の軸方向移動量と比較して、ねじ面上の移動速度は比較的速くできるので、摩擦力の変動が抑制され、かつモータの回転速度を速い状態で維持することができ、その結果、精密な位置決め制御が可能になる。
【図面の簡単な説明】
【0074】
【図1】ねじとナットを直接組み合わせた従来装置を示した図である。
【図2】差動ねじ機構を用いた従来装置を示した図である。
【図3】ラックピニオン機構を用いた従来装置を示した図である。
【図4】ウォーム機構を用いた従来装置を示した図である。
【図5】クランク機構を用いた従来装置を示した図である。
【図6】パンタグラフ機構を用い従来装置を示した図である。
【図7】この発明に従う代表的なリニア・アクチュエータを示す正面図である。
【図8】(a)は、図7のA-A断面図、(b)は図7のB-B断面図、そして(c)は図7のC-C断面図である。
【図9】図8(c)の変形例である。
【図10】他の実施形態を示す図である。
【図11】(a)は、図10のA-A断面図、(b)は図10のB-B断面図、(c)は図10のC-C断面図、(d)は図10のD-D断面図である。
【図12】他の実施形態を示す図である。
【図13】(a)は、図12のA-A断面図、(b)は図12のB-B断面図、(c)は図12のC-C断面図、(d)は図12のD-D断面図である。
【図14】(a)は、他の実施形態を示す正面図であり、(b)は、(a)のA-A断面図、(b)は(a)のB-B断面図、そして(c)は(a)のC-C断面図である。
【図15】(a)は、他の実施形態を示す正面図であり、(b)は、(a)のA-A断面図、(c)は(a)のB-B断面図、そして(d)は(a)のC-C断面図である。
【図16】(a)は、他の実施形態を示す正面図であり、(b)は、(a)の矢印A方向から眺めたときの平面図、(c)は(a)のB-B断面図、そして(d)は(a)のC-C断面図である。
【符号の説明】
【0075】
1 リニア・アクチュエータ
2,3,27 支持部材
4 回転軸
5 移動軸
6 移動部材
7,8 支持部材
9 貫通孔
10 軸受
11 フランジ部
12,12a,12b 第1伝動手段または第1歯車
13 第2雄ねじ部
14,14a,14b 第3伝動手段または第2歯車
15 第1雄ねじ部
16 第2雌ねじ孔
17 第1雌ねじ孔
18 入力軸
19 入力歯車
20 第3歯車
21a,21b 第4歯車
22 回転入力軸
23a,23b,24a,24b 回転部材
25a,25b 第5歯車
26 回転軸
28 移動軸のヘッド部
29 ピニオン
30 ラック
31 直動案内部
32 回転直動案内部
33 支持部材
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11
【図13】
12
【図14】
13
【図15】
14
【図16】
15