TOP > 国内特許検索 > スパッタリング装置 > 明細書

明細書 :スパッタリング装置

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第5669198号 (P5669198)
公開番号 特開2012-172180 (P2012-172180A)
登録日 平成26年12月26日(2014.12.26)
発行日 平成27年2月12日(2015.2.12)
公開日 平成24年9月10日(2012.9.10)
発明の名称または考案の名称 スパッタリング装置
国際特許分類 C23C  14/34        (2006.01)
FI C23C 14/34 L
C23C 14/34 N
請求項の数または発明の数 4
全頁数 14
出願番号 特願2011-033994 (P2011-033994)
出願日 平成23年2月18日(2011.2.18)
審査請求日 平成25年11月18日(2013.11.18)
特許権者または実用新案権者 【識別番号】593165487
【氏名又は名称】学校法人金沢工業大学
発明者または考案者 【氏名】草野 英二
個別代理人の代理人 【識別番号】100154966、【弁理士】、【氏名又は名称】海野 徹
審査官 【審査官】末松 佳記
参考文献・文献 特開平06-128726(JP,A)
特開昭61-213370(JP,A)
特公昭49-048835(JP,B1)
調査した分野 C23C 14/00-14/58
H01L 31/04-31/078
特許請求の範囲 【請求項1】
基板と、少なくとも一つの陰極と、当該陰極の近傍に配置する少なくとも一つのターゲットをチャンバー内に備えるスパッタリング装置であって、
前記チャンバー内において、前記基板と前記ターゲットによりその一部が囲まれる空間と他の空間を仕切るための分離板と、当該分離板を加熱する加熱手段を備えており、
基板上に作製もしくは堆積する薄膜の化学量論的組成比より大きな割合の硫黄、セレンもしくはテルル、またはこれらのうち2種以上を含む混合物を前記ターゲット中に含むことを特徴とするスパッタリング装置。

【請求項2】
基板と、少なくとも一つの陰極と、当該陰極の近傍に配置する少なくとも一つのターゲットをチャンバー内に備えるスパッタリング装置であって、
前記チャンバー内において、前記基板と前記ターゲットによりその一部が囲まれる空間と他の空間を仕切るための分離板と、当該分離板を加熱する加熱手段を備えており、
基板上に作製もしくは堆積する薄膜の化学量論的組成比よりも多くの金属硫化物、金属セレン化物もしくは金属テルル化物、またはこれらのうち2種以上を含む混合物を前記ターゲット中に含むことを特徴とするスパッタリング装置。

【請求項3】
前記基板と前記ターゲットによりその一部が囲まれる空間に硫黄、セレンもしくはテルル、またはこれらのうち2種以上を含む混合物を固体又は気体の状態で供給する供給手段を備えることを特徴とする請求項1又は2に記載のスパッタリング装置。

【請求項4】
反応性ガスとして硫化水素、セレン化水素もしくはテルル化水素、またはこれらのうち2種以上を含む混合物を含むガスを使用することを特徴とする請求項2に記載のスパッタリング装置。
発明の詳細な説明 【技術分野】
【0001】
本発明はスパッタリング装置に関し、特に基板に金属硫化物、金属セレン化物もしくは金属テルル化物薄膜を形成できるスパッタリング装置に関する。
【背景技術】
【0002】
スパッタリング装置は真空チャンバー内において、薄膜として作製したい金属を含有するターゲットに対して高いエネルギーを持つ粒子を衝突(スパッタ)させることにより当該金属粒子を成膜雰囲気中に蒸発させ、これを基板上に堆積させて薄膜を作製する装置である。
スパッタリング装置を用いて2種以上の金属元素を含む薄膜を基板上に作製する場合、ターゲットとしてはこれら金属の合金又は混合物(混合焼結体)を用いたり、あるいは陰極と金属とを一対のユニットにして、複数のユニットを並べて構成したターゲットを用いている。
【0003】
例えば、特許文献1には2つのターゲットの間に、基板の搬送方向に対向するシールドを設けることで、スパッタにより蒸発させた金属粒子がチャンバー内に拡散して薄膜の品質低下を招くことを防止するスパッタリング装置が開示されている。
ところで、近年、太陽電池の光吸収層(光電変換層)の材料として従来のシリコンに代わり、直接遷移型の半導体である金属硫化物、金属セレン化物及び金属テルル化物が注目されている。
例えば銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)からなるCIGSと呼ばれるカルコパイライト(黄銅鉱)系の材料は一般的な結晶シリコンよりも光の吸収率が高く、15%以上の高い光電変換効率を達成できることが知られている。
他にもCu(In,Ga)(Se,S)2、CuInS2などがそれぞれCIGSS、CIS薄膜として知られており、銅(Cu)、亜鉛(Zn)、錫(Sn)、硫黄(S)からなるCZTS薄膜や、カドミウム(Cd)とテルル(Te)からなるCdTe薄膜も注目されている。
【先行技術文献】
【0004】

【特許文献1】特開2010-1565号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところが、上記従来技術では以下のような問題があった。
すなわち、金属硫化物、金属セレン化物もしくは金属テルル化物を含む薄膜は工業的には蒸着法あるいは金属薄膜を後硫化、後セレン化あるいは後テルル化する方法により作製されている。その理由としては硫黄、セレン及びテルルは他の金属元素と比較して蒸気圧が高いことにある。
仮に従来知られているスパッタリング装置によって金属硫化物、金属セレン化物もしくは金属テルル化物を含む薄膜の作製を試みた場合、製膜作業中に基板上に堆積した薄膜に含まれる硫黄、セレン及びテルルが選択的に再蒸発していくため薄膜の組成を制御することが困難である。
また、一旦薄膜から蒸発した金属蒸気は常温のチャンバー内壁等に接すると凝着してしまうことから、成膜雰囲気中に高い圧力を持つ反応ガスとして滞在させることも困難である。
また、ターゲット中において単体の形で存在する硫黄、セレン及びテルルもスパッタにより成膜雰囲気中に粒子となって選択的に蒸発するので、経時的にターゲット組成ずれが発生するという問題もある。
【0006】
スパッタリング法は大面積の基板上に十分に反応した化合物薄膜を工業的に大量に作製することに適していることから、金属硫化物、金属セレン化物もしくは金属テルル化物を後反応プロセスなく、スパッタリング法のみで作製できれば金属硫化物、金属セレン化物もしくは金属テルル化物薄膜を安価に提供できるようになるが、現状ではその解決法は見つかっていない。
【0007】
本発明はこのような問題に鑑み、スパッタリング法において特に金属硫化物、金属セレン化物もしくは金属テルル化物の成膜時に発生する問題を解決し、大面積の基板に金属硫化物、金属セレン化物もしくは金属テルル化物薄膜を作製できるスパッタリング装置を提供することを課題とする。
【課題を解決するための手段】
【0008】
本発明のスパッタリング装置は、基板と、少なくとも一つの陰極と、当該陰極の近傍に配置する少なくとも一つのターゲットをチャンバー内に備えるスパッタリング装置であって、チャンバー内において、基板とターゲットによりその一部が囲まれる空間と他の空間を仕切るための分離板と、当該分離板を加熱する加熱手段を備えており、基板上に作製もしくは堆積する薄膜の化学量論的組成比より大きな割合の硫黄、セレンもしくはテルル、またはこれらのうち2種以上を含む混合物を前記ターゲット中に含むことを特徴とする。
また、基板と、少なくとも一つの陰極と、当該陰極の近傍に配置する少なくとも一つのターゲットをチャンバー内に備えるスパッタリング装置であって、
チャンバー内において、基板とターゲットによりその一部が囲まれる空間と他の空間を仕切るための分離板と、当該分離板を加熱する加熱手段を備えており、基板上に作製もしくは堆積する薄膜の化学量論的組成比よりも多くの金属硫化物、金属セレン化物もしくは金属テルル化物、またはこれらのうち2種以上を含む混合物をターゲット中に含むことを特徴とする。
また、基板とターゲットによりその一部が囲まれる空間に硫黄、セレンもしくはテルル、またはこれらのうち2種以上を含む混合物を固体又は気体の状態で供給する供給手段を備えることを特徴とする。
また、反応性ガスとして硫化水素、セレン化水素もしくはテルル化水素、またはこれらのうち2種以上を含む混合物を含むガスを使用することを特徴とする。
【発明の効果】
【0009】
本発明は基板とターゲットによりその一部が囲まれる空間を分離板で仕切ることで基板上に堆積した薄膜中の成分が再蒸発してチャンバー内に拡散することを防止し、更に分離板を加熱手段で加熱することで再蒸発した薄膜中の成分の蒸気が分離板に凝着することを防止するので蒸気圧を高い状態で維持できる。これにより蒸発速度を小さくすることができ、薄膜中の成分の再蒸発を抑制し、薄膜の組成比の制御が容易になる。
特に、蒸気圧が高い硫黄、セレンもしくはテルルを、基板上に作製もしくは堆積する薄膜の化学量論的組成比より大きな割合で前記ターゲット中に含んだり、あるいは金属をターゲットとし、反応性ガスとして硫化水素等を使用することで、スパッタリング法によって大面積で定比の硫黄、セレンもしくはテルルを有する金属硫化物、金属セレン化物もしくは金属テルル化物薄膜を工業的に大量に作製することが可能となる。
また、ターゲット中の成分もスパッタにより成膜雰囲気中に粒子となって蒸発する。したがって、蒸気圧が高い硫黄、セレンもしくはテルル、またはこれらのうち2種以上を含む混合物をターゲットとする場合には、分離板及び加熱手段を用いることで、ターゲット中において単体の形で存在する硫黄、セレン及びテルルが選択的に蒸発することを防ぎ、ターゲット組成ずれを抑制できる。
さらに、副次的な効果として蒸気圧の高い亜鉛などの金属を含む化合物を堆積する場合には、蒸気圧の高い金属の基板からの再蒸発を抑制することができ、金属間の組成ずれをも抑制することができる。
【0010】
特に、基板上に作製もしくは堆積する薄膜の化学量論的組成比よりも多くの金属硫化物、金属セレン化物もしくは金属テルル化物、またはこれらのうち2種以上を含む混合物をターゲット中に含んだり、あるいは供給手段を利用することで、硫黄等の金属の蒸気圧をより高い状態で維持できると共に薄膜の成分比を化学量論的組成比に近づけることができる。
なお、本発明は分離板を基板及びターゲット近傍に配置し、この分離板を加熱手段が加熱することで蒸気の拡散を防止し、更に蒸気が分離板に凝着することを防止するものである。したがって、分離板を設けずにチャンバー自体を加熱手段が加熱することでチャンバー内壁に蒸気が凝着することを防止する構造と比較して、加熱効率の点から好ましいのみならず、そもそもチャンバーには冷却手段等種々の機材が取り付けられているので、チャンバーを加熱することは物理的に困難である。
また、上述した薄膜から再蒸発する成分及びターゲットから蒸発する成分は薄膜及びターゲットの成分によって多様であり、金属元素、非金属元素のいずれも含まれ得る。
なお、本発明においては分離板をターゲットからスパッタによって飛び出した金属が所望の範囲以外に飛散することを防止するいわゆるシャッター目的で設置するのではなく、薄膜の蒸気成分またはターゲットから蒸発した成分がチャンバー内を拡散し、チャンバー内の低温の部材に接触して凝着することを防止することを目的とするものである。したがって、従来技術として知られているシャッター用の部材と本発明の分離板は目的が大きく異なる。
また、本明細書中において「基板とターゲットによりその一部が囲まれる空間」には、ターゲット表面近傍の空間及びスパッタにより基板から蒸発した粒子が基板上に堆積するまでの経路を含む空間が含まれるものとする。
【図面の簡単な説明】
【0011】
【図1】第一の実施の形態のスパッタリング装置の構成を示す縦断面斜視図
【図2】第二の実施の形態のスパッタリング装置の構成を示す縦断面斜視図
【図3】第三の実施の形態のスパッタリング装置の構成を示す縦断面斜視図
【図4】スパッタリング装置を製造ライン内に組み込んだ太陽電池生産装置の一例を示す図
【図5】太陽電池生産装置で生産したCZTS系太陽電池の構造の一例を示す図
【発明を実施するための形態】
【0012】
[第一の実施の形態]
本発明のスパッタリング装置10の第一の実施の形態について説明する。
図1に示すように、本実施の形態におけるスパッタリング装置10はいわゆるマグネトロンスパッタ装置であり、基板20、保持部30、陰極40、ターゲット50、分離板60、加熱手段70、磁石ユニット80、これらを真空状態で格納するチャンバー及びチャンバー内を真空状態にする排気装置等から概略構成される。なお、チャンバー及び排気装置の図示は省略している。
基板20はその表面に薄膜が作製される部材でありガラス、プラスチック、金属箔などで構成されている。
保持部30は基板20を保持すると共に陽極を兼ねる部材であり、基板20の表面が下側を向くように保持している。なお、保持部30に基板20を加熱する機能を持たせてもよく、これにより薄膜の品質を向上させることができる。また、保持部30を水平面内で往復移動可能な構成としてもよい。この場合、薄膜中の成分を均一化ことができる。
陰極40は保持部30で保持された基板20の表面に対向するように基板20の下方に配置されている。

【0013】
ターゲット50は陰極40近傍に配置され、陰極40の表面に金属等の薄膜材料を供給するためのものであり、本実施の形態においては陰極40上部のターゲット載置台41上に載置されている。本実施の形態においてはターゲットは一つのみである。
ターゲット50の成分は特に限定されるものではなく、作製する薄膜の成分に応じて種々変更可能であるが、例えば非反応性スパッタリングにより金属硫化物、金属セレン化物もしくは金属テルル化物の薄膜を作製する場合には、硫黄、セレンもしくはテルル、またはこれらのうち2種以上を含む混合物、またはこれらを主成分とするターゲット50を用い、アルゴン等の周知の不活性ガスを使用すればよい。また、金属硫化物、金属セレン化物もしくは金属テルル化物のうち2種以上を含む混合物をターゲット50にしてもよい。
また、反応性スパッタリングにより金属硫化物、金属セレン化物もしくは金属テルル化物の薄膜を作製する場合には、当該金属もしくはそれを主成分とするターゲット50を用い、反応性ガスとして硫化水素、セレン化水素もしくはテルル化水素、またはこれらのうち2種以上を含む混合物を含むガスを使用すればよい。
また、必要に応じて、基板上に作製もしくは堆積する薄膜の化学量論的組成比よりも多くの金属硫化物、金属セレン化物もしくは金属テルル化物、またはこれらのうち2種以上を含む混合物をターゲット中に含むようにしてもよい。

【0014】
分離板60はチャンバー内において基板20とターゲット50によりその一部が囲まれる空間と他の空間を仕切るための部材である。本実施の形態においてはターゲット50が一つのみなので、分離板60は基板20とターゲット50により挟まれる空間を他の空間から仕切っている。
また、本実施の形態においては、ターゲット50の前後左右に4枚の分離板60を配置している。なお、図1はスパッタリング装置10の縦断面図であるため、前側の分離板60は図中に表れない。
各分離板60はその下部がスパッタリング装置10の筐体11の上部に載置されている。また、各分離板60の上部には保持部30が配置されており、保持部30に保持された基板20はその前後左右が各分離板60で囲まれた状態になっている。
このように基板20とターゲット50によりその一部が囲まれる空間を分離板60で仕切ることで薄膜から蒸発した金属蒸気がチャンバー内に拡散することを防止している。
なお、分離板60は必ずしも基板20とターゲット50によりその一部が囲まれる空間を他の空間から完全に仕切る、すなわち気密性を確保する必要はなく、例えば隣接する分離板60の間や分離板60と保持部30の間に空隙が存在していてもよい。

【0015】
加熱手段70は分離板60を加熱するためのものであり、本実施の形態においては各分離板60の外側面を覆うようにニクロム線からなるヒーターが取り付けられている。加熱手段70で分離板60を加熱することで、一旦基板20上に堆積した金属、例えば硫黄、セレン及びテルルが再蒸発した場合でも分離板60に付着した蒸気が分離板60表面に凝着することなく、成膜雰囲気中に反応ガスとして滞在させることができる。
なお、分離板60の周囲を覆うように遮蔽板を配置し、分離板60と遮蔽板の間に加熱手段70を配置してもよく、これにより加熱手段70を保護できると共に熱効率を向上させることができる。
また、例えば基板20がプラスチックフィルム等の耐熱性が低い材料からなる場合には、加熱手段70と基板20との距離を適宜調節したり、基板近傍に水冷装置を設ける必要がある。
また、加熱手段70としては周知の方法を使用することができる。例えば、抵抗体に通電することによる発熱を利用する場合、上記ニクロム線のほか白金線などの金属発熱体、炭化ケイ素、PTCサーミスタ、ポリイミド面状発熱体、シースヒーターなどを使用できる。また、熱媒流体を内蔵した加熱ジャケットを使用してもよく、赤外線ヒータやセラミックヒータなどを使用しても良い。

【0016】
磁石ユニット80はターゲット50の表面近傍に閉じたループ状の磁界を発生させることでプラズマ密度を高くし、製膜速度を向上させるための機構であり、ターゲット50の下方に配置されている。
本実施の形態における磁石ユニット80は一般的なマグネトロンスパッタ装置で使用されるものと同様の構成であるため詳しい説明は省略するが、陰極ボックス81内にヨーク82及び磁気回路83を格納しており、陰極40ボックスの上部はターゲット載置台41で覆われている。
ターゲット50に印加する電圧の波形は直流、交流、正負の直流を変調したパルス波形、交流を整流した波形等、種々選択可能であるが、薄膜を工業的に大量に作製する際には放電の安定性を考慮して直流又はパルス波形が好ましい。

【0017】
以上のような構造を備えるスパッタリング装置10を用いて、例えばCu2ZnSnS4(CZTS)薄膜を作製する際の動作原理について説明する。
【表1】
JP0005669198B2_000002t.gif
表1は右の枠内に示す各元素及びガスの温度と蒸気圧の関係を示したものである。
表1から分かる通り、硫黄(S)、セレン(Se)及びテルル(Te)は銅(Cu)、インジウム(In)、ガリウム(Ga)等と比較して蒸気圧が高いため、例えばスパッタリングによる製膜作業中に真空状態で100℃程度の熱を受けただけで基板20上の薄膜から再蒸発してしまい、薄膜の組成比の制御が難しくなるという問題がある。
【数1】
JP0005669198B2_000003t.gif
物質表面からのその構成物質の蒸発速度はHertz-Knudsenの式(数1)で表される。
ここで、P*:与えられた物質の与えられた空間温度Tでの飽和蒸気圧、P:蒸発源前面での蒸発物質の蒸気圧、dN:物質表面から構成物質が蒸発している系で時間dtの間に単位面積の物質表面から蒸発する蒸気分子の数、m:蒸気分子の分子量、α:蒸発係数、k:ボルツマン定数である。

【0018】
ここで、問題としている基板20上に堆積した薄膜からの再蒸発においては薄膜が蒸発源に該当する。したがって、例えば金属硫化物が一旦スパッタリングプロセス等により原子状の硫黄に分解され、基板上に堆積している場合には、上述の通り硫黄の飽和蒸気圧P*が高く、かつ蒸発源である薄膜前面での硫黄の蒸気圧Pは低いため蒸発速度dN/dtが大きくなってしまう。
硫黄蒸気圧Pを大きくするためには、成膜雰囲気中に硫黄蒸気を導入するとともに、真空中でゲッターポンプとして働く部材、すなわちチャンバー内に存在して硫黄蒸気が付着することで凝着するおそれがある低温の部材を取り除けばよい。
そこで、本発明では基板20とターゲット50によりその一部が囲まれる空間を分離板60で仕切ることで硫黄蒸気がチャンバー内に拡散することを防止し、更に分離板60を加熱することで分離板60に硫黄蒸気が凝着することを防止して硫黄蒸気圧Pが高い状態を維持している。
これによりゲッタリング排気速度を抑え、蒸発速度dN/dtを小さくすることができるので、薄膜中の硫黄の再蒸発を抑制することができる。

【0019】
また、ターゲット50中の硫黄成分もスパッタにより成膜雰囲気中に粒子となって蒸発する。したがって、分離板60及び加熱手段70を用いることで、ターゲット中において単体の形で存在する硫黄、セレン及びテルルが選択的に蒸発することを防ぎ、ターゲット組成ずれを抑制できる。
さらに、副次的な効果として蒸気圧の高い亜鉛などの金属を含む化合物を堆積する場合には、蒸気圧の高い金属の基板からの再蒸発を抑制することができ、金属間の組成ずれをも抑制することができる。
なお、銅(Cu)、インジウム(In)、ガリウム(Ga)等の飽和蒸気圧が低い金属の場合には、P*-Pが薄膜堆積過程において負になるため薄膜からの再蒸発は起こらない。

【0020】
[第二の実施の形態]
次に、本発明のスパッタリング装置の第二の実施の形態について説明する。なお、上記第一の実施の形態と同様の構成となる箇所については同一符号を付して説明を省略する。
図2に示すように、本実施の形態のスパッタリング装置12は分離板60内に加熱手段70を内蔵した構成になっている。
このようにすることで、上記遮蔽板を用いたのと同様の効果、すなわち加熱手段70の保護と熱効率の向上効果を得ながらスパッタリング装置12の小型化に寄与できる。

【0021】
[第三の実施の形態]
次に、本発明のスパッタリング装置の第三の実施の形態について説明する。なお、上記第一及び第二の実施の形態と同様の構成となる箇所については同一符号を付して説明を省略する。
図3に示すように、本実施の形態のスパッタリング装置13は基板20とターゲット50によりその一部が囲まれる空間に硫黄、セレンもしくはテルル、またはこれらのうち2種以上を含む混合物を固体又は気体の状態で供給する供給手段90を備えている。
供給手段90は供給源91、供給路92及び第2加熱手段93を備えている。
供給源91には蒸気圧が高い硫黄(S)、セレン(Se)及びテルル(Te)のうち1種又は2種以上が適宜固体又は気体の状態で格納されている。
供給路92は一方の端部が供給源91に接続しており、他方の端部は分離板60の側面に設けた開口94を介して基板20とターゲット50によりその一部が囲まれる空間に至っている。

【0022】
供給源91に格納された上記硫黄等の金属は、ニクロム線等からなる第2加熱手段93で供給路92を加熱することで供給路92内に凝着することなく、基板20とターゲット50により挟まれる成膜雰囲気中に蒸気として導入される。
このように成膜雰囲気中に硫黄等を蒸気として導入することにより蒸気圧Pを大きくすることができるので、蒸発速度dN/dtを小さくして薄膜中の硫黄等の再蒸発を抑制することができる。
なお、上記各実施の形態においてはスパッタリング装置がマグネトロンスパッタ法を利用するものとしたが、これに限らず、例えば二極、三極又は四極スパッタ法、ECR(Electron Cyclotron Resonance)スパッタ法、高周波スパッタ法、反応性スパッタ法、バイアススパッタ法その他周知のスパッタリング法を利用してよい。
また、上記固定型の陰極のみならず、回転型陰極等周知の陰極を使用してもよく、陰極の数も一つ以上あればよい。
また、2つ以上のターゲットを対向して配置すると共にターゲット表面に直交する位置に基板を配置するいわゆる対向ターゲット式スパッタ法においても、基板と2つ以上のターゲットにより囲まれる空間と他の空間を仕切る位置、例えば、ターゲット表面を含む平面であってターゲットの側面から基板表面に至る位置に分離板と加熱手段を備えることで本発明の効果を奏することができる。
一般的に対向ターゲット式スパッタ法は堆積速度が遅くなるため、成膜中に薄膜成分の検査及び制御を頻繁に行う必要がある薄膜に向いていると推察される。
図4に本発明のスパッタリング装置を製造ライン内に組み込んだ太陽電池生産装置の一例を示し、図5にこの太陽電池生産装置で製造したCZTS系太陽電池の構造の一例を示す。
【実施例】
【0023】
[実施例1 非反応性スパッタリング]
次に、上記第一の実施の形態で示したスパッタリング装置を用いた硫化物薄膜の成膜例について説明する。
ターゲットにCu2ZnSnS4の組成比を持つ硫化物焼結体を用い、基板としてほう珪酸ガラスを用いた。また、放電ガスとしてアルゴンを用いた。
チャンバー内を十分に低い圧力まで排気した後、加熱手段としてのヒーターにより分離板を400℃まで、基板を同様に400℃まで加熱した。その後、放電ガスとしてアルゴンを圧力が0.4Paとなるように導入した。その後、ターゲットに周波数が13.56MHzである交流電力を電力200Wにて印加して成膜をおこなった。所定時間の成膜が完了した後に放電を停止するとともに分離板及び基板の加熱を停止し、それらの温度を十分に低くした後にチャンバー内を大気圧として基板を取り出した。
【実施例】
【0024】
[比較例 非反応性スパッタリング]
次に、比較例として分離板及び加熱手段を備えない一般的なスパッタリング装置を用いた硫化物薄膜の成膜例について説明する。
ターゲットにCu2ZnSnS4の組成比を持つ硫化物焼結体を用い、基板としてほう珪酸ガラスを用いた。また、放電ガスとしてアルゴンを用いた。
チャンバー内を十分に低い圧力まで排気した後、基板のみを400℃まで加熱した。その後、放電ガスとしてアルゴンを圧力が0.4Paとなるように導入した。その後、ターゲットに周波数が13.56MHzである交流電力を電力200Wにて印加して成膜をおこなった。所定時間の成膜が完了した後に放電を停止するとともに基板の加熱を停止し、基板の温度を十分に低くした後にチャンバー内を大気圧として基板を取り出した。
表2は上記実施例1において作製した硫化物薄膜のX線回折測定結果、表3は上記比較例において作製した硫化物薄膜のX線回折測定結果を示す。また、表4は上記実施例1において作製した硫化物薄膜における硫黄含有量の測定結果を示す。
表2及び表3より、本発明のスパッタリング装置を用いることで、一般的なスパッタリング装置を用いる場合と比較して硫化物薄膜が良い結晶性を示していることが分かる。
また、表4より、本発明のスパッタリング装置を用いることで、硫黄が薄膜中に所定量含有されていることを確認できる。
【表2】
JP0005669198B2_000004t.gif
【表3】
JP0005669198B2_000005t.gif
【表4】
JP0005669198B2_000006t.gif
【実施例】
【0025】
[実施例2 反応性スパッタリング]
ターゲットにCu2ZnSnの組成比を持つ金属焼結体を用い、基板としてほう珪酸ガラスを用いた。また、放電ガスとしてアルゴン及び硫化水素の混合ガスを用いた。
チャンバー内を十分に低い圧力まで排気した後、加熱手段としてのヒーターにより分離板を400℃まで、基板を同様に400℃まで加熱した。その後、放電ガスとして60%一硫化水素-40%アルゴン混合ガスを圧力が0.4Paとなるように導入した。その後、ターゲットに周波数が13.56MHzである交流電力を電力200Wにて印加して成膜をおこなった。所定時間の成膜が完了した後に放電を停止するとともに分離板及び基板の加熱を停止し、それらの温度を十分に低くした後に、チャンバー内を大気圧として、基板を取り出した。
本実施例で作製した硫化物薄膜についてもX線回折と硫黄含有量の測定結果は上記実施例1と同程度であることが確認できた。
【産業上の利用可能性】
【0026】
本発明は大面積の基板に金属硫化物、金属セレン化物もしくは金属テルル化物薄膜を作製できるスパッタリング装置であり、産業上の利用可能性を有する。
【符号の説明】
【0027】
10 スパッタリング装置
12 スパッタリング装置
13 スパッタリング装置
20 基板
30 保持部
40 陰極
50 ターゲット
60 分離板
70 加熱手段
80 磁石ユニット
90 供給手段
91 供給源
92 供給路
93 第2加熱手段
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4