TOP > 国内特許検索 > イオン源 > 明細書

明細書 :イオン源

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第4336780号 (P4336780)
公開番号 特開2007-280782 (P2007-280782A)
登録日 平成21年7月10日(2009.7.10)
発行日 平成21年9月30日(2009.9.30)
公開日 平成19年10月25日(2007.10.25)
発明の名称または考案の名称 イオン源
国際特許分類 H01J  27/08        (2006.01)
H01J  37/08        (2006.01)
FI H01J 27/08
H01J 37/08
請求項の数または発明の数 5
全頁数 17
出願番号 特願2006-105898 (P2006-105898)
出願日 平成18年4月7日(2006.4.7)
審査請求日 平成18年10月17日(2006.10.17)
特許権者または実用新案権者 【識別番号】504132272
【氏名又は名称】国立大学法人京都大学
【識別番号】302054866
【氏名又は名称】日新イオン機器株式会社
発明者または考案者 【氏名】石川 順三
【氏名】松田 耕自
【氏名】藤田 秀樹
【氏名】酒井 滋樹
個別代理人の代理人 【識別番号】100088661、【弁理士】、【氏名又は名称】山本 恵二
審査官 【審査官】遠藤 直恵
参考文献・文献 特開平03-162581(JP,A)
特開平04-137727(JP,A)
特開平04-132145(JP,A)
特開昭59-060843(JP,A)
特開平04-129200(JP,A)
特開昭60-028146(JP,A)
特開平02-199742(JP,A)
調査した分野 H01J 27/00-27/26
特許請求の範囲 【請求項1】
一点で互いに直交する三つの軸をx軸、y軸およびz軸とすると、x軸に沿う方向にイオンビームを引き出すイオン源であって、
陽極を兼ねていて内部でプラズマを生成するための容器であって、前記イオンビームの引出し方向を前方とすると前方部が開いているプラズマ生成容器と、
前記プラズマ生成容器の後方部内にプラズマ生成容器から電気的に絶縁して設けられていて、yz平面に実質的に平行な面状に広がっていて電子を放出する熱陰極と、
前記プラズマ生成容器の前方部内にプラズマ生成容器から電気的に絶縁して設けられていて、yz平面に実質的に平行な面状をしていて前記熱陰極の一端と実質的に同電位に保たれ、電子を反射すると共に前記プラズマからイオンを引き出す多孔状の反射電極と、
前記プラズマ生成容器内であって前記反射電極の後方近傍に設けられていて、yz平面に実質的に平行な面状をしていて前記プラズマ生成容器と実質的に同電位に保たれる多孔状の制御電極と、
前記反射電極の前方近傍にプラズマ生成容器から電気的に絶縁して設けられていて、yz平面に実質的に平行な面状をしていて前記反射電極よりも正電位に保たれて、反射電極を通過して来るイオンを減速して通過させる多孔状の減速電極と、
前記プラズマ生成容器内に、x軸に実質的に平行な磁界を発生させる第1コイルと、
前記減速電極の前方に設けられていて、減速電極を通過して来るイオンを加速してイオンビームとして引き出す引出し電極系と、
前記引出し電極系を含む領域に、x軸に実質的に平行な磁界を発生させると共に、前記第1コイルと協働して、前記減速電極と引出し電極系との間の領域に、x軸に沿う方向においてイオンの進行方向に向けて減衰している磁界を発生させる第2コイルとを備えていることを特徴とするイオン源。
【請求項2】
前記プラズマ生成容器は、絶縁物を介して、後方部にある第1部分とその前方にある第2部分とに分けられていて、第1部分は前記熱陰極の一端と実質的に同電位に保たれ、第2部分の後方部内に、yz平面に実質的に平行な面状をしていて第2部分と実質的に同電位に保たれる多孔状の第2制御電極が設けられている請求項1記載のイオン源。
【請求項3】
前記熱陰極がフィラメントである請求項1または2記載のイオン源。
【請求項4】
前記熱陰極が傍熱型陰極である請求項1または2記載のイオン源。
【請求項5】
一点で互いに直交する三つの軸をx軸、y軸およびz軸とすると、x軸に沿う方向にイオンビームを引き出すイオン源であって、
陽極を兼ねていて内部でプラズマを生成するための容器であって、前記イオンビームの引出し方向を前方とすると前方部が開いているプラズマ生成容器と、
前記プラズマ生成容器の前方部内にプラズマ生成容器から電気的に絶縁して設けられていて、yz平面に実質的に平行な面状に広がっていて、電子を放出すると共に前記プラズマからイオンを引き出す電極を兼ねる多孔状のフィラメントと、
前記プラズマ生成容器内であって前記フィラメントの後方近傍に設けられていて、yz平面に実質的に平行な面状をしていて前記プラズマ生成容器と実質的に同電位に保たれる多孔状の制御電極と、
前記プラズマ生成容器の後方部内にプラズマ生成容器から電気的に絶縁して設けられていて、yz平面に実質的に平行な面状をしていて電子を反射する反射電極と、
前記フィラメントの前方近傍にプラズマ生成容器から電気的に絶縁して設けられていて、yz平面に実質的に平行な面状をしていて前記フィラメントよりも正電位に保たれて、フィラメントを通過して来るイオンを減速して通過させる多孔状の減速電極と、
前記プラズマ生成容器内に、x軸に実質的に平行な磁界を発生させる第1コイルと、
前記減速電極の前方に設けられていて、減速電極を通過して来るイオンを加速してイオンビームとして引き出す引出し電極系と、
前記引出し電極系を含む領域に、x軸に実質的に平行な磁界を発生させると共に、前記第1コイルと協働して、前記減速電極と引出し電極系との間の領域に、x軸に沿う方向においてイオンの進行方向に向けて減衰している磁界を発生させる第2コイルとを備えていることを特徴とするイオン源。
発明の詳細な説明 【技術分野】
【0001】
この発明は、被照射物にイオンビームを照射してイオン注入、イオンドーピング(登録商標)等の処理を施すイオンビーム照射装置等に用いられるイオン源に関する。
【背景技術】
【0002】
生成プラズマ密度を高めるために、磁界および反射電極を用いるイオン源が従来から提案されている(例えば特許文献1参照)。
【0003】
これを図12を参照して説明すると、このイオン源は、バーナス型イオン源と呼ばれるものであり、原料ガス6が導入されるプラズマ生成容器2と、このプラズマ生成容器2内の一方側に設けられた電子放出用のU字状のフィラメント8と、プラズマ生成容器2内の他方側に設けられた電子反射用の反射電極10と、プラズマ生成容器2の前方壁面に設けられたイオン引出し孔4とを備えている。イオン引出し孔4の前方近傍には、プラズマ生成容器2内で生成されたプラズマ12からイオンビーム16を引き出す引出し電極14が設けられている。
【0004】
フィラメント8にはその加熱用のフィラメント電源20が接続されており、フィラメント8の一端とプラズマ生成容器2間には、フィラメント8を負極側にして、アーク放電用のアーク電源22が接続されている。反射電極10は、図示例のようにどこにも接続せずに浮遊電位にする場合と、フィラメント8の一端に接続してフィラメント電位にする場合がある。いずれの場合も、反射電極10はプラズマ生成容器2に対して負電位になる。反射電極10を浮遊電位にしても、反射電極10は、主にフィラメント8から放出されたアーク電圧相当のエネルギーの高い電子で帯電するので負電位に帯電するからである。
【0005】
プラズマ生成容器2の外部には、プラズマ生成容器2内において、フィラメント8と反射電極10とを結ぶ線に沿う方向に磁界24を発生させる電磁石(図示省略)が配置されている。磁界24の向きは、図示とは逆でも良い。
【0006】
このイオン源は、プラズマ12の密度を高めるために、イオンビーム16の引出し方向とは直角方向に磁界24を加えて、フィラメント8から放出された電子をラーマー運動によって磁力線に拘束し、かつ、負電位の反射電極10によって電子を反射して(換言すれば、押し返して。以下同様)、電子と原料ガス分子との衝突確率を高めて、プラズマ12の生成効率を高めるようにしている。
【0007】

【特許文献1】特開2001-176409号公報(段落0016-0021、図1)
【発明の開示】
【発明が解決しようとする課題】
【0008】
上記イオン源においては、アーク電源22の出力電圧および反射電極10の上記負電位によって、プラズマ生成容器2内に、その中央付近で電位が高く、フィラメント8および反射電極10付近で電位が低い電位分布が生じる。その等電位面26の概略例を図12中に示す。この電位分布によって、プラズマ生成容器2内に、特にイオン引出し孔4からフィラメント8付近にかけての領域に、イオンビーム16の引出し方向と交差する方向の電界28が生じる。反射電極10付近についてもほぼ同様である。
【0009】
そのために、プラズマ12中のイオンは、イオンビーム16の進行方向とは異なる方向の運動エネルギー成分を受ける。このエネルギー成分は、イオンビーム16として引き出された後も残り、イオンビーム16の発散要因となる。即ち、イオンビーム16の平行性を低下させる要因となる。この問題は、イオンビーム16を低エネルギー(例えば5keV程度以下)で引き出す場合により顕著になる。上記進行方向と異なる方向のエネルギー成分の影響が相対的に大きくなるからである。
【0010】
平行性の悪いイオンビーム16は、被照射物の処理に好ましくない結果をもたらす。例えば、被照射物の表面に半導体デバイスを形成する場合、被照射物の表面には、通常、半導体デバイスを構成する絶縁膜や導電膜等の凹凸が存在する。イオンビーム16の平行性が悪いと、この凹凸の側部に、イオンビーム16が入射しない陰の部分が生じてしまい、しかも陰の部分の大きさが被照射物の面内において互いに異なり、従って所望のイオン注入を行うことができなくなる。被照射物がより大型化およびその表面に形成される半導体デバイスがより微細化すると、この陰の問題はより深刻になる。
【0011】
そこでこの発明は、平行性の良いイオンビームを引き出すことができるイオン源を提供することを主たる目的としている。
【課題を解決するための手段】
【0012】
この発明に係る第1のイオン源は、一点で互いに直交する三つの軸をx軸、y軸およびz軸とすると、x軸に沿う方向にイオンビームを引き出すイオン源であって、
陽極を兼ねていて内部でプラズマを生成するための容器であって、前記イオンビームの引出し方向を前方とすると前方部が開いているプラズマ生成容器と、
前記プラズマ生成容器の後方部内にプラズマ生成容器から電気的に絶縁して設けられていて、yz平面に実質的に平行な面状に広がっていて電子を放出する熱陰極と、
前記プラズマ生成容器の前方部内にプラズマ生成容器から電気的に絶縁して設けられていて、yz平面に実質的に平行な面状をしていて前記熱陰極の一端と実質的に同電位に保たれ、電子を反射すると共に前記プラズマからイオンを引き出す多孔状の反射電極と、
前記プラズマ生成容器内であって前記反射電極の後方近傍に設けられていて、yz平面に実質的に平行な面状をしていて前記プラズマ生成容器と実質的に同電位に保たれる多孔状の制御電極と、
前記反射電極の前方近傍にプラズマ生成容器から電気的に絶縁して設けられていて、yz平面に実質的に平行な面状をしていて前記反射電極よりも正電位に保たれて、反射電極を通過して来るイオンを減速して通過させる多孔状の減速電極と、
前記プラズマ生成容器内に、x軸に実質的に平行な磁界を発生させる第1コイルと、
前記減速電極の前方に設けられていて、減速電極を通過して来るイオンを加速してイオンビームとして引き出す引出し電極系と、
前記引出し電極系を含む領域に、x軸に実質的に平行な磁界を発生させると共に、前記第1コイルと協働して、前記減速電極と引出し電極系との間の領域に、x軸に沿う方向においてイオンの進行方向に向けて減衰している磁界を発生させる第2コイルとを備えていることを特徴としている。
【0013】
プラズマ生成容器に対して、熱陰極、反射電極、制御電極および減速電極を上記のように配置することによって、プラズマ生成容器内において発生する電界を、特にイオンの引出し口である前方部付近において発生する電界を、x軸に対して平行に近づけることができる。しかも、第1コイルによって、x軸に実質的に平行な磁界を発生させることができる。このように、電界および磁界を、x軸に対して平行に近づけることができるので、プラズマ生成容器内において、イオンビームの発散要因となる電界および磁界を減少させることができる。その結果、イオンビームの平行性を良くすることができる。
【0014】
更に、上記第1コイルおよび第2コイルが協働して、減速電極と引出し電極系との間の領域に、x軸に沿う方向においてイオンの進行方向に向けて減衰している磁界を発生させることによって、イオンが持つ磁気モーメントが保存される現象を利用して、イオンが持つ発散速度成分を減少させることができる。その結果、この理由からも、イオンビームの平行性を良くすることができる。
【0015】
前記プラズマ生成容器は、絶縁物を介して、後方部にある第1部分とその前方にある第2部分とに分けられていて、第1部分は前記熱陰極の一端と実質的に同電位に保たれ、第2部分の後方部内に、yz平面に実質的に平行な面状をしていて第2部分と実質的に同電位に保たれる多孔状の第2制御電極が設けられていても良い。
【0016】
前記熱陰極は、フィラメントでも良いし、傍熱型陰極でも良い。
【0017】
この発明に係る第2のイオン源は、一点で互いに直交する三つの軸をx軸、y軸およびz軸とすると、x軸に沿う方向にイオンビームを引き出すイオン源であって、
陽極を兼ねていて内部でプラズマを生成するための容器であって、前記イオンビームの引出し方向を前方とすると前方部が開いているプラズマ生成容器と、
前記プラズマ生成容器の前方部内にプラズマ生成容器から電気的に絶縁して設けられていて、yz平面に実質的に平行な面状に広がっていて、電子を放出すると共に前記プラズマからイオンを引き出す電極を兼ねる多孔状のフィラメントと、
前記プラズマ生成容器内であって前記フィラメントの後方近傍に設けられていて、yz平面に実質的に平行な面状をしていて前記プラズマ生成容器と実質的に同電位に保たれる多孔状の制御電極と、
前記プラズマ生成容器の後方部内にプラズマ生成容器から電気的に絶縁して設けられていて、yz平面に実質的に平行な面状をしていて電子を反射する反射電極と、
前記フィラメントの前方近傍にプラズマ生成容器から電気的に絶縁して設けられていて、yz平面に実質的に平行な面状をしていて前記フィラメントよりも正電位に保たれて、フィラメントを通過して来るイオンを減速して通過させる多孔状の減速電極と、
前記プラズマ生成容器内に、x軸に実質的に平行な磁界を発生させる第1コイルと、
前記減速電極の前方に設けられていて、減速電極を通過して来るイオンを加速してイオンビームとして引き出す引出し電極系と、
前記引出し電極系を含む領域に、x軸に実質的に平行な磁界を発生させると共に、前記第1コイルと協働して、前記減速電極と引出し電極系との間の領域に、x軸に沿う方向においてイオンの進行方向に向けて減衰している磁界を発生させる第2コイルとを備えていることを特徴としている。
【0018】
この第2のイオン源も、基本的には上記第1のイオン源と同様の作用によって、イオンビームの平行性を良くすることができる。
【発明の効果】
【0019】
請求項1に記載の発明によれば、プラズマ生成容器内において発生する電界および磁界を、イオンビーム引出し方向に対して平行に近づけることができるので、イオンビームの発散要因となる電界および磁界を減少させて、イオンビームの平行性を良くすることができる。更に、イオンの進行方向に向けて減衰している磁界を発生させることによって、イオンが持つ発散速度成分を減少させることができるので、この理由からも、イオンビームの平行性を良くすることができる。上記両作用効果が相俟って、平行性の良いイオンビームを引き出すことができる。
【0020】
請求項2に記載の発明によれば、熱陰極と第2制御電極とが互いに実質的に平行に配置されることになり、熱陰極から放出される電子をイオンビーム引出し方向に対して平行に近づけることができるので、イオンビーム引出し方向と直交する方向におけるプラズマの均一性を高めることが可能になる。その結果、イオンビームの均一性を良くすることができる、という更なる効果を奏する。
【0021】
請求項5に記載の発明によれば、請求項1の上記効果と同様の効果に加えて更に次のような効果を奏する。即ち、フィラメント付近のプラズマ密度の高い領域からイオンを引き出すことができるので、しかもフィラメントから放出された電子がイオンの空間電荷を中和してイオン飽和電流が大きく取れるので、イオンひいてはイオンビームをより多く引き出すことができる。更に、フィラメントと制御電極とが互いに実質的に平行に配置されることになり、フィラメントから放出される電子をイオンビーム引出し方向に対して平行に近づけることができるので、イオンビーム引出し方向と直交する方向におけるプラズマの均一性を高めることが可能になる。その結果、イオンビームの均一性を良くすることができる。
【発明を実施するための最良の形態】
【0022】
この明細書および図面においては、各構成要素の向き、イオンビームの進行方向等を表すために、一点で互いに直交する三つの軸、即ちx軸、y軸およびz軸を用いている。このx軸、y軸およびz軸は、一点で互いに直交する軸であれば良く、必ずしも図示例の方向に限られるものではない。例えば、x軸を水平方向、垂直方向またはそれらから傾いた方向に取っても良い。
【0023】
図1は、この発明に係るイオン源の一実施形態を示す断面図である。このイオン源は、x軸に沿う方向にイオンビーム90を引き出すイオン源である。沿う方向とは、例えば、平行または実質的に平行な方向である。
【0024】
このイオン源は、陽極を兼ねるものであって、原料ガス34が導入され、内部でプラズマ40を生成するためのプラズマ生成容器30を備えている。プラズマ生成容器30は、例えば、円筒状、角筒状等の筒状または箱状をしており、その前方部32が開いている。この明細書では、イオンビーム90の引出し方向を前方、その反対方向を後方と呼んでいる。このプラズマ生成容器30内、後述するイオン輸送容器74内およびイオンビーム90の経路は、図示しない真空排気装置によって真空排気される。
【0025】
プラズマ生成容器30は、この実施形態では、絶縁物61を介して、後方部にある第1部分36とその前方にある第2部分38とに分けられている。但しこのように構成することは必須ではない。第1部分36は、後述するフィラメント42の一端に電気的に接続されていて、それと実質的に同電位に保たれる。なお、この明細書において、「実質的に同電位」には、同電位の状態も含まれている。
【0026】
熱陰極の一例として、プラズマ生成容器30の後方部内に、絶縁物60によってプラズマ生成容器30(より具体的には、その第1部分36)から電気的に絶縁されていて、電子を放出するフィラメント42が設けられている。フィラメント42は、例えば図3に示す例のように、yz平面に実質的に平行な面状に広がっている。フィラメント42は、図3に示す例では、細い棒状のフィラメントをyz平面に沿って多数回折り返した構造をしているが、細い板状のフィラメントをこれと同様に折り返した構造でも良い。あるいは、フィラメント42は、例えば図3のフィラメント42と同様の外形を有する平板状のもの等でも良い。
【0027】
フィラメント42には、それを加熱する例えば直流のフィラメント電源68が接続されている。このフィラメント電源68の出力電圧V1 は、例えば、10V~15V程度であるが、それに限られるものではない。
【0028】
フィラメント42の一端とプラズマ生成容器30(より具体的には、その第2部分38)との間には、前者を負極側にして、両者42、30間でアーク放電を発生させる直流のアーク電源70が接続されている。このアーク電源70の出力電圧V2 は、例えば、40V~120V程度であるが、それに限られるものではない。この出力電圧V2 によって、フィラメント42から放出された電子を加速して原料ガス分子に衝突させて原料ガス34を電離させてプラズマ40を生成する。
【0029】
プラズマ生成容器30の前方部32内に、絶縁物62によってプラズマ生成容器30(より具体的には、その第2部分38)から電気的に絶縁されていて、yz平面に実質的に平行な面状をしている多孔状の反射電極48が設けられている。多孔状というのは、例えば、多数の小孔を有する板状またはメッシュ状等の意味である。後述する他の電極も同様である。この反射電極48は、フィラメント42の一端に電気的に接続されていて、それと実質的に同電位に保たれる。この反射電極48は、プラズマ生成容器30内の電子(主としてフィラメント42から放出された電子)を反射すると共に、多孔状をしていて、プラズマ40からイオン52を引き出す働きをする。
【0030】
プラズマ生成容器30(より具体的には、その第2部分38)内であって反射電極48の後方近傍に、yz平面に実質的に平行な面状をしている多孔状の制御電極46が設けられている。この制御電極46は、プラズマ生成容器30(より具体的には、その第2部分38)に電気的に接続されていて、それと実質的に同電位に保たれる。
【0031】
更にこの実施形態では、プラズマ生成容器30の第2部分38の後方部内に、yz平面に実質的に平行な面状をしている多孔状の第2制御電極44が設けられている。この第2制御電極44は、第2部分38に電気的に接続されていて、それと実質的に同電位に保たれる。
【0032】
反射電極48の前方近傍に、絶縁物62によってプラズマ生成容器30(より具体的には、その第2部分38)から電気的に絶縁されていて、yz平面に実質的に平行な面状をしている多孔状の減速電極50が設けられている。この減速電極50は、後述する減速電源72によって反射電極48よりも正電位に保たれて、反射電極48を通過して来るイオン52を減速させて通過させる。
【0033】
減速電極50と反射電極48との間には、前者を正極側にして、減速電極50を反射電極48よりも正電位に保つ直流の減速電源72が接続されている。この減速電源72の出力電圧V3 は、例えば、前記出力電圧V2 よりも数十V程度高い電圧、より具体的には70V~150V程度であるが、それに限られるものではない。必要とするイオン52のエネルギーに応じて決めれば良い。
【0034】
プラズマ生成容器30の外側周囲には、プラズマ生成容器30内に、x軸に実質的に平行な磁界を発生させる第1コイル54が設けられている。この磁界の概略の様子を磁力線58で示す。磁界の向きは図示とは逆でも良い。第1コイル54は、この実施形態では、二つの互いに直列接続されたコイル54a、54bを有しており、両コイル54a、54bには、直流の励磁電源56から、上記磁界を発生させる励磁電流が供給される。両コイル54a、54bは、例えば、ヘルムホルツコイルである。第1コイル54は、このようなコイル54a、54bの代わりに、一つのソレノイドコイル等で構成しても良い。
【0035】
減速電極50の前方には、減速電極50を通過して来るイオン52を加速してイオンビーム90として引き出す引出し電極系76が設けられている。この実施形態では、減速電極50の前方に、イオン52を輸送するための、プラズマ生成容器30よりも大きい筒状のイオン輸送容器74が設けられており、このイオン輸送容器74の前方部に引出し電極系76が設けられている。減速電極50、イオン輸送容器74および引出し電極系76の引出し電極78は、互いに電気的に接続されていて実質的に同電位に保たれる。但し、このイオン輸送容器74を特別に設けずに、他の真空容器(ビームライン容器等)内でイオン52を輸送するようにしても良い。
【0036】
引出し電極系76は、この実施形態では、引出し電極78、抑制電極79および接地電極80を有している。各電極78~80は、この例では多孔状の電極であるが、スリット状のイオン引出し孔を有するものでも良い。引出し電極78には直流の加速電源82から、イオンビーム90加速用の正の加速電圧V4 が印加される。抑制電極79には直流の抑制電源84から、逆流電子抑制用の負の抑制電圧V5 が印加される。接地電極80は電気的に接地されている。電極78、79、80間は、絶縁物63、64によって電気的に絶縁されている。但し、引出し電極系76の構成は、この例のものに限られるものではない。
【0037】
加速電圧V4 は、例えば、1kV~40kV程度であるが、これに限られるものではなく、必要とするイオンビーム90のエネルギーに応じて決めれば良い。抑制電圧V5 は、例えば、1kV~2kV程度であるが、これに限られるものではない。
【0038】
引出し電極系76の外側周囲付近には、引出し電極系76を含む領域に、x軸に実質的に平行な磁界を発生させると共に、第1コイル54と協働して、減速電極50と引出し電極系76(より具体的には、その引出し電極78)との間の領域に、x軸に沿う方向においてイオン52の進行方向に向けて減衰している磁界を発生させる第2コイル86が設けられている。この第2コイル86は第1コイル54と同方向の磁界を発生させる。この磁界の概略の様子を、上記磁力線58で示している。
【0039】
第2コイル86は、この実施形態では、直流の励磁電源88a~88cによってそれぞれ励磁される三つのリング状のコイル86a~86cを有しており、各コイル86a~86cは互いに同方向の磁界を発生させる。第2コイル86は、必ずしもこの実施形態のものに限られるものではないが、上記のような磁界を発生させる観点から、複数のコイルで構成し、かつ各コイルに励磁電流を独立して供給する直流の励磁電源をそれぞれ設けるのが好ましい。
【0040】
このイオン源においては、前記所定の箇所を真空排気すると共に、プラズマ生成容器30内に所望の原料ガス34を導入し、かつ前記所定の箇所に電圧を印加すると、プラズマ生成容器30内でアーク放電が生じて原料ガス34が電離されてプラズマ40が生成される。そしてこのプラズマ40から、前記イオン52が引き出され、それが磁力線58に沿って引出し電極系76まで輸送され、かつ引出し電極系76によって加速されて、イオンビーム90として引き出される。
【0041】
このイオン源の動作時のx軸に沿う方向における電位分布の一例を図2に示す。この図において、フィラメント電源68の出力電圧V1 は小さく、かつ説明に必要がないので無視している。後述する図5においても同様である。プラズマ生成容器30内に生成されるプラズマ40(図1参照)は、通常、プラズマ生成容器30の電位よりも若干(例えば数十V程度)高いプラズマ電位Vp を有している。プラズマ40と近接する第2制御電極44、制御電極46および反射電極48等の近傍には、イオンシースが形成される。プラズマ生成容器30と実質的に同電位である第2制御電極44および制御電極46の近傍で電位が低下しているのはそのためである。
【0042】
減速電極50を通して引き出されるイオン52のエネルギーは、Vp -V3 [eV]となり、減速電源72の出力電圧V3 を調整することによって、このイオン52のエネルギーを非常に小さく(例えば1eV~数eV程度に)することができる。そのように小さくする理由は後述する。
【0043】
このイオン源においては、フィラメント42、第2制御電極44、制御電極46、反射電極48および減速電極50を、yz平面に実質的に平行に配置しているので、プラズマ生成容器30内等には、図2中に代表例を示すように、互いに実質的に平行かつx軸に対して実質的に直角方向の等電位面92が形成される。従って、プラズマ生成容器30内において発生する電界94を、特にイオン52の引出し口である前方部32付近において発生する電界94を、x軸に対して平行に近づけることができる。しかも、第1コイル54によって、x軸に実質的に平行な磁界を発生させることができる。このように、電界および磁界を、x軸に対して平行に近づけることができるので、プラズマ生成容器30内において、イオンビーム90の発散要因となる電界および磁界を減少させることができる。その結果、イオンビーム90の平行性を良くすることができる。これが第1の作用効果である。
【0044】
更に、第1コイル54および第2コイル86が協働して、減速電極50と引出し電極系76との間の領域に、x軸に沿う方向においてイオン52の進行方向に向けて減衰している磁界を発生させることによって、以下に詳述するイオン52が持つ磁気モーメントが保存される現象を利用して、イオン52が持つ発散速度成分を減少させることができる。その結果、この理由からも、イオンビーム90の平行性を良くすることができる。これが第2の作用効果である。
【0045】
従って、このイオン源によれば、上記第1および第2の作用効果が相俟って、平行性の良いイオンビーム90を引き出すことができる。また、後述する図11も参照すれば分かるように、減速電極50から引き出されるイオン52を磁界によって広げて、減速電極50よりも大面積のイオンビーム90を引き出すことができる。従って、大型の被照射物にも容易に対応することができる。
【0046】
上記磁気モーメントの保存について詳述すると、次の非特許文献1および2にも記載されているように、磁界(磁束密度)B[T]がイオンの進行方向に変化している場合、数1の条件が満たされているとき、数2で表されるイオンの磁気モーメントμは保存される。ここで、Mはイオンの質量数[AMU]、Zは荷数、Uはエネルギー[eV]、Lは系の特性長(ここでは磁界を減衰させている空間のイオン進行方向の距離)[m]、mはイオンの質量、vr はイオン速度の磁界に直交する成分である。
【0047】
[数1]
BL≫1.5×10-4√(MU)/Z
【0048】
[数2]
μ=mvr2 /2B
【0049】
上記磁気モーメントμが保存される性質を利用することによって、磁界が減衰する方向にイオンを輸送すれば、イオン速度の磁界に直交する成分vr が減少し、その分、磁界に平行な成分vx が増加する(換言すれば、vr がvx に変換される)。このような性質をイオン源から引き出すイオンの平行化に用いることについては非特許文献1および2には記載されていないが、このイオン源ではこの性質に着目して、それをイオン52が持つ発散速度成分を減少させることに利用している。従って、イオン52がイオン輸送容器74内の減衰磁界を通過している間に、x軸に直交する方向の速度成分vx 、即ち発散速度成分は減少する。
【0050】
[非特許文献1]
石川順三著、アイオニクス叢書、「イオン源工学」、第一刷、アイオニクス株式会社、昭和61年5月31日、頁94-95
[非特許文献2]
執筆委員 高木俊宜、電気学会大学講座、「電子・イオンビーム工学」、初版、社団法人電気学会、1995年3月1日、頁99
【0051】
上記第1コイル54、第2コイル86によって発生させる磁界およびその磁界中におけるイオン52の軌道をシミュレーションした結果の例を次に説明する。
【0052】
図6は、xz平面内の磁界のベクトル図である。このベクトルをつなぐと、図1に示した磁力線58に相当するものになる。この例では、各コイル54a、54b、86a、86b、86cの起磁力を、それぞれ、10,000A、10,000A、1,500A、1,250A、2,250Aとした。磁界は、第1コイル54を構成するコイル54a、54b間の領域でx軸に実質的に平行になり、コイル54bとコイル86a間の領域で発散して減衰し、コイル86bの前後付近からコイル86cにかけての領域で再びx軸に実質的に平行になっていることが分かる。
【0053】
図6の例におけるx軸上の磁束密度の変化を図7に示す。x=0mにおける磁束密度B0 は約0.37T、x=0.1mにおける磁束密度B1 は約0.04Tであり、両地点間で、特にx=0mからx=0.02m間で、磁界は急激に減衰していることが分かる。
【0054】
図6の磁界分布の場合に、コイル54a、54bの中間付近から、イオン52を初期発散角θ0 =60度で放出したときのイオン52の軌道を図9および図11に示す。このときのイオン52は、質量数11のホウ素イオン11+ 、そのエネルギーUは0.5eVとした。
【0055】
イオン52は、図8に示すように、点Pから初期発散角θ0 =60度で円錐状に6方向に(図8では2方向のみ図示)放出した。なお、この初期発散角θ0 =60度というのは、上記減速電極50から引き出されるイオン52がそのような大きな発散角を持っているという意味ではなく、上記磁気モーメントの保存によって発散角が小さくなることを明確にするために、敢えて大きく誇張した例である。
【0056】
上記の場合、上記数1に示す系の特性長Lを0.02mと見ると、質量数Mは11、イオンのエネルギーUは0.5eV、荷数Zは1であるから、数1から次式が導かれる。
【0057】
[数3]
B≫0.012[T]
【0058】
また、同様に上記数1に示す系の特性長Lを0.15mと見ると、質量数Mは11、イオンのエネルギーUは0.5eV、荷数Zは1であるから、数1から次式が導かれる。
【0059】
[数4]
B≫0.0023[T]
【0060】
図7に示したように、x=0~0.15mにおいて磁束密度Bは十分に大きいので、この例では上記数3および数4の条件を満たしていることが分かる。この場合、仮にイオン52のエネルギーUが大きいと、数1の条件を満たすためには減衰領域の磁束密度Bは大きくなる。これを避けるために、この実施例のイオン源では減速電極50を設けて、イオン52を減速してそのエネルギーUを小さくするようにしている。
【0061】
従って、このイオン源においては、上記磁気モーメントμが保存されることになり、図9からも分かるように、イオン52の発散角θはコイル54bとコイル86a間で急激に小さくなっている。具体的には、図10に示すように、初期発散角θ0 =60度であったものが、x=0.1mの点における発散角θ1 は約17度まで減少して、平行化されていることが分かる。実際は、上記減速電極50から引き出されるイオン52の初期発散角θ0 は60度よりも遙かに小さいので、発散角θ1 が0度に極めて近くなるように平行化される。
【0062】
なお、図9に示しているイオン52は、一見するとz軸方向に上下運動をしているかのように見えるけれどもそうではなく、イオン52は、その進行方向の軸を中心にしてラーマー直径を半径に持つ包絡円を描くように運動して、その進行方向(磁界Bの方向)とは一定の傾きを保って螺旋軌道を取る。そのピッチは磁界に逆比例する。図11の場合も同様である。
【0063】
図9では、イオン52は、第2コイル86を通過した後で発散しているけれども、これは図9の例では引出し電極系76に加速電圧V4 を印加しておらず、イオン52は0.5eVのエネルギーしか有していないからであり、加速電圧V4 を印加すると例えば図11に示す例のように、イオン52はイオンビーム90としてx軸に実質的に平行に引き出される。図11は、加速電圧V4 を5kVにした例であり、この場合のイオンビーム90は、発散角が1.7×10-3度まで平行化されている。これよりも低い加速電圧V4 でも、即ち5keVより低いエネルギーのイオンビーム90でも、平行性を非常に良くすることができる。
【0064】
また、図11からも分かるように、減速電極50から引き出されたイオン52を磁界によって広げて、減速電極50よりも大面積のイオンビーム90を引き出すことができる。従って、大型の被照射物にも容易に対応することができる。
【0065】
再び図1を参照して、この実施形態のように、プラズマ生成容器30を第1部分36と第2部分38とに分けて、第2部分38の後方部内に第2制御電極44を設けると、フィラメント42と第2制御電極44とが互いに実質的に平行に配置されることになり、フィラメント42から放出される電子をイオンビーム引出し方向に対して平行に近づけることができるので、イオンビーム引出し方向と直交する方向におけるプラズマ40の均一性を高めることが可能になる。その結果、イオンビーム90の均一性を良くすることができる。
【0066】
熱陰極として、フィラメント42の代わりに、yz平面に実質的に平行な例えば板状の陰極を、その背後からフィラメント等によって加熱する傍熱型陰極を用いても良い。
【0067】
次に、この発明に係るイオン源の他の実施形態を、図4および図5を参照して説明する。図1および図2に示した上記実施形態と同一または相当する部分には同一符号を付し、以下においては上記実施形態との相違点を主体に説明する。
【0068】
図4に示すイオン源では、プラズマ生成容器30は分割していない。このプラズマ生成容器30の前方部32内に、絶縁物62によってプラズマ生成容器30から電気的に絶縁されていて、yz平面に実質的に平行な面状に広がっている多孔状のフィラメント42が設けられている。このフィラメント42は、例えば、図3に示した例のように、細い棒状または細い板状のフィラメントをyz平面に沿って多数回折り返した構造をしている。そのようなフィラメント42は、多数の隙間43を有しているので、これもこの明細書では多孔状の範疇に含めている。これ以外に、フィラメント42は、多数の小孔を有する平板状のもの、またはメッシュ状のもの等でも良い。
【0069】
このフィラメント42は、上記フィラメント電源68によって加熱されて電子を放出すると共に、多孔状をしていて上記プラズマ40から上記イオン52を引き出す働きをする。
【0070】
このフィラメント42の後方近傍および前方近傍には、上記制御電極46および減速電極50がそれぞれ設けられている。この場合、制御電極46は、フィラメント42との間でアーク放電を発生させる放電用陽極を兼ねている。減速電極50は、フィラメント42を通過して来るイオン52を減速させて通過させる。
【0071】
プラズマ生成容器30の後方部内に、絶縁物65によってプラズマ生成容器30から電気的に絶縁されていて、yz平面に実質的に平行な面状をしている反射電極49が設けられている。この反射電極49は、上記反射電極48と違ってイオン52を通過させる必要はないので、単なる平板状のもの等でも良い。
【0072】
この反射電極49は、図4に示す例のように、フィラメント42の一端に接続してフィラメント電位にしても良いし、どこにも接続せずに浮遊電位にしても良い。浮遊電位にしても負電位に帯電することは前述したとおりである。いずれの場合も、この反射電極49は、プラズマ生成容器30に対して負電位になり、プラズマ生成容器30内の電子(主としてフィラメント42からの電子)を反射させる働きをする。
【0073】
各種電源68、70等、第1コイル54、第2コイル86、引出し電極系76等については、上記実施形態と同様である。
【0074】
この実施形態のイオン源の動作時のx軸に沿う方向における電位分布の一例を図5に示す。第2制御電極44の部分を除いて、図2に示した電位分布と同様の電位分布をしている。
【0075】
この実施形態のイオン源も、基本的には、上記実施形態のイオン源と同様の作用効果を奏する。即ち、このイオン源においては、反射電極49、制御電極46、フィラメント42および減速電極50を、yz平面に実質的に平行に配置しているので、プラズマ生成容器30内には、図5中に代表例を示すように、互いに実質的に平行かつx軸に対して実質的に直角方向の等電位面92が形成される。従って、プラズマ生成容器30内において発生する電界94を、特にイオン52の引出し口である前方部32付近において発生する電界94を、x軸に対して平行に近づけることができる。しかも、第1コイル54によって、x軸に実質的に平行な磁界を発生させることができる。このように、電界および磁界を、x軸に対して平行に近づけることができるので、プラズマ生成容器30内において、イオンビーム90の発散要因となる電界および磁界を減少させることができる。その結果、イオンビーム90の平行性を良くすることができる。これが第1の作用効果である。
【0076】
更に、第1コイル54および第2コイル86が協働して、減速電極50と引出し電極系76との間の領域に、x軸に沿う方向においてイオン52の進行方向に向けて減衰している磁界を発生させることによって、上述したイオン52が持つ磁気モーメントが保存される現象を利用して、イオン52が持つ発散速度成分を減少させることができる。その結果、この理由からも、イオンビーム90の平行性を良くすることができる。これが第2の作用効果である。
【0077】
従って、このイオン源によれば、上記第1および第2の作用効果が相俟って、平行性の良いイオンビーム90を引き出すことができる。また、前述した図11も参照すれば分かるように、減速電極50から引き出されるイオン52を磁界によって広げて、減速電極50よりも大面積のイオンビーム90を引き出すことができる。従って、大型の被照射物にも容易に対応することができる。
【0078】
それに加えて、この実施形態のイオン源では、次のような更なる効果を奏する。即ち、プラズマ40はフィラメント42付近で密度が高く、そのプラズマ密度の高い領域からイオン52を引き出すことができるので、しかもフィラメント42から放出された電子がイオン52の空間電荷を中和してイオン飽和電流が大きく取れるので、イオン52ひいてはイオンビーム90をより多く引き出すことができる。更に、フィラメント42と制御電極46とが互いに実質的に平行に配置されることになり、フィラメント42から放出される電子をイオンビーム引出し方向に対して平行に近づけることができるので、イオンビーム引出し方向と直交する方向におけるプラズマ40の均一性を高めることが可能になる。その結果、イオンビーム90の均一性を良くすることができる。
【図面の簡単な説明】
【0079】
【図1】この発明に係るイオン源の一実施形態を示す断面図である。
【図2】図1のイオン源の動作時のx軸に沿う方向における電位分布の一例を示す図である。
【図3】フィラメントの一例を示す正面図である。
【図4】この発明に係るイオン源の他の実施形態を示す断面図である。
【図5】図4のイオン源の動作時のx軸に沿う方向における電位分布の一例を示す図である。
【図6】図1および図4のイオン源におけるxz平面内の磁界のベクトルをシミュレーションした結果の一例を示す図である。
【図7】図6の例におけるx軸上の磁束密度の変化の様子を示す図である。
【図8】イオンの初期発散角を示す図である。
【図9】図6の磁界分布の場合にイオンを初期発散角60度で放出したときのイオンの軌道をシミュレーションした結果の一例を示す図であり、この例では引出し電極系に加速電圧は印加していない。
【図10】図9の例におけるイオンの発散角の変化の様子を示す図である。
【図11】図6の磁界分布の場合にイオンを初期発散角60度で放出したときのイオンの軌道をシミュレーションした結果の他の例を示す図であり、この例では引出し電極系に5kVの加速電圧を印加している。
【図12】従来のイオン源の一例を示す断面図である。
【符号の説明】
【0080】
30 プラズマ生成容器
32 前方部
36 第1部分
38 第2部分
40 プラズマ
42 フィラメント(熱陰極)
44 第2制御電極
46 制御電極
48、49 反射電極
50 減速電極
52 イオン
54 第1コイル
58 磁力線
76 引出し電極系
86 第2コイル
90 イオンビーム
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11