TOP > 国内特許検索 > 3Dレンジデータを位置合わせする方法及び装置 > 明細書

明細書 :3Dレンジデータを位置合わせする方法及び装置

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第5185777号 (P5185777)
公開番号 特開2010-108328 (P2010-108328A)
登録日 平成25年1月25日(2013.1.25)
発行日 平成25年4月17日(2013.4.17)
公開日 平成22年5月13日(2010.5.13)
発明の名称または考案の名称 3Dレンジデータを位置合わせする方法及び装置
国際特許分類 G06T  15/00        (2011.01)
G06T  15/04        (2011.01)
FI G06T 15/00 100A
G06T 15/04
請求項の数または発明の数 6
外国語出願 外国語出願
全頁数 12
出願番号 特願2008-280774 (P2008-280774)
出願日 平成20年10月31日(2008.10.31)
審査請求日 平成23年10月7日(2011.10.7)
特許権者または実用新案権者 【識別番号】301022471
【氏名又は名称】独立行政法人情報通信研究機構
発明者または考案者 【氏名】ダニエル・モルドバン
【氏名】矢野 澄男
【氏名】吉田 俊介
【氏名】井ノ上 直己
個別代理人の代理人 【識別番号】100099933、【弁理士】、【氏名又は名称】清水 敏
審査官 【審査官】千葉 久博
参考文献・文献 特開2008-033521(JP,A)
特開2002-175521(JP,A)
特開2000-242785(JP,A)
特開平09-237354(JP,A)
特開平09-091436(JP,A)
辻大輔, 外1名,”物体表面のテクスチャを考慮した細分割曲面フィッティングによる3Dメッシュデータの圧縮”,電子情報通信学会技術研究報告,日本,社団法人電子情報通信学会,2003年 1月10日,第102巻, 第555号,p.37-42
調査した分野 G06T 15/00-15/87
G06T 1/00,19/00,19/20
G01B 9/00-9/10
G01B 11/00-11/30
特許請求の範囲 【請求項1】
対象物の3Dレンジデータの組を位置合わせ(register)するためのコンピュータで実現される方法であって、
前記コンピュータが、3Dレンジデータの組前記3Dレンジデータの組に対応する2D画像データの組とを記憶する記憶媒体に接続するステップと、
前記コンピュータが、前記3Dレンジデータの組を前記記憶媒体から読出し、前記3Dレンジデータの各々により表される点をモニタ上に表示するステップと、
前記コンピュータが、前記3Dレンジデータの組を、各々が複数の3Dレンジデータを含む予め定められた数のグループに分割する分割ステップと、
前記コンピュータが、前記グループの各々において、前記2D画像データの組のうち、当該グループに含まれる所定数の3Dレンジデータに対応する2D画像データにおける特徴点の画像の対応を利用して、当該所定数の3Dレンジデータにより表される前記特徴点が一致するように、前記所定数の3Dレンジデータを整合させ、前記記憶媒体に記憶された、前記所定数の3Dレンジデータを更新する整合ステップと
前記コンピュータが、前記合ステップにおいて更新された前記3Dレンジデータを前記記憶媒体から読出し、前記モニタに表示される点を、前記読出された3Dレンジデータにしたがって更新する更新ステップと、
前記コンピュータが、全ての3Dレンジデータが前記各グループにおいて整合するまで、前記所定数の3Dレンジデータの組合せを変更しながら前記整合ステップと前記新ステップとを繰返すステップと、
前記コンピュータが、前記繰返しステップの間に位置合わせされ更新された3Dレンジデータの全ての組を整合させるステップと、を含む、方法。
【請求項2】
前記分割ステップは、前記コンピュータが、前記3Dレンジデータの組を、各々が連続した3Dレンジデータを含む4つのグループに分割するステップを含む、請求項1に記載の方法。
【請求項3】
前記4つのグループは同数の連続した3Dレンジデータを含む、請求項2に記載の方法。
【請求項4】
前記整合ステップは、前記コンピュータが、前記グループの各々において、前記2D画像データの組のうち、当該グループに含まれる1対の3Dレンジデータに対応する2D画像データにおける特徴点の画像の対応を利用して、当該1対の3Dレンジデータにより表される前記特徴点が一致するように、前記1対の3Dレンジデータを整合させ、前記記憶媒体に記憶された、前記1対の3Dレンジデータを更新するステップを含む、請求項1に記載の方法。
【請求項5】
コンピュータ上で実行されると、コンピュータに、請求項1から請求項4のいずれかに記載のステップの全てを実行させる、コンピュータプログラム。
【請求項6】
対象物の3Dレンジデータの組を位置合わせするための装置であって、
3Dレンジデータの組前記3Dレンジデータの組に対応する2D画像データの組とを記憶するための記憶手段と、
前記3Dレンジデータの組を前記記憶手段から読出し、前記3Dレンジデータの各々により表される点をモニタ上に表示するための手段と、
前記3Dレンジデータの組を、各々が複数の3Dレンジデータを含む予め定められた数のグループに分割するための分割手段と、
前記グループの各々において、前記2D画像データの組のうち、当該グループに含まれる所定数の3Dレンジデータに対応する2D画像データにおける特徴点の画像の対応を利用して、当該所定数の3Dレンジデータにより表される前記特徴点が一致するように、前記所定数の3Dレンジデータを整合させ、前記記憶手段に記憶された、前記所定数の3Dレンジデータを更新するための第1の手段と
記第1の手段による整合によって更新された前記3Dレンジデータを前記記憶手段から読出し、前記モニタに表示される点を、前記読出された3Dレンジデータにしたがって更新するための更新手段と、
全ての3Dレンジデータが前記各グループにおいて整合するまで、前記所定数の3Dレンジデータの組合せを変更しながら前記3Dレンジデータの整合と更新が繰返されるように、前記第1の手段と前記更新手段とを制御するための手段と、
前記制御するための手段の制御に基づいて、繰返しの間に位置合わせされ更新された3Dレンジデータの全ての組を整合させるための第2の手段とを含む、装置。

発明の詳細な説明 【技術分野】
【0001】
この発明は3D形状の検査に関し、特に、表示された3Dモデルの早期の検査を必要とする、エンターテインメント、教育及びデザイン等の応用分野に関する。
【背景技術】
【0002】
3Dモデルをスキャンしてからすぐに完全な3Dモデルを表示するという課題は、依然として解決されていない。ある対象物の完全なディジタルモデルを構築するのに必要とされる現在の切換方法は、対応の点を手で選択するためのユーザの介入、又は自動3Dビュー位置合わせ(registration)のいずれかを伴う。自動位置合わせでは、表示が行なわれるのは全てのビューが位置合わせされた後である。前者では、中間のビューを視覚化することは可能(かつ不可欠)であるが、スキャン数が大きければ位置合わせ処理を行なうのは煩雑であろう。視覚化の部分を自動位置合わせと組み合わせることで、実時間表示のより先鋭な感覚が生み出されうる。
【0003】
特許文献1はデータパケット/セル損失のある通信ネットワークで3D形状データを転送し表示する方法を記載する。システムは形状を表す複数の要素からなる3D形状データを送信するための送信ユニットと、3D形状データを受け3D形状データを画像として表示するための受信側表示ユニットと、を含む。
【0004】
このシステムでは、送信ユニットが外部記憶装置から3Dデータを読出し、領域の属性に従って3D形状要素を並替える。その後、これは3Dデータを要素単位で漸次送信する(大きい領域を表す領域属性を有する要素から始まり、続いてより小さい領域を表す領域属性を有する要素を処理する)。受信側表示ユニットは送信ユニットから送信される要素を受け、これらを受信順に漸次表示する。
【0005】
非特許文献1では、レンジデータとともに記憶された明度画像が利用され、完全に自動の位置合わせ技術が実行される。内在的なスケール情報を伴う2D—画像特徴量を用いて、3Dビューの対応の点を発見する。その後、まず特徴点自体を整合させ、それに続いて表面要素を考慮する整合ステップによって、2つのレンジの画像の精密な位置合わせが行なわれる。最後に、全体的な位置合わせ誤差を、グラフリラクセーション技術を用いて最少化する。
【0006】
非特許文献2に記載のソフトウェアは、表面ジオメトリ又は容積情報のいずれかを用いることで、目標又は他の整合ツールなしで、多数の点の集まり(クラウド)を整合させる。
【先行技術文献】
【0007】

【特許文献1】米国特許第5850226号、3D形状データの転送及び表示方法、1998年12月15日、発明者:ミチオ ナガサワ、ダイスケ ニシオカ
【0008】

【非特許文献1】特徴量表面要素を用いた3Dレンジデータの画像による位置合わせ、仮想現実、考古学及び文化遺産に関する第5回国際シンポジウム2004、G.H.ベンデルス、P.デジェナー、R.ワール、M.コートゲン、R.クライン(Image-Based Registration of 3D-Range Data Using Feature Surface Elements, The 5th International Symposium on Virtual Reality, Archeology and Cultural Heritage 2004, G. H. Bendels, P. Degener, R. Wahl, M. Kortgen, R. Klein)
【非特許文献2】ラピッドフォームからの点クラウド整合技術(http://www.rapidform.com/)(Point Cloud Alignment Technology from Rapidform (http://www.rapidform.com/)
【発明の概要】
【発明が解決しようとする課題】
【0009】
特許文献1は画像データの漸次送信及び表示を開示しているが、実時間表示の先鋭な感覚と組合わされた自動位置合わせを伴った3Dモデルの視覚化には触れていない。
【0010】
非特許文献1は3Dモデルの自動位置合わせを扱っている。しかし、視覚化は遅く、実時間表示はできない。
【0011】
非特許文献2は多数の点クラウドの自動整合を扱っている。しかし、これは3Dモデルの実時間視覚化とは無関係である。
【0012】
従って、この発明の目的の1つは、見る人に実時間表示の感覚を与えるようなやり方で、獲得した3Dモデルを自動的に整合しマージするための方法及び装置を提供することである。
【0013】
この発明の別の目的は、位置合わせの過程を示すことで、見る人に実時間表示の感覚を与えるようなやり方で、獲得した3Dモデルを自動的に整合しマージするための方法及び装置を提供することである。
【0014】
この発明のさらに別の目的は、多方向から実際の形状を徐々に明らかにすることによって、見る人に実時間表示の感覚を与えるようなやり方で、獲得した3Dモデルを自動的に整合しマージするための方法及び装置を提供することである。
【課題を解決するための手段】
【0015】
この発明の第1の局面に従った、対象物の3Dレンジデータの組を位置合わせするためのコンピュータで実現される方法は、3Dレンジデータと前記3Dレンジデータに対応する2D画像データの組とを記憶する記憶媒体に接続するステップと、前記3Dレンジデータの組を表す点をモニタ上に表示するステップと、前記3Dレンジデータの組を、各々が連続した3Dレンジデータの組を含む予め定められた数のグループに分割するステップと、前記グループの各々において、前記2D画像データの組を利用して、所定数の連続したレンジデータの対を整合させ、対応の3Dレンジデータを更新するステップと、を含む。前記所定数は前記各グループ内の連続したレンジデータの対の数より小さい。前記ステップはさらに、整合するステップに従って、前記モニタに表示される点を更新するステップと、全ての3Dレンジデータが前記各グループにおいて整合するまで、前記整合のステップと更新のステップとを繰返すステップと、前記繰返しステップの間に位置合わせされ更新された3Dレンジデータの全ての組を整合させるステップと、を含む。
【0016】
前記分割ステップは前記3Dレンジデータの組を、各々が連続した3Dレンジデータを含む4つのグループに分割するステップを含んでもよい。
【0017】
好ましくは、前記4つのグループは同数の連続した3Dレンジデータを含みうる。
【0018】
さらに好ましくは、前記整合させるステップは、前記各グループにおいて、1対の連続したレンジデータを整合させ、対応の3Dレンジデータを更新するステップを含む。
【0019】
この発明の第2の局面に従ったコンピュータプログラムは、コンピュータ上で実行されると、コンピュータに、上述の方法のいずれかに記載のステップの全てを実行させる。
【0020】
この発明の第3の局面に従った対象物の3Dレンジデータの組を位置合わせするための装置は、3Dレンジデータと前記3Dレンジデータに対応する2D画像データの組とを記憶するための手段と、前記3Dレンジデータの組を表す点をモニタ上に表示するための手段と、前記3Dレンジデータの組を、各々が連続した3Dレンジデータの組を含む予め定められた数のグループに分割するための手段と、前記グループの各々において、前記2D画像データの組を利用して、所定数の連続したレンジデータの対を整合させ、対応の3Dレンジデータを更新するための第1の手段と、を含む。前記所定数は前記各グループ内の連続したレンジデータの対の数より小さい。前記装置はさらに、前記第1の手段による整合に従って、前記モニタに表示される点を更新するための手段と、全ての3Dレンジデータが前記各グループにおいて整合するまで、前記3Dレンジデータの整合と更新が繰返されるように、前記第1の手段と前記更新するための手段とを制御するための手段と、前記制御するための手段の制御に基づいて、繰返しの間に位置合わせされ更新された3Dレンジデータの全ての組を整合させるための第2の手段とを含む。
【図面の簡単な説明】
【0021】
【図1】図1はこの発明の第1の実施の形態に従った3Dビューの配置を示す図である。
【図2】この発明の第1の実施の形態に従った3Dモデル位置合わせシステム50の平面図である。
【図3】図2に示すシステム50のブロック図である。
【図4】この実施の形態の方法を実現するプログラムの制御の流れを示すフローチャートである。
【図5】図4に示すステップ120の詳細なフローチャートである。
【図6】図4のステップ128で行なわれるルーチンの詳細なフローチャートである。
【図7】各区画についてステップ174で行なわれる位置合わせ処理のフローチャートである。
【図8】2D一致点を例示する図である。
【発明を実施するための形態】
【0022】
[第1の実施の形態]
-概観-
以下で説明する実施の形態では、3Dレンジデータのシーケンスと対応の2D画像データとから、実生活の対象物のディジタル化された3Dモデルを自動的に構築し表示する方法を紹介する。目標とするのは、実際の対象物のスキャンとその3Dモデルの表示とを中断なしに行なって、見る人に実時間表示の感覚を与えるシステムである。連続したスキャンを整合するようにすすめた後に、展開された3Dデータを表示することに代えて、この発明では異なる手法をとる。

【0023】
始めに、3D表示装置に、スキャンの完全な組を一度に表示する。その後、図1に示すように、対象物20の完全なビューを4つの区画30A-30Dに分割し、その各々の内部で、連続したビューを整合させる。4つの区画全てにおいて、連続したビューの第1の対が独立して整合された後、これにしたがってこれらを3D表示装置に表示する。例えば、区画30Aの2つの連続したビュー32A及び34Aが最初に整合され、その後、区画30B、30C、30Dのビューの対32B及び34B、32C及び34C、32D及び34Dがそれぞれ位置合わせされる。表示は、部分的に位置合わせされたビューの組で更新されることになる。続いて、各区画内の連続したビューについて、これらを先行するビューと整合させる処理が行なわれる。その後、その結果にしたがってそれらが表示される。こうして、初期の点のクラウドは徐々に、4方向から同時に実際の対象物の真の形状と色とを現すようになる。最終ステップとして、全体的な位置合わせが行なわれる。ここでは、先行技術と同様に、一意の世界座標系に対し、全てのビューが整合される。

【0024】
ここでは、2つのビューが、その視点の位置と向きとが予め定められた世界座標系を基準として、特徴点を利用して正確に決定されたときに、「位置合わせされた」という。

【0025】
この実施の形態では、3Dレンジデータと対応のテクスチャデータとを入力として用いて、対象物の完全なディジタルモデルを生成する。この入力データは、何らかの種類のレンジセンサによって提供されうる(レーザレンジファインダ、ステレオカメラ、構造光)。一方で、結果(3Dディジタルモデル)は、ユーザとの相互作用で機能を強化したか、又は検査のために操作可能な何らかの種類の3D表示装置で視覚化可能である。

【0026】
この実施の形態では、表示されたモデルを早期に検査することが必要な状況で、また結果として、表示された対象物を回転させるか移動させて全体的なビューを得るために表示された対象物との相互作用を行なう手段が存在するような状況で使用可能である。念頭においているのは、文化遺産等の、実世界の対象物のディジタルコピーをスキャンして、3Dハンドヘルド表示装置又は従来の3D表示モニタであってユーザとの対話機能を持つものを用いて表示するような例である。別の例は、ユーザが各自ディジタルモデルの異なるビューを持ちながら、全体としては同じ対象物を共有するような、協働作業である。

【0027】
-システム構成-
図2はこの実施の形態の3Dモデル位置合わせ方法を実現する3Dモデル位置合わせシステム50の平面図であり、図3はシステム50のブロック図である。

【0028】
図2及び図3を参照して、システム50は、モニタ62、キーボード66及びマウス68が接続されたコンピュータ60と、コンピュータ60に接続されたカメラ96を備えたレーザレンジスキャナ92と、コンピュータ60によって制御される回転テーブル94と、を含む。コンピュータ60は半導体メモリ86を装着するためのI/F72と、DVD媒体82を駆動するためのDVD(Digital Versatile Disc)ドライブ80とを有する。回転テーブル94はコンピュータ60の制御下で所定量だけ回転する。対象物が回転テーブル94上に置かれると、回転テーブル94が回転し、レンジスキャナ92とカメラ96とが、対象物の回転位置の各々で、3Dレンジデータと2D画像データとをそれぞれキャプチャする。

【0029】
特に図3を参照して、システム50はさらに、プロセッサ70と、プロセッサ70に接続されたメモリ/バスコントローラ76と、メモリ/バスコントローラ76に接続されたランダムアクセスメモリ(RAM)78及びキャッシュメモリ(図示せず)と、プロセッサ70及びモニタ62に接続された、グラフィックコントローラ90と、メモリ/バスコントローラ76に接続されたバス98と、バス98に接続された入力/出力(I/O)コントローラ72と、I/Oコントローラ72に接続されたグラフィックカード88と、バス98に接続されたハードディスクドライブ(HDD)と、を含む。DVDドライブ80とグラフィックカード88とは、内部でI/Oコントローラ88に接続されている。モニタ62はグラフィックコントローラ90に接続される。回転テーブル94はI/Oコントローラ72に接続される。レンジセンサ92とカメラ96とはグラフィックカード88に接続される。キーボード66とマウス68とはI/F84に接続される。

【0030】
後述するプログラムは、ハードディスクに記憶される。プログラム実行の際は、プログラムはハードディスクからHDD74によって読出され、RAM78に記憶される。プロセッサ70はプログラムカウンタと称される内部レジスタを有する。プロセッサ70はプログラムカウンタによって指定されたRAM78のアドレスから命令をフェッチし、その命令をデコードし、命令の実行に用いられるデータをフェッチし、命令を実行し、その後、命令によって指定されたアドレスにデータを記憶する。

【0031】
プログラムはDVD媒体82に記憶されハードディスクにインストールされてもよい。

【0032】
図4はこの実施の形態の方法を実現するプログラムの制御の流れを示すフローチャートである。図4を参照して、プログラムはステップ120で始まり、ここで関連のメモリ空間を初期化した後、コンピュータ60は回転テーブル94に置かれた実物をディジタル化する。ステップ120で、コンピュータ60は回転テーブル94を回転させ、特定の角度で停止させる。各々の角度で、レンジスキャナ92は対象物の3Dレンジデータをキャプチャし、カメラ96が対応の2D画像をキャプチャする。

【0033】
プログラムはさらに、ステップ120でキャプチャされた3Dレンジデータの完全な組をモニタ62上に表示するステップ122と、ステップ122に続いて、3Dレンジデータを4つの区画に大まかに配置するステップ124と、ステップ120でレンジスキャナ92によってキャプチャされた3Dビューを位置合わせして、4つの区画の各々で連続したビューの対の位置合わせを繰返すたびにモデルビューを漸次更新するステップ128と、ステップ128に続いて、各々ステップ128で位置合わせされた4つの区画を含む3Dレンジビューの完全な組を位置合わせするステップ130と、ステップ130で位置合わせされたディジタル化された対象物の表面を生成するステップ132と、ステップ134に続いて、ハードディスクに対象物のビューデータを記憶するステップ134と、を含む。

【0034】
図5は図4のステップ120の詳細を示す。図5を参照して、ステップ120のルーチンは、回転テーブル94の各角度において、3Dレンジデータと対応の2D画像データとを、レンジスキャナ92とカメラ96とからそれぞれ抽出し、データをそれぞれの場所に記憶するステップ150と、スキャンが完了したか否かを判断し、判断の結果により制御の流れをステップ150又は図4のステップ122に分岐させるステップ152と、を含む。

【0035】
図6は図4のステップ128で実行されるルーチンの詳細なフローチャートである。図6を参照して、このルーチンはステップ170で始まり、ここでは繰返し制御変数iが0に初期化され、iの値が定数M-1より小さい間は処理172が繰返され、1回繰返すごとにiの値が増分される。ここでMは各区画内のビューの数である。変数iがM-1に等しくなると、繰返しが終了する。繰返しのたびに、図6に示す処理172が実行される。

【0036】
処理172は、各区画について、i番目と(i+1)番目とのビューが位置合わせされ3Dレンジデータがそれに従って更新されるステップ174と、更新された3Dレンジデータの完全な組を表示するステップ178と、を含む。

【0037】
たとえば、i=0であるとき、ビュー32Aと34Aとが区画30Aで位置合わせされ、ビュー32Bと34Bとが区画30Bで位置合わせされ、ビュー32Cと34Cとが区画30Cで位置合わせされ、ビュー32Dと34Dとが区画30Dで位置合わせされる。3Dレンジデータは位置合わせの結果に従って更新され、その後更新された3Dレンジデータの完全な組がモニタ62に表示される。その後iが1に増分され、ビュー34Aと36Aとが区画30Aで位置合わせされ、ビュー34Bと36Bとが区画30Bで位置合わせされ、その後同様に繰返される。3Dレンジデータはこれに従って更新され、3Dレンジデータの完全な組が表示される。

【0038】
こうして、図6に示す処理の実行中、モニタ62上の3Dモデルビューは漸次更新される。各区画で、連続した3Dレンジビューの対が位置合わせされ、モデルビューが更新される。この処理は連続した対の全てについて繰返されることになり、実時間表示の感覚が得られる。

【0039】
図7は各区画についてステップ174で行なわれる位置合わせ処理のフローチャートである。図7を参照して、このルーチンは、位置合わせすべき3Dビューの各々について、対応の2D画像を分析し、一致する2D点の対を抽出するステップ200を含む。このステップは、例えば、SIFTキーポイントディテクタ(http://www.cs.ubc.ca/~lowe_keypoints/)等の公に入手可能なソフトウェアで実現することができる。

【0040】
2D一致点を図8に例示する。日本の人形220の画像が、第1の区画30AのN番目の2Dビューであり、画像222が同じ人形の(N+1)番目の2Dビューであると仮定する。これらのビューの各々を上述のソフトウェアを利用して分析すると、各画像において特徴点を見出すことができる。

【0041】
ルーチンはさらに、ステップ200に続いて、ステップ200で抽出された偽の一致点を消去するステップ202を含む。これは、例えばOpenCVライブラリ(http://opencvlibrary.sourceforge.net/)等の公に入手可能なソフトウェアを用いて行なうことができる。再び図8を参照して、画像220及び222の特徴点はさらに分析され、偽の一致点が消去されて、真の一致点の対のみが残る。

【0042】
ステップ202の後、2Dの一致に基づいて対応の3D点の対を抽出するステップ204が来る。このステップは、2D画像の画素と3Dビューの奥行き値との間の1対1の対応を用いて実現することができる。

【0043】
ルーチンはさらに、ステップ204に続いて、ステップ204で抽出された3D一致点に基づいて、3Dビューの絶対的な向きを計算するステップ206を含む。このステップは、ジブ ヤニフ(Zib Yaniv)によるhttp://isiswiki.georgetown.edu/zivy/にある公に利用可能なソフトウェアで実現可能である。このソフトウェアは、ホーン法(バートルド K.P.ホーン、単位区画を用いた絶対的向きの閉鎖形態の解決法、アメリカ光学学会会報1987)(Berthold K.P. Horn. Closed-form solution of absolute orientation using unit quarternions. Journal of the Optical Society of America, 1987)を実現したものである。2つの3Dレンジデータの位置合わせには、対応する点の少なくとも3個の対が必要である。さらに、ジブによるソフトウェアは、VXLと呼ばれるC++ライブラリの集合(http://vxl.sourceforge.net#download)を用いて実現することもできる。ステップ206の後、制御はこのルーチンから抜ける。

【0044】
-動作-
3Dモデル位置合わせシステム50は以下のように動作する。図2及び図3を参照して、モデルが回転テーブル94に置かれ、回転テーブル94の最初の位置が決定される。レンジスキャナ92がモデルのレンジデータをキャプチャする。カメラ96がモデルの2D画像をキャプチャする。レンジデータと2D画像とがグラフィックカード88、I/Oコントローラ72及びバス98を介してコンピュータ60に送信され、HDD74によってハードディスクのプロセッサ70によって指定されたアドレスに記憶される。

【0045】
その後プロセッサ70は回転テーブル94を所定の角度だけ回転させる。レンジスキャナ92とカメラ96とがこの角度でのレンジデータと2D画像とをそれぞれキャプチャする。レンジデータと2D画像とはともにハードディスクに記憶される。こうして、回転テーブル94の予め定められた回転位置の各々で、レンジデータと2D画像とがキャプチャされ記憶される。このタスクは図4に示すステップ120で行なわれる。

【0046】
レンジデータと対応の2D画像との完全な組がキャプチャされ記憶されると、制御は図4のステップ122に進む。ここで、3Dレンジデータの完全な組がハードディスクから読出されてモニタ62に表示される。ビューは位置合わせされていないので、表示されるモデルはレンジデータ点のクラウドである。

【0047】
ステップ124で、3Dレンジデータは4つの区画で大まかに配置される。ステップ128で、各区画について、選択された連続する3Dレンジビューの1対が位置合わせされる。各区画での位置合わせの後、モニタ62上のレンジデータ表示がそれに従って更新される。次に、各区画において連続した3Dレンジビューの次の1対が選択され位置合わせされ、表示が更新される。この処理は、各区画の連続したビューの対の全てが位置合わせされるまで繰返される(ステップ128)。

【0048】
ステップ128が完了すると、3Dレンジビューの完全な組が、従来の位置合わせ方法を利用してステップ130で再び位置合わせされる。ステップ132で位置合わせされた対象物のために表面が生成され、ステップ134でモデルデータがハードディスクに記憶される。

【0049】
上述のとおり、この実施の形態では、各区画においてレンジデータの3Dビューの選択された対を位置合わせし、その後繰返しごとに、レンジデータの表示を更新する。位置合わせ処理の間、モデルビューは漸次更新されるので、ユーザに実時間位置合わせの先鋭な感覚を与える。

【0050】
上述の実施の形態ではレンジデータは4区画に配置されるが、この発明はこの実施の形態には限られず、レンジデータは1より大きいいかなる数のグループに分割されてもよい。しかし、漸次実時間表示の感覚を与えるためには、この数が大きすぎてはならない。レンジデータを4、8又は16個のグループに分割するのが好ましい。レンジデータは大まかにグループ分けすればよく、グループ内のレンジデータの数は互いに異なっていてもよい。

【0051】
上述の実施の形態では、レンジデータをキャプチャするのにレンジスキャナ92を利用したが、この発明はこのような実施の形態に限定されない。対象物の表面の任意に選択された点への距離を測定することができれば、レンジスキャナ92に代えてステレオカメラ又は構造光を用いてもよい。

【0052】
今回開示された実施の形態は単に例示であって、本発明が上記した実施の形態のみに制限されるわけではない。本発明の範囲は、発明の詳細な説明の記載を参酌した上で、特許請求の範囲の各請求項によって示され、そこに記載された文言と均等の意味および範囲内でのすべての変更を含む。
【符号の説明】
【0053】
50 3Dモデル位置合わせシステム
60 コンピュータ
62 モニタ
70 プロセッサ
72 I/Oコントローラ
74 ハードディスクドライブ
76 メモリ/バスコントローラ
78 ランダムアクセスメモリ
80 DVDドライブ
84 インターフェイス
88 グラフィックカード
90 グラフィックコントローラ
92 レンジスキャナ
94 回転テーブル
96 カメラ
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7