TOP > 国内特許検索 > 立体ディスプレイおよび立体画像提示方法 > 明細書

明細書 :立体ディスプレイおよび立体画像提示方法

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第5398015号 (P5398015)
公開番号 特開2012-013788 (P2012-013788A)
登録日 平成25年11月1日(2013.11.1)
発行日 平成26年1月29日(2014.1.29)
公開日 平成24年1月19日(2012.1.19)
発明の名称または考案の名称 立体ディスプレイおよび立体画像提示方法
国際特許分類 G02B  27/22        (2006.01)
H04N  13/04        (2006.01)
G03B  35/20        (2006.01)
FI G02B 27/22
H04N 13/04
G03B 35/20
請求項の数または発明の数 6
全頁数 24
出願番号 特願2010-147955 (P2010-147955)
出願日 平成22年6月29日(2010.6.29)
審査請求日 平成25年5月10日(2013.5.10)
特許権者または実用新案権者 【識別番号】301022471
【氏名又は名称】独立行政法人情報通信研究機構
発明者または考案者 【氏名】吉田 俊介
【氏名】矢野 澄男
【氏名】安藤 広志
個別代理人の代理人 【識別番号】100098305、【弁理士】、【氏名又は名称】福島 祥人
審査官 【審査官】山本 貴一
参考文献・文献 特開2010-032952(JP,A)
特開2006-189962(JP,A)
特開2009-008837(JP,A)
特開2007-200307(JP,A)
吉田俊介, 矢野澄男, 安藤広志,テーブルトップ作業を目的とした裸眼立体ディスプレイの試作,社団法人映像情報メディア学会技術報告,2009年10月21日,Vol.33 No.42,pp.33-36
調査した分野 G02B 27/22
G03B 35/20
H04N 13/04

JSTPlus(JDreamIII)
JST7580(JDreamIII)
特許請求の範囲 【請求項1】
立体形状データに基づいて立体画像を提示するための立体ディスプレイであって、
錐体形状または柱体形状を有するとともに前記錐体形状または前記柱体形状の底部が基準面上に開口するように配置される光線制御子と、
前記基準面の下方でかつ前記光線制御子の外側から複数の光線からなる光線群を前記光線制御子の外周面に照射するように前記光線制御子の周囲に配置された光線発生器と、
前記立体形状データに基づいて、前記複数の光線発生器により発生される光線群により立体画像が提示されるように前記光線発生器を制御する制御手段とを備え、
前記光線制御子は、前記光線発生器により照射された各光線を周方向において拡散させずに透過させるとともに稜線方向において拡散させて透過させるように形成され、
前記制御手段は、前記光線発生器により発生される各光線が前記光線制御子の外周面に交差する第1の交点と、前記光線制御子を透過して前記光線制御子で拡散する光線が観察位置の範囲を表す視域に交差する第2の交点とを通る直線を取得し、取得された直線が提示されるべき立体画像と交差する第3の交点の位置を算出し、前記第3の交点における前記提示されるべき立体画像の色を前記光線の色として設定するとともに、それぞれ設定された色を有する複数の光線からなる光線群を発生するように前記光線発生器を制御することを特徴とする立体ディスプレイ。
【請求項2】
前記光線発生器は、前記光線群を出射する出射点をそれぞれ有し、
前記視域は、前記光線制御子の軸を中心としかつ前記軸に垂直な円環状視域であり、
前記制御手段は、前記出射点および前記第1の交点を通りかつ前記軸に平行な面を算出し、前記面と前記円環状視域との交点の位置を前記第2の交点の位置として算出することを特徴とする請求項1記載の立体ディスプレイ。
【請求項3】
前記制御手段は、前記第1および第2の交点を通る直線が前記提示されるべき立体画像と複数の点で交差する場合に、前記第2の交点に最も近い交点の位置を前記第3の交点の位置として算出することを特徴とする請求項1または2記載の立体ディスプレイ。
【請求項4】
前記基準面は、テーブルの天板の上面であり、前記天板は開口部を有し、前記光線制御子は、前記天板の前記開口部に嵌め込まれたことを特徴とする請求項1~3のいずれかに記載の立体ディスプレイ。
【請求項5】
前記光線発生器は1または複数のプロジェクタを含むことを特徴とする請求項1~4のいずれかに記載の立体ディスプレイ。
【請求項6】
立体形状データに基づいて立体ディスプレイにおいて立体画像を提示する立体画像提示方法であって、
前記立体ディスプレイは、錐体形状または柱体形状を有するとともに前記錐体形状または前記柱体形状の底部が基準面上に開口するように配置される光線制御子と、基準面の下方でかつ前記光線制御子の外側から複数の光線からなる光線群を前記光線制御子の外周面に照射するように前記光線制御子の周囲に配置された光線発生器とを備え、
前記光線制御子は、前記光線発生器により照射された各光線を周方向において拡散させずに透過させるとともに稜線方向において拡散させて透過させるように形成され、
前記立体画像提示方法は、
前記光線発生器により発生されるべき複数の光線にそれぞれ色を設定するステップと、
前記光線発生器から前記光線制御子の外周面にそれぞれ設定された色を有する複数の光線を照射するステップとを備え、
前記設定するステップは、
前記光線発生器により発生される各光線が前記光線制御子の外周面に交差する第1の交点の位置と、前記光線制御子を透過して前記光線制御子で拡散する光線が観察位置の範囲を表す視域に交差する第2の交点とを通る直線を取得するステップと、
前記算出された直線が提示されるべき立体画像と交差する第3の交点の位置を算出するステップと、
前記第3の交点における前記提示されるべき立体画像の色を前記光線の色として設定するステップとを含むことを特徴とする立体画像提示方法。
発明の詳細な説明 【技術分野】
【0001】
本発明は、立体画像を提示する立体ディスプレイおよび立体画像提示方法に関する。
【背景技術】
【0002】
テーブルの周囲に複数の人が集い、共同作業をする場面が多々見られる。テーブルを共同作業するためのツールとみなし、このツールを用いた共同作業をコンピュータを使用して支援する種々の研究が行われている。例えば、CSCW(Computer Supported Cooperative Work:コンピュータ支援協調作業)およびグループウェアの研究が挙げられる。
【0003】
テーブル上の作業をデジタル化することの利点としては、作業の過程を電子的に記録できる、および遠隔地間での情報の共有ができる等が挙げられる。従来の研究で表示される画像はテーブルにプロジェクタで投影されるか、またはテーブル自体がLCD(液晶表示装置)等のディスプレイからなる。いずれの場合も二次元の平面画像が表示される。
【0004】
このような平面画像では、書類のような情報しか提示できず、立体的な三次元形状の情報は提示できない。また、単一の平面画像を表示した場合、テーブルを取り囲む人の位置によっては情報が逆になるため、非常に見にくい。
【0005】
上記の課題を解決するために、テーブル上に立体画像を提示する方法が提案されている。例えば特許文献1に記載される立体ディスプレイにおいては、複数のプロジェクタから出射される光線によってテーブル上に仮想的な点光源の集合が形成される。それにより、テーブル上に立体画像が提示される。
【先行技術文献】
【0006】

【特許文献1】特開2010-32952号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
立体画像を用いた共同作業を円滑に行うためには、複数の人が立体画像を違和感なく正確に認識可能であることが望まれる。そのため、自然で精細な立体画像の提示が求められる。
【0008】
本発明の目的は、自然で精細な立体画像を提示可能な立体ディスプレイおよび立体画像提示方法を提供することである。
【課題を解決するための手段】
【0009】
(1)第1の発明に係る立体ディスプレイは、立体形状データに基づいて立体画像を提示するための立体ディスプレイであって、錐体形状または柱体形状を有するとともに錐体形状または柱体形状の底部が基準面上に開口するように配置される光線制御子と、基準面の下方でかつ光線制御子の外側から複数の光線からなる光線群を光線制御子の外周面に照射するように光線制御子の周囲に配置された光線発生器と、立体形状データに基づいて、複数の光線発生器により発生される光線群により立体画像が提示されるように光線発生器を制御する制御手段とを備え、光線制御子は、光線発生器により照射された各光線を周方向において拡散させずに透過させるとともに稜線方向において拡散させて透過させるように形成され、制御手段は、光線発生器により発生される各光線が光線制御子の外周面に交差する第1の交点と、光線制御子を透過して光線制御子で拡散する光線が観察位置の範囲を表す視域に交差する第2の交点とを通る直線を取得し、取得された直線が提示されるべき立体画像と交差する第3の交点の位置を算出し、第3の交点における提示されるべき立体画像の色を光線の色として設定するとともに、それぞれ設定された色を有する複数の光線からなる光線群を発生するように光線発生器を制御するものである。
【0010】
その立体ディスプレイにおいては、光線制御子が錐体形状または柱体形状を有する。この光線制御子は、錐体形状の底部が基準面上に開口するように配置される。また、光線発生器が、基準面の下方でかつ光線制御子の外側から複数の光線からなる光線群を光線制御子の外周面に照射するように光線制御子の周囲に配置される。立体形状データに基づいて、複数の光線発生器により発生される光線群により立体画像が提示されるように、複数の光線発生器が制御手段により制御される。
【0011】
なお、錐体形状は、円錐、楕円錐または多角錐に限定されず、円錐台、楕円錐台または角錐台を含む。また、柱体形状は、円柱、楕円柱および角柱を含む。
【0012】
この場合、光線制御子は、光線発生器により照射された各光線を周方向において拡散させずに透過させる。それにより、光線発生器からの光線の各交点が点光源となる。観察者は、点光源の集合を実体物の立体形状として仮想的に知覚する。このとき、同じ点光源に交差する左眼の視線方向と右眼の視線方向とが異なるので、両眼視差が生じる。その結果、複数の点光源の集合により立体画像が提示される。
【0013】
また、光線制御子は、光線発生器により照射された各光線を稜線方向において拡散させて透過させる。それにより、簡単な構成で、光線発生器の稜線方向における任意の位置から共通の観察位置に光線が到達する。
【0014】
光線発生器により発生される各光線は、光線制御子の外周面に第1の交点で交差し、光線制御子を透過するとともに光線制御子で拡散し、観察位置の範囲を表す視域に第2の交点で交差する。第1および第2の交点を通る直線が提示されるべき立体画像と交差する第3の交点の位置が制御手段により算出される。算出された第3の交点における立体画像の色が光線の色として制御手段により設定される。それぞれ設定された色を有する複数の光線からなる光線群が光線発生器により発生される。これにより、提示すべき立体画像に応じて、各光線の色が適正に設定される。その結果、自然でかつ精細な立体画像を観察者に提示することができる。
【0015】
(2)光線発生器は、光線群を出射する出射点をそれぞれ有し、視域は、光線制御子の軸を中心としかつ軸に垂直な円環状視域であり、制御手段は、出射点および第1の交点を通りかつ軸に平行な面を算出し、面と円環状視域との交点の位置を第2の交点の位置として算出してもよい。
【0016】
この場合、出射点および前記第1の交点を通りかつ軸に平行な面ならびに円環状視域に基づいて、容易に第2の交点を算出することができる。
【0017】
(3)制御手段は、第1および第2の交点を通る直線が提示されるべき立体画像と複数の点で交差する場合に、第2の交点に最も近い交点の位置を第3の交点の位置として算出してもよい。
【0018】
この場合、第1および第2の交点を通る直線と提示されるべき立体画像との複数の交点のうち、第2の交点に最も近い交点で提示されるべき色が、第2の交点に到達する光線の色として設定される。それにより、第2の交点において観察されるべき立体画像の色が正確に光線に設定される。
【0019】
(4)基準面は、テーブルの天板の上面であり、天板は開口部を有し、光線制御子は、天板の開口部に嵌め込まれてもよい。
【0020】
この場合、テーブルの天板上の空間に立体画像が提示される。それにより、テーブルを囲んで複数人により同じ立体画像を用いた作業を気軽に行うことができる。なお、開口部に透明材料からなる蓋が嵌めこまれてもよい。
【0021】
(5)光線発生器は1または複数のプロジェクタを含んでもよい。この場合、プロジェクタにより複数の光線からなる光線群を容易に光線制御子の外周面に照射することができる。
【0022】
(6)第2の発明に係る立体画像提示方法は、立体形状データに基づいて立体ディスプレイにおいて立体画像を提示する立体画像提示方法であって、立体ディスプレイは、錐体形状または柱体形状を有するとともに錐体形状または柱体形状の底部が基準面上に開口するように配置される光線制御子と、基準面の下方でかつ光線制御子の外側から複数の光線からなる光線群を光線制御子の外周面に照射するように光線制御子の周囲に配置された光線発生器とを備え、光線制御子は、光線発生器により照射された各光線を周方向において拡散させずに透過させるとともに稜線方向において拡散させて透過させるように形成され、立体画像提示方法は、光線発生器により発生されるべき複数の光線にそれぞれ色を設定するステップと、光線発生器から光線制御子の外周面にそれぞれ設定された色を有する複数の光線を照射するステップとを備え、設定するステップは、光線発生器により発生される各光線が光線制御子の外周面に交差する第1の交点の位置と、光線制御子を透過して光線制御子で拡散する光線が観察位置の範囲を表す視域に交差する第2の交点とを通る直線を取得するステップと、算出された直線が提示されるべき立体画像と交差する第3の交点の位置を算出するステップと、第3の交点における提示されるべき立体画像の色を光線の色として設定するステップとを含むものである。
【0023】
立体ディスプレイにおいては、光線制御子が錐体形状または柱体形状を有する。この光線制御子は、錐体形状の底部が基準面上に開口するように配置される。また、光線発生器が、基準面の下方でかつ光線制御子の外側から複数の光線からなる光線群を光線制御子の外周面に照射するように光線制御子の周囲に配置される。
【0024】
なお、錐体形状は、円錐、楕円錐または多角錐に限定されず、円錐台、楕円錐台または角錐台を含む。また、柱体形状は、円柱、楕円柱および角柱を含む。
【0025】
この場合、光線制御子は、光線発生器により照射された各光線を周方向において拡散させずに透過させる。それにより、光線発生器からの光線の各交点が点光源となる。観察者は、点光源の集合を実体物の立体形状として仮想的に知覚する。このとき、同じ点光源に交差する左眼の視線方向と右眼の視線方向とが異なるので、両眼視差が生じる。その結果、複数の点光源の集合により立体画像が提示される。
【0026】
また、光線制御子は、光線発生器により照射された各光線を稜線方向において拡散させて透過させる。それにより、簡単な構成で、光線発生器の稜線方向における任意の位置から共通の観察位置に光線が到達する。
【0027】
光線発生器により発生される各光線は、光線制御子の外周面に第1の交点で交差し、光線制御子を透過するとともに光線制御子で拡散し、観察位置の範囲を表す視域に第2の交点で交差する。
【0028】
立体画像提示方法においては、第1および第2の交点を通る直線が取得され、取得された直線が提示されるべき立体画像と交差する第3の交点の位置が算出される。算出された第3の交点における立体画像の色が光線の色として設定される。それぞれ設定された色を有する複数の光線からなる光線群が光線発生器により発生される。これにより、提示すべき立体画像に応じて、各光線の色が適正に設定される。その結果、自然でかつ精細な立体画像を観察者に提示することができる。
【発明の効果】
【0029】
本発明によれば、提示すべき立体画像に応じて、各光線の色が適正に設定される。その結果、自然でかつ精細な立体画像を観察者に提示することができる。
【図面の簡単な説明】
【0030】
【図1】本発明の第1の実施の形態に係る立体ディスプレイの模式的断面図である。
【図2】図1の立体ディスプレイの模式的平面図である。
【図3】図1および図2の立体ディスプレイに用いられる光線制御子の斜視図である。
【図4】走査型プロジェクタの動作を説明するための模式的平面図である。
【図5】立体画像の提示方法を説明するための模式的平面図である。
【図6】立体画像の提示方法を説明するための模式的断面図である。
【図7】本実施の形態に係る立体ディスプレイにおける両眼視差の発生原理を説明するための模式的平面図である。
【図8】プロジェクタから出射される各光線の色の設定方法について説明するための模式的斜視図である。
【図9】プロジェクタから出射される各光線の色の設定方法について説明するための模式的鉛直断面図である。
【図10】プロジェクタから出射される各光線の色の設定方法について説明するための模式的平面図である。
【図11】投影ベクトル、アップベクトル、画角および画素データについて説明するための図である。
【図12】制御装置の動作を示すフローチャートである。
【図13】本発明の第2の実施の形態に係る立体ディスプレイの模式的断面図である。
【図14】図13の立体ディスプレイの模式的平面図である。
【図15】立体画像の提示方法を説明するための模式的平面図である。
【図16】本発明の第3の実施の形態に係る立体ディスプレイの模式的断面図である。
【図17】図16の立体ディスプレイの模式的平面図である。
【発明を実施するための形態】
【0031】
(1)第1の実施の形態
(1-1)立体ディスプレイの構成
図1は本発明の第1の実施の形態に係る立体ディスプレイの模式的断面図である。図2は図1の立体ディスプレイの模式的平面図である。図3は図1および図2の立体ディスプレイに用いられる光線制御子の斜視図である。

【0032】
図1に示すように、立体ディスプレイは、円錐台形状の光線制御子1、複数のプロジェクタ2、制御装置3および記憶装置4により構成される。

【0033】
図1および図2の立体ディスプレイは、テーブル5に設けられる。テーブル5は、天板51および複数の脚52からなる。天板51は円形孔部を有する。

【0034】
図3に示されるように、光線制御子1は、軸Cを中心として回転対称な円錐台形状を有する。光線制御子1の大径の底部および小径の底部は開口している。光線制御子1は、入射した光線が稜線方向Tにおいては拡散して透過しかつ軸Cを中心とする円周方向Rにおいては拡散せずに直進して透過するように形成されている。

【0035】
本実施の形態の形態では、光線制御子1が円錐台形状を有するが、これに限定されず、光線制御子1が円錐形状を有してもよく、あるいは多角錐台形状または多角錐形状を有してもよい。これらの形状を錐体形状と呼ぶ。

【0036】
図1に示すように、光線制御子1は、大径の底部開口が上方を向くように天板51の円形孔部に嵌め込まれる。テーブル5の周囲にいる観察者10は、テーブル5の天板51の斜め上方から光線制御子1の内周面を観察することができる。

【0037】
テーブル5の下方には、複数のプロジェクタ2が光線制御子1の軸Cを中心とする円周上に配置されている。複数のプロジェクタ2は、光線制御子1の斜め下方から光線制御子1の外周面に光を照射するように設けられる。なお、テーブル51の円形孔部に透明の円形板が嵌め込まれてもよい。

【0038】
プロジェクタ2は、二次元的な画像を光線制御子1の外周面に投影するように、複数の光線からなる光線群を出射する。プロジェクタ2としては、例えば、走査型プロジェクタが用いられる。走査型プロジェクタは、レーザ光からなる光線を出射するとともにその光線を水平面内および垂直面内で偏向させることにより、擬似的に複数の光線からなる光線群を出射する。なお、プロジェクタ2として、LCD(液晶ディスプレイ)、DMD(デジタルミラーデバイス)またはLCOS(Liquid Crystal on Silicon)等の空間光変調器および投影レンズを備えたプロジェクタが用いられてもよい。

【0039】
記憶装置4は、例えばハードディスク、メモリカード等からなる。記憶装置4には、立体画像100を提示するための立体形状データが記憶される。制御装置3は、例えばパーソナルコンピュータからなる。制御装置3は、記憶装置4に記憶される立体形状データに基づいて複数のプロジェクタ2を制御する。それにより、光線制御子1の上方に立体画像300が提示される。

【0040】
(1-2)プロジェクタ2の動作
図4はプロジェクタ2の動作を説明するための模式的平面図である。図4には1つのプロジェクタ2のみが示される。

【0041】
上記のように、各プロジェクタ2は、光線制御子1の外周面に二次元的な画像を投影するように光線群を出射する。この場合、光線群の各光線が、投影される画像の各画素に対応する。各光線の色(各画素の色)は、提示されるべき立体画像300に応じて設定される。各光線の色の具体的な設定方法については後述する。

【0042】
なお、プロジェクタ2として走査型プロジェクタを用いる場合には、光線の出射方向ごとに光線の色が設定される。これにより、擬似的に上記同様の光線群を形成することができる。

【0043】
図4において、プロジェクタ2は、複数の光線L1~L11を光線制御子1に照射する。光線L1~L11は、それぞれ任意の色に設定される。それにより、光線制御子1の複数の位置P1~P11をそれぞれ設定された色の光線L1~L11が透過する。

【0044】
光線制御子1は、円周方向において光線L1~L11を拡散させずに直線状に透過させるので、観察者は、ある位置で一本の光線のみを視認することができる。また、光線制御子1は、光線L1~L11を垂直方向において拡散させて透過させるので、観察者は、一本の光線を上下方向の任意の位置から視認することができる。

【0045】
(1-3)立体画像300の提示方法
図5は立体画像300の提示方法を説明するための模式的平面図である。図5においては、3つのプロジェクタ2A,2B,2Cが示される。

【0046】
例えば、光線制御子1の上方の位置PRに赤色の画素を提示する場合には、プロジェクタ2Aから位置PRを通る方向に赤色の光線LA0を出射し、プロジェクタ2Bから位置PRを通る方向に赤色の光線LB0を出射し、プロジェクタ2Cから位置PRを通る方向に赤色の光線LC0を出射する。それにより、赤色の光線LA0,LB0,LC0の交点に点光源となる赤色の画素が提示される。この場合、観察者の眼が位置IA0にある場合、位置IB0にある場合および位置IC0にある場合に、位置PRに赤色の画素が見える。

【0047】
同様にして、光線制御子1の上方の位置PGに緑色の画素を提示する場合には、プロジェクタ2Aから位置PGを通る方向に緑色の光線LA1を出射し、プロジェクタ2Bから位置PGを通る方向に緑色の光線LB1を出射し、プロジェクタ2Cから位置PGを通る方向に緑色の光線LC1を出射する。

【0048】
それにより、緑色の光線LA1,LB1,LC1の交点に点光源となる緑色の画素が提示される。この場合、観察者の眼が位置IA1にある場合、位置IB1にある場合および位置IC1にある場合に、位置PGに緑色の画素が見える。

【0049】
このようにして、複数のプロジェクタ2A,2B,2Cの各々から立体画像300の各位置を通る方向に提示すべき色の光線が出射される。

【0050】
プロジェクタ2A,2B,2Cを含む複数のプロジェクタが円周上に密に並べられており、それらの複数のプロジェクタから出射される光線群によって光線制御子1の内部の空間が十分に密に交点群で満たされていれば、円周上のいずれの方向から光線制御子1の内部を観察しても位置PR,PGを通過する適切な光線が目に入射することになり、人の目はそこに点光源があるように認識する。実物体の表面にて反射または拡散した照明光を人は物体として認識するので、物体の表面は点光源の集合とみなすことができる。すなわち、物体の表面としたいある位置PR,PGの色を複数のプロジェクタ2A,2B,2Cより飛来する光線によって適切に再現することにより、立体画像300を提示することができる。

【0051】
このようにして、立体画像300を光線制御子1の内部および上方の空間に提示することができる。この場合、観察者は、円周方向における異なる位置で同一の立体画像300をそれぞれ異なる方向から視認することができる。

【0052】
図6は立体画像300の提示方法を説明するための模式的断面図である。図6においては、1つのプロジェクタ2が示される。

【0053】
図6に示すように、プロジェクタ2から出射された光線は、光線制御子1で拡散角αで垂直方向において拡散される。それにより、観察者は、拡散角αの範囲内において垂直方向の異なる位置でプロジェクタ2から出射される同じ色の光線を見ることができる。例えば、観察者が視線を基準の位置Eから上方の位置E’に移動させた場合でも、立体画像300の同じ部分を見ることができる。この場合、垂直方向における観察者の眼の位置により観察者が視認する立体画像300の位置が移動する。このように、プロジェクタ2から出射された光線が光線制御子1で垂直方向において拡散されるため、観察者が視線を上下に移動させても立体画像300を観察することができる。

【0054】
図1の複数のプロジェクタ2により出射される光線群の各光線の色は、記憶装置4に記憶される立体形状データに基づいて制御装置3により設定される。各光線の色の具体的な設定方法については後述する。

【0055】
制御装置3は、設定した光線群の各光線の色に基づいて複数のプロジェクタ2を制御する。それにより、光線制御子1の上方に立体画像300が提示されるように、各プロジェクタ2から設定された色をそれぞれ有する光線群が出射される。

【0056】
上記のようにして、本実施の形態に係る立体ディスプレイによれば、立体画像300の指向性表示が可能となる。

【0057】
(1-4)両眼視差の発生原理
ここで、本実施の形態に係る立体ディスプレイにおける両眼視差の発生原理について説明する。

【0058】
図7は本実施の形態に係る立体ディスプレイにおける両眼視差の発生原理を説明するための模式的平面図である。図7には、4つのプロジェクタ2a,2b,2c,2dが示される。

【0059】
図7において、観察者が光線制御子1の点P31を見た場合には、右眼100Rにプロジェクタ2aから出射された光線Laが入射し、左眼100Lにプロジェクタ2bから出射された光線Lbが入射する。また、観察者が光線制御子1の点P32を見た場合には、右眼100Rにプロジェクタ2cから出射された光線Lcが入射し、左眼100Lにプロジェクタ2dから出射された光線Ldが入射する。

【0060】
ここで、光線Laの色と光線Ldの色とは同じであり、光線Lbの色は光線Laの色と異なり、光線Lcの色は光線Ldの色とは異なるとする。この場合、光線制御子1上の点P31の色は見る方向により異なる。また、光線制御子1上の点P32の色も見る方向により異なる。

【0061】
光線Laにより立体画像300の点Paが作られ、光線Lbにより立体画像300の点Pbが作られ、光線Lcにより立体画像300の点Pcが作られ、光線Ldにより立体画像300の点Pdが作られる。

【0062】
図7の例では、立体画像300の点Paと点Pdとが同じ位置にある。すなわち、光線Laと光線Ldとの交点に立体画像300の点Pa,Pdが作られる。点Pa,Pdは、仮想的な点光源となすことができる。この場合、右眼100Rで点Pa,Pdを見る方向と左眼100Lで点Pa,Pdを見る方向とが異なる。すなわち、右眼100Rの視線方向と左眼100Lの視線方向との間に輻輳角がある。これにより、光線群により形成される画像の立体視が可能となる。

【0063】
(1-5)光線の色の設定方法
図8~図10は、プロジェクタ2から出射される各光線の色の設定方法について説明するための模式的斜視図、模式的鉛直断面図および模式的平面図である。ここでは、1つのプロジェクタ2から出射される任意の光線Lnの色の設定方法について説明する。図8~図10においては、建物の立体画像300が示される。

【0064】
以下の説明において、座標とは、予め定義されたワールド座標系における座標を意味する。例えば、水平面上で互いに直交する2軸がワールド座標系のX軸およびZ軸として定義され、鉛直方向に沿う軸がワールド座標系のY軸として定義される。

【0065】
また、複数の観察者10(図1)がテーブル5(図1)の周囲に着座している場合には、複数の観察者10の眼は、光線制御子1の軸Cからほぼ一定の距離でかつほぼ一定の高さの位置(基準の位置)にあるとみなすことができる。そこで、複数の観察者10の眼が位置する円環状の領域を円環状視域500として設定する。

【0066】
図8~図10において、プロジェクタ2の出射点20から光線Lnが出射される。なお、投影レンズを有するプロジェクタ2が用いられる場合には、投影レンズの光学中心が出射点20に相当する。複数のプロジェクタ2の出射点20は、光線制御子1の軸Cを中心としかつ水平面に平行な円環上にそれぞれ位置する。

【0067】
光線Lnは、光学制御子1と交点CP1で交差し、鉛直面内で拡散する。すなわち、出射点20および交点CP1を通る鉛直面Fn(図10)内で光線Lnが扇状に拡がる。その拡散光の一部が、円環状視域500と交点CP2で交差する。この場合、交点CP2において光線Lnを観察することができる。

【0068】
本例では、交点CP1,CP2を通る直線Lと、提示すべき立体画像300との交点のうち、最も交点CP2に近い交点CP3から交点CP2に向かう色が光線Lnによって提示されるように、光線Lnの色が設定される。

【0069】
ここで、プロジェクタ2により画像が投影される仮想的な投影面Fpを考える。投影面Fpは、例えば、プロジェクタ2の光軸に垂直な平面である。プロジェクタ2の光軸とは、プロジェクタ2の走査範囲の中心に出射される光線の軸をいう。投影面Fpに形成される画像の各画素の座標は、プロジェクタ2の出射点20の座標、ならびに以下に示す投影ベクトル、アップベクトル、画角および画素データに基づいて一義的に求めることができる。なお、画素の座標とは、画素の位置を一義的に示す座標であり、例えば画素の中心点の座標である。以下、投影面Fpに形成される画像の各画素を単に投影面Fp上における各画素と呼ぶ。

【0070】
図11は、投影ベクトル、アップベクトル、画角および画素データについて説明するための図である。図11(a)には、プロジェクタ2の模式的側面が示され、図11(b)には、プロジェクタ2の模式的平面が示される。図11(a)および図11(b)に示すように、プロジェクタ2の光軸OLにそれぞれ垂直な4方向がプロジェクタ2の上方向、下方向、左方向および右方向と定義される。上方向および下方向は互いに逆向きであり、左方向および右方向は互いに逆向きである。また、上方向および下方向は左方向および右方向に対してそれぞれ垂直である。複数のプロジェクタ2の光軸OLは、光線制御子1の軸C上の一点で互いに交わる。プロジェクタ2の上方向、下方向、左方向および右方向は、プロジェクタ2により図8~図10の投影面Fpに投影される画像の上下左右に対応するように定義される。

【0071】
投影ベクトルvpは、プロジェクタ2の光軸OL上における光線の出射方向を示す。アップベクトルvuは、プロジェクタ2の上方向を示す。

【0072】
画角は、出射点20から出射される光線群の広がりの角度であり、プロジェクタ2の上下方向における光線群の広がりの角度(以下、縦画角と呼ぶ)θ1およびプロジェクタ2の左右方向における光線群の広がりの角度(以下、横画角と呼ぶ)θ2を含む。画素データは、プロジェクタ2の上下方向における画素の数(以下、縦画素数と呼ぶ)およびプロジェクタ2の左右方向における画素の数(以下、横画素数と呼ぶ)を含む。

【0073】
ここで、出射点20の座標をプロジェクタ2の位置とする。投影ベクトルvpおよびアップベクトルvuにより、プロジェクタ2の姿勢を表すことができる。出射点20の座標、投影ベクトルvpおよびアップベクトルvuに基づいて、対応するプロジェクタ2の投影面Fpの位置を求めることができる。

【0074】
また、縦画角θ1に基づいて投影面Fpの上下方向のサイズを求めることができ、横画角θ2に基づいて投影面Fpの左右方向のサイズを求めることができる。さらに、画素データに基づいて投影面Fpの上下方向および左右方向における画素の間隔を求めることができる。すなわち、投影面Fpの上下方向のサイズを縦画素数で除した値が上下方向における画素の間隔となり、投影面Fpの左右方向のサイズを横画素数で除した値が左右方向における画素の間隔となる。これにより、投影面Fp上における各画素の座標を求めることができる。

【0075】
なお、投影面Fpを二次元の座標平面と考えた場合、投影面Fp上における各画素の座標を二次元の座標で表すことができる。その二次元の座標をワールド座標系における三次元の座標に変換してもよい。

【0076】
投影面Fp上における各画素の位置は、出射点20から出射される各光線と投影面Fpとの交点の位置と一致する。そのため、出射点20の座標および投影面Fpにおける各画素の座標に基づいて、各光線の方向を示すベクトルを求めることができる。

【0077】
図8~図10において、出射点20の座標をPpとし、光線Lnに対応する画素Tnの座標をPiとする。その場合、光線Lnの方向を示す方向ベクトルvsは、座標Ppの位置ベクトルv(Pp)および座標Piの位置ベクトルv(Pi)を用いて、{v(Pi)-v(Pp)}で表される。

【0078】
光線制御子1の位置および形状が既知である場合、出射点20の座標Ppおよび方向ベクトルvsに基づいて、光線Lnと光線制御子1との交点CP1の座標Psを求めることができる。また、出射点20の座標Ppおよび交点CP1の座標Psに基づいて、出射点20および交点CP1を通る鉛直面Fn(図10)を求めることができる。

【0079】
鉛直面Fn(図10)と円環状視域500との交点は、光線Lnの拡散光と円環状視域500との交点CP2に相当する。それにより、求められた鉛直面Fnおよび予め設定された円環状視域500の高さおよび半径に基づいて、交点CP2の座標Peを求めることができる。

【0080】
光線Lnの拡散光のうち交点CP2で観察可能な光線のベクトルveは、座標Psの位置ベクトルv(Ps)および座標Peの位置ベクトルv(Pe)を用いて、{v(Pe)-v(Ps)}で表される。したがって、交点CP1,CP2を通る直線Lは、{v(Ps)+tve}で表される。ここで、tはスカラーであり、任意の実数である。

【0081】
記憶装置4に予め記憶される立体形状データおよび求められた直線Lに基づいて、提示すべき立体画像300と直線Lとの交点のうち、交点CP2に最も近い交点CP3の座標Paを求めることができる。また、立体形状データおよび求められた座標Pa,Peに基づいて、3DCG(三次元コンピュータグラフィックス)のレンダリングアルゴリズムにより、交点CP3から交点CP2に向けて(ベクトルVeの方向に)提示すべき色を算出することができる。この場合、フラットシェーディング、グーローシェーディング、フォンシェーディング、レイトレーシング、ラジオシティまたはフォトンマッピング等のレンダリングアルゴリズムを用いることができる。

【0082】
上記のアルゴリズムにより算出された色が、光線Lnの色(画素Tnの色)に設定される。このように、交点CP2から光線Lnを逆に辿ることにより、光線Lnに色を設定することができる。

【0083】
(1-6)制御部の動作
制御装置3は、図8~図10に示した方法に従って、各プロジェクタ2から照射される光線の色を算出する。図12は、制御装置3の動作を示すフローチャートである。

【0084】
なお、本例においては、全てのプロジェクタ2の投影中心20の座標、投影ベクトル、アップベクトル、画角および画素データ、光線制御子1の位置および形状、ならびに円環状視域500の高さおよび半径が予め記憶装置4に記憶される。以下の説明では、プロジェクタ2の投影中心20の座標、投影ベクトル、アップベクトル、画角および画素データをプロジェクタ情報と呼び、光線制御子1の位置および形状を制御子情報と呼び、円環状視域500の高さおよび半径を視域情報と呼ぶ。

【0085】
図12に示すように、制御装置3は、まず、1つのプロジェクタ2を選択する(ステップS1)。次に、制御装置3は、選択したプロジェクタ2のプロジェクタ情報を記憶装置4から取得する(ステップS2)。次に、制御装置3は、選択したプロジェクタ2の投影面Fp上における1つの画素Tnを選択する(ステップS3)。次に、制御装置3は、取得したプロジェクタ情報に基づいて、選択した画素Tnの座標Piを算出する(ステップS4)。

【0086】
次に、制御装置3は、算出した座標Piに基づいて、画素Tnに対応する光線Lnの方向を示すベクトルvsを算出する(ステップS5)。次に、制御装置3は、記憶装置4から制御子情報を取得し、取得した制御子情報および算出したベクトルvsに基づいて、光線Lnと光線制御子1との交点CP1の座標Psを算出する(ステップS6)。

【0087】
次に、制御装置3は、取得したプロジェクタ情報に含まれる出射点20の座標Pp、および算出した座標Psに基づいて、出射点20および交点CP1を通る鉛直面Fnを算出する(ステップS7)。次に、制御装置3は、記憶装置4から視域情報を取得し、取得した視域情報および算出した鉛直面Fnに基づいて、鉛直面Fnと円環状視域500との交点CP2の座標Peを算出する(ステップS8)。

【0088】
次に、制御装置3は、算出した座標Ps,Peに基づいて、交点CP1,CP2を通る直線Lを算出する(ステップS9)。次に、制御装置3は、記憶装置4から立体形状データを取得し、取得した立体形状データおよび算出した直線Lに基づいて、提示すべき立体画像300と直線Lとの交点のうち、交点CP2に最も近い交点CP3の座標Paを算出する(ステップS10)。

【0089】
次に、制御装置3は、取得した立体形状データおよび算出した座標Pa,Peに基づいて、3DCGのレンダリングアルゴリズムにより、交点CP3から交点CP2に向けて提示すべき色を算出する(ステップS11)。算出された色が光線Lnの色(画素Tnの色)として設定される。

【0090】
次に、制御部3は、ステップS1で選択されたプロジェクタ2に関して、全ての光線の色(全ての画素の色)が算出されたか否かを判定する(ステップS12)。全ての光線の色が算出されていない場合、制御部3は、ステップS3の処理に戻り、投影面Fp上において前回のステップS3で選択した画素に隣接する他の画素Tnを選択する。この場合、制御部3は、選択した他の画素TnについてステップS3~S11の処理を繰り返し、光線の色を算出する。

【0091】
ステップS12において、全ての光線の色が算出された場合、制御部3は、算出された色に基づいて画像データを生成し、その画像データをステップS1で選択されたプロジェクタ2に与える(ステップS13)。プロジェクタ2は、与えられた画像データに基づいて、制御装置3により算出された色をそれぞれ有する光線群を出射し、画像データに対応する画像を光線制御子1に投影する。

【0092】
次に、制御部3は、全てのプロジェクタ2の画像データが生成されたか否かを判定する(ステップS14)。全てのプロジェクタ2に対応する画像データが生成されていない場合、制御部3は、ステップS1の処理に戻る。この場合、制御部3は、次のプロジェクタ2を選択し、ステップS1~S13の処理を繰り返す。

【0093】
ステップS14において、全てのプロジェクタ2の画像データが生成された場合、制御部3は、処理を終了する。

【0094】
なお、図12の例では、各光線の色の設定時に、プロジェクタ情報および視域情報に基づいて各光線に対応する直線Lが算出されるが、これに限らず、各光線に対応する直線Lが予め算出され、記憶装置4に記憶されてもよい。

【0095】
この場合、記憶装置4に記憶された直線Lおよび立体形状データに基づいて、各光線の色が設定される。

【0096】
(1-7)第1の実施の形態の効果
本実施の形態に係る立体ディスプレイにおいては、各プロジェクタ2から出射される各光線と円環状視域500との交点の座標が算出され、算出された交点から各光線を逆に辿ることによって各光線に色が設定される。それにより、提示すべき立体画像に応じて各光線に適正に色を設定することができる。その結果、自然でかつ精細な立体画像を観察者10に提示することができる。

【0097】
(2)第2の実施の形態
本発明の第2の実施の形態に係る立体ディスプレイについて、上記第1の実施の形態と異なる点を説明する。

【0098】
(2-1)立体ディスプレイの構成
図13は本発明の第1の実施の形態に係る立体ディスプレイの模式的断面図である。図14は図13の立体ディスプレイの模式的平面図である。

【0099】
図13に示すように、立体ディスプレイは、円錐台形状の光線制御子1、複数のプロジェクタ2、制御装置3、記憶装置4および回転モジュール6により構成される。

【0100】
図13および図14の立体ディスプレイにおいては、テーブル5の下方に、回転モジュール6が設けられる。回転モジュール6は、モータ61、回転軸62、回転台63、信号伝送装置64および回転量計測器65により構成される。回転軸62は、鉛直方向に延び、光線制御子1の軸Cと共通の直線上に位置するようにモータ61に取り付けられる。回転軸62には、回転台63が水平姿勢で取り付けられる。回転軸62と回転台63との間には信号伝送装置64が設けられる。信号伝送装置64は、静止体と回転体との間で電力または信号を伝送するための装置である。信号伝送装置64としては、例えばスリップリングまたは光ロータリジョイント等を用いることができる。

【0101】
また、回転軸62には、回転量計測器65が設けられる。回転量計測器65は、回転軸62の回転位置を検出するために用いられる。回転量計測器65としては、例えばロータリエンコーダ等を用いることができる。モータ61は、制御装置3により制御される。

【0102】
回転台63上には、複数のプロジェクタ2が固定される。本実施の形態では、複数のプロジェクタ2は、光線制御子1の軸Cを中心とする円周上に等角度間隔で配置される。なお、複数のプロジェクタ2は、必ずしも等角度間隔で配置されなくてもよい。ただし、複数のプロジェクタ2の回転を安定させるため、および複数のプロジェクタ2の制御を容易にするためには、本実施の形態にように複数のプロジェクタ2が等角度間隔で配置されることが好ましい。複数のプロジェクタ2は、光線制御子1の斜め下方から光線制御子1の外周面に光線群を照射するように設けられる。

【0103】
回転台63上の複数のプロジェクタ2および回転量計測器65は、信号伝送装置64を介して制御装置3に接続される。

【0104】
モータ61が作動すると、回転軸62が回転台63および複数のプロジェクタ2とともに回転する。

【0105】
回転台63の回転速度は、図14の例のようにプロジェクタ2の数が6台の場合には1秒間に5回転以上であることが好ましく、プロジェクタ2の数が2台の場合には1秒間に15回転以上であることが好ましく、プロジェクタ2の数が3台の場合には1秒間に10回転以上であることが好ましく、プロジェクタ2の数が4台の場合には1秒間に7.5回転以上であることが好ましい。プロジェクタ2の数が1台の場合には、回転台63の回転速度は1秒間に30回転以上であることが好ましい。すなわち、プロジェクタ2の数がn台(nは自然数)の場合には、回転台63の回転速度は1秒間に30/n回転以上であることが好ましい。

【0106】
なお、上記の第1の実施の形態と同様に、テーブル51の円形孔部に透明の円形板が嵌め込まれてもよい。

【0107】
(2-2)立体画像300の提示方法
図15は立体画像300の提示方法を説明するための模式的平面図である。図15においては、1つのプロジェクタ2が示される。

【0108】
プロジェクタ2は、矢印の方向に移動する。例えば、光線制御子1の上方の位置PRに赤色の画素を提示する場合には、時刻tでプロジェクタ2から位置PRを通る方向に赤色の光線LR0を出射し、時刻t+1でプロジェクタ2から位置PRを通る方向に赤色の光線LR1を出射し、時刻t+2でプロジェクタ2から位置PRを通る方向に赤色の光線LR2を出射する。

【0109】
それにより、赤色の光線LR0,LR1,LR2の交点に点光源となる赤色の画素が提示される。この場合、観察者の眼が位置IR0にある場合、位置IR1にある場合および位置IR2にある場合に、位置PRに赤色の画素が見える。

【0110】
同様にして、光線制御子1の上方の位置PGに緑色の画素を提示する場合には、時刻tでプロジェクタ2から位置PGを通る方向に緑色の光線LG0を出射し、時刻t+1でプロジェクタ2から位置PGを通る方向に緑色の光線LG1を出射し、時刻t+2でプロジェクタ2から位置PGを通る方向に緑色の光線LG2を出射する。

【0111】
それにより、緑色の光線LG0,LG1,LG2の交点に点光源となる緑色の画素が提示される。この場合、観察者の眼が位置IG0にある場合、位置IG1にある場合および位置IG2にある場合に、位置PGに緑色の画素が見える。

【0112】
このようにして、各プロジェクタ2により異なる位置から立体画像300の各位置を通る方向に提示すべき色の光線が出射される。

【0113】
回転する各プロジェクタ2から出射される光線群が小さな角度間隔ごとに制御されることにより光線制御子1の内部の空間が十分に密に交点群で満たされる。それにより、円周上のいずれの方向から光線制御子1の内部を観察しても位置PR,PGを通過する適切な光線が目に入射することになり、人の目はそこに点光源があるように認識する。実物体の表面にて反射または拡散した照明光を人は物体として認識するので、物体の表面は点光源の集合とみなすことができる。すなわち、物体の表面としたいある位置PR,PGの色を回転する各プロジェクタ2から出射される光線によって適切に再現することにより、立体画像300を提示することができる。

【0114】
このようにして、立体画像300を光線制御子1の内部および上方の空間に提示することができる。この場合、観察者は、円周方向における異なる位置で同一の立体画像300をそれぞれ異なる方向から視認することができる。

【0115】
本実施の形態に係る立体ディスプレイにおいても、図6に示したように、プロジェクタ2から出射された光線は、光線制御子1で拡散角αで垂直方向において拡散される。それにより、観察者は、拡散角αの範囲内において垂直方向の異なる位置でプロジェクタ2から出射される同じ色の光線を見ることができる。

【0116】
図13の各プロジェクタ2から出射される光線群の各光線の色は、各プロジェクタ2の回転位置ごとに、図8~図10に示した方法に従って、制御装置3により算出される。ここで、プロジェクタ2の回転位置とは、軸Cを中心とする基準の半径方向からのプロジェクタ2の回転角度をいう。

【0117】
制御装置3は、回転量計測器65の出力信号に基づいて各プロジェクタ2の回転位置を判定し、回転位置ごとに算出した光線群の各光線の色に基づいて各プロジェクタ2を制御する。それにより、光線制御子1の上方に立体画像300が提示されるように、各プロジェクタ2から算出された色をそれぞれ有する光線が出射される。

【0118】
この場合、制御装置3は、立体形状データに基づいて各プロジェクタ2から出射されるべき各光線の色を色データとして回転位置ごとに予め算出し、算出した色データを記憶装置4に記憶させてもよい。そして、立体画像300の提示の際に、回転量計測器65の出力信号に同期して記憶装置4から色データを読み出し、読み出した色データに基づいて各プロジェクタ2を制御してもよい。あるいは、制御装置3は、プロジェクタ2の回転中に回転量計測器65の出力信号に同期して立体形状データに基づいて各プロジェクタ2から出射されるべき各光線の色を色データとして算出し、算出した色データに基づいて各プロジェクタ2を制御してもよい。

【0119】
上記のようにして、本実施の形態に係る立体ディスプレイによれば、立体画像300の指向性表示が可能となる。

【0120】
また、本実施の形態に係る立体ディスプレイにおいても、図7を用いた発生原理で両眼視差が発生する。

【0121】
(2-4)第2の実施の形態の効果
本実施の形態に係る立体ディスプレイにおいても、各プロジェクタ2から出射される各光線と円環状視域500との交点の座標が算出され、算出された交点から各光線を逆に辿ることによって各光線に色が設定される。それにより、提示すべき立体画像に応じて各光線に適正に色を設定することができる。その結果、自然でかつ精細な立体画像を観察者10に提示することができる。

【0122】
また、各プロジェクタ2が回転することにより、複数の回転位置から光線制御子1に光線群を照射することができる。それにより、少ない数のプロジェクタ2を用いて円周方向において途切れた部分を有しない連続的な立体画像300を光線制御子1の上方に提示することができる。

【0123】
(3)第3の実施の形態
本発明の第3の実施の形態に係る立体ディスプレイについて、上記第2の実施の形態と異なる点を説明する。

【0124】
(3-1)立体ディスプレイの構成
図16は本発明の第2の実施の形態に係る立体ディスプレイの模式的断面図である。図17は図16の立体ディスプレイの模式的平面図である。

【0125】
図16および図17の立体ディスプレイは、光線制御子1、複数のプロジェクタ2、制御装置3、記憶装置4および回転モジュール6に加えて複数のミラー7をさらに備える。

【0126】
複数のミラー7は、複数のプロジェクタ2に対応して設けられる。複数のプロジェクタ2は、回転台63上で回転軸62の近傍に軸Cを中心とする円周上に等角度間隔で配置される。複数のプロジェクタ2は、外方かつ斜め上方に光線群を出射するように設けられる。

【0127】
複数のミラー7は、複数のプロジェクタ2から出射される光線群を反射して光線制御子1の斜め下方から光線制御子1の外周面に照射するように回転台63上に設けられる。図17の例では、複数のミラー7が正多角形状に回転台63上に配置される。

【0128】
モータ61が作動すると、回転軸62が回転台63、複数のプロジェクタ2およびミラー7とともに回転する。この場合、回転する各プロジェクタ2から出射される光線群は、対応するミラー7で反射されて光線制御子1の外周面に照射される。

【0129】
(3-2)第3の実施の形態の効果
本実施の形態に係る立体ディスプレイにおいても、各プロジェクタ2から出射される各光線と円環状視域500との交点の座標が算出され、算出された交点から各光線を逆に辿ることによって各光線に色が設定される。それにより、提示すべき立体画像に応じて各光線に適正に色を設定することができる。その結果、自然でかつ精細な立体画像を観察者10に提示することができる。

【0130】
また、複数のプロジェクタ2が回転軸62により近い位置に設けられるので、回転台63の半径を小さくすることができる。それにより、複数のプロジェクタ2を高速に回転させることが可能になる。その結果、少ない数のプロジェクタ2を用いてより解像度の高い立体画像300を提示することができる。

【0131】
(4)他の実施の形態
(a)上記の第1~第3の実施の形態では、光線制御子1がテーブル5の天板51に固定されているが、モータ等の回転駆動装置を用いることにより光線制御子1を軸Cの周りで回転させてもよい。例えば、光線制御子1がN錐体(Nは3以上の整数)からなる場合または複数のシートを貼り合わせることにより作製される場合には、光線制御子1のつなぎ目での光学性能の乱れが生じる。そのような場合、光線制御子1を軸Cの周りで回転させることにより、つなぎ目での光学性能の乱れが平均化される。その結果、提示される立体画像300の画質にむらが生じることが防止される。

【0132】
(b)光線制御子1は、円柱、楕円柱またはN角柱(Nは3以上の整数)を含む柱体形状であってもよい。この場合にも、光線制御子1が光線を垂直方向において拡散させつつ透過させる。それにより、立体画像をテーブル5の天板51の上面等の基準面上の空間または光線制御子1の内部の空間に位置するように提示することができる。

【0133】
(c)上記の第2および第3の実施の形態では、複数のプロジェクタ2が回転台63上に等角度間隔で設けられているが、1つのプロジェクタ2が回転台63上に設けられてもよい。この場合にも、モータ61により回転軸62を回転台63およびプロジェクタ2とともに高速に回転させることにより、複数のプロジェクタ2を用いる場合と同様に、円周方向において途切れた部分を有しない連続的な立体画像300を提示することが可能となる。

【0134】
(d)上記の第2および第3の実施の形態では、各プロジェクタ2の回転位置を検出するために回転量計測器65が設けられるが、回転台63が正確に一定の回転速度で回転する場合には、回転量計測器65が設けられなくてもよい。この場合、制御装置3は、回転台63の回転速度に基づいて各プロジェクタ2の回転位置を認識することができる。

【0135】
(e)上記の第3の実施の形態では、複数のミラー7が回転台63上に多角形状に配置されているが、円筒形状のミラーが用いられてもよい。この場合、円筒形状のミラーは、回転台63上に固定され、回転台63とともに回転してもよい。あるいは、円筒形状のミラーは、回転台63とは別個に設けられ、回転しなくてもよい。

【0136】
(f)上記の第1~第3の実施の形態では、観察者10の目の位置として円環状視域500が予め設定され、その円環状視域500に応じて各光線の色が算出されるが、これに限らず、観察者10の目の位置を検出するためのカメラまたはセンサ等の検出装置が設けられ、検出された目の位置に応じて各光線の色が算出されてもよい。この場合、観察者10の目の位置が変化しても、観察者10に対して適切に立体画像300を提示することができる。

【0137】
(g)上記の第1~第3の実施の形態では、記憶装置4に予め記憶された立体形状データに基づいて各光線の色が算出されるが、これに限らず、カメラにより実在の物体が撮影され、その撮影データ(画像データ)に基づいて各光線の色が算出されてもよい。この場合、撮影された物体の立体画像300が提示される。

【0138】
(h)上記の第1~第3の実施の形態では、図8~図10に示した方法に従って、各光線の色が設定されるが、図8~図10に示した方法に従って各光線の輝度がさらに設定されてもよい。

【0139】
(8)請求項の各構成要素と実施の形態の各要素との対応
以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。

【0140】
上記実施の形態では、光線制御子1が光線制御子の例であり、プロジェクタ2が光線発生器の例であり、制御装置3が制御手段の例であり、テーブル5の天板51の上面が基準面の例である。また、交点CP1が第1の交点の例であり、交点CP2が第2の交点の例であり、交点CP3が第3の交点の例であり、円環状視域500が視域の例であり、直線Lが直線の例であり、鉛直面Fnが出射点および第1の交点を通りかつ軸に平行な面の例である。

【0141】
請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。
【産業上の利用可能性】
【0142】
本発明は、立体画像を用いた共同作業に利用することができる。また、都市設計の場面のように複数の人が1つの立体画像を共有しながら進める検討作業に利用することができる。さらに、遠隔地間のビデオ会議等の際にテーブルに広げた書類のような情報に加えて立体形状の情報を共有する場合に利用することができる。
【0143】
また、教育の場面等において、教師が立体画像の一部を指差しながら解説する場合に利用することができる。また、光線制御子がテーブル等の作業面より下方にありかつ立体画像が作業面上の空間に提示されるため、ガラスケースの外側から立体画像を指さすような感覚ではなく、直接立体画像を指す感覚を得る場合に利用することができる。
【0144】
テーブル型の立体画像を用いたゲーム等に利用することができる。また、眼鏡等を必要としないため、観客が自由に参加したり離れたりすることができる場に利用することができる。アリーナ状の大型装置を用いることにより、周囲から鑑賞可能な劇場空間を作る場合に利用可能である。
【符号の説明】
【0145】
1 光線制御子
2,2A,2B,2C,2a,2b,2c,2d プロジェクタ
3 制御装置
4 記憶装置
5 テーブル
20 投影中心点
51 天板
52 脚
6 回転モジュール
61 モータ
62 回転軸
63 回転台
64 スリップリング
65 ロータリエンコーダ
7 ミラー
10 観察者
100,300 立体画像
100R 右眼
100L 左眼
500 円環状視域
CP1,CP2,CP3 交点
Fn 鉛直面
Fp 投影面
IA0,IB0,IC0,PR,PG,E,E’,I1~I4,P1~P3,PS,IG0~IG2,IR0~IR2 位置
L1~L11,La,Lb,Lc,Ld,Ln,LA0,LB0,LC0,LA1,LB1,LC1,L31~L33,LG0~LG2,LR0~LR2 光線
OL 光軸
P31,P32,Pa,Pb,Pc,Pd 点
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11
【図13】
12
【図14】
13
【図15】
14
【図16】
15
【図17】
16