TOP > 国内特許検索 > マグネシウム二次電池用電解液及びそれを用いたマグネシウム二次電池 > 明細書

明細書 :マグネシウム二次電池用電解液及びそれを用いたマグネシウム二次電池

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第5471972号 (P5471972)
公開番号 特開2012-048874 (P2012-048874A)
登録日 平成26年2月14日(2014.2.14)
発行日 平成26年4月16日(2014.4.16)
公開日 平成24年3月8日(2012.3.8)
発明の名称または考案の名称 マグネシウム二次電池用電解液及びそれを用いたマグネシウム二次電池
国際特許分類 H01M  10/0568      (2010.01)
H01M  10/054       (2010.01)
H01M   4/46        (2006.01)
C07D 233/58        (2006.01)
C07D 233/60        (2006.01)
FI H01M 10/0568
H01M 10/054
H01M 4/46
C07D 233/58
C07D 233/60 103
請求項の数または発明の数 5
全頁数 15
出願番号 特願2010-187807 (P2010-187807)
出願日 平成22年8月25日(2010.8.25)
新規性喪失の例外の表示 特許法第30条第1項適用 ▲1▼社団法人日本化学会、日本化学会第90春季年会(2010)講演予稿集DVD-ROM(1G7-50)、平成22年3月12日発行 ▲2▼日本化学会第90春季年会(2010)、社団法人日本化学会、平成22年3月26日発表
特許法第30条第1項適用 社団法人高分子学会、第59回高分子学会年次大会、講演予稿集CD-ROM(1Ph078)、平成22年5月11日発行
審査請求日 平成25年7月17日(2013.7.17)
特許権者または実用新案権者 【識別番号】304020177
【氏名又は名称】国立大学法人山口大学
発明者または考案者 【氏名】柿部 剛史
【氏名】吉本 信子
【氏名】森田 昌行
【氏名】江頭 港
審査官 【審査官】結城 佐織
参考文献・文献 特開平03-034270(JP,A)
特開2007-188709(JP,A)
特開2009-021085(JP,A)
国際公開第2009/008232(WO,A1)
特開2005-032551(JP,A)
特開2004-327326(JP,A)
特開2007-280627(JP,A)
国際公開第2009/148112(WO,A1)
特開2010-015979(JP,A)
特開2008-147391(JP,A)
特開2007-302618(JP,A)
特開2004-026807(JP,A)
調査した分野 H01M 10/05
特許請求の範囲 【請求項1】
下記一般式(1)で示されるイミダゾリウム誘導体カチオンとグリニアー試薬とが含まれるマグネシウム二次電池用電解液。
【化1】
JP0005471972B2_000010t.gif

(R及びRは、それぞれ同一又は異なり、置換基を有するか又は有しないアルキル基、アルケニル基、アルコキシアルキル基、(アルコキシ-ポリアルキレンオキシ)アルキル基、Rはアルキル基、R、Rは水素原子、アルキル基、アルケニル基である。)
【請求項2】
請求項1記載の一般式(1)で示されるイミダゾリウム誘導体カチオンとグリニアー試薬とが2対1~1対2(モル比)の割合で含まれる請求項1記載のマグネシウム二次電池用電解液。
【請求項3】
請求項1記載のイミダゾリウム誘導体カチオンにおいて、R及びRがそれぞれ、アルコキシアルキル基及びアルケニル基の中から選ばれる基であり、且つRがアルキル基であることを特徴とする請求項1又は2記載のマグネシウム二次電池用電解液。
【請求項4】
請求項1記載のイミダゾリウム誘導体カチオンにおいてR、Rがアリル基及びメトキシエチル基の中から選ばれる基であり、且つRがメチル基であることを特徴とする請求項3記載のマグネシウム二次電池用電解液。
【請求項5】
負極がマグネシウム、又はマグネシウムを含む合金であり、且つ電解液として請求項1乃至4のいずれかに記載の電解液を用いたマグネシウム二次電池。
発明の詳細な説明 【技術分野】
【0001】
本発明は、マグネシウム二次電池用電解液に係わり、詳しくは、イオン電達物質としてグリニアー試薬を用いたマグネシウム二次電池用電解液である。また該電解液を用いたマグネシウム二次電池に関する。
【背景技術】
【0002】
近年、携帯機器類などを筆頭に、電池を電力源とした各種機器の小型化・軽量化の要求が高まっており、電池特性の向上が強く求められている。現在の電池の主力はリチウムイオン二次電池である。しかしながら、近年の研究の結果、一価イオンであるリチウムイオン電池のエネルギー容量の向上の限界値がわかってきた。そのためリチウム二次電池を超える特性を有する電池の開発が求められ、二価のカチオンを生じるマグネシウムイオンを用いたマグネシウム二次電池は、リチウムイオン電池の1.6倍程度の理論容量を有しているためにポスト、リチウムイオン電池としての期待が高い。
【0003】
従来、マグネシウム二次電池に使用可能なイオン源としては、Mg(BFやMg(PFなどの無機塩化合物やMg(TFSI)〔TFSI:bis(trifluoromethylsulfonyl)imideアニオンの略〕などの有機塩化合物が広く知られていた。しかしながら、これらの電解質塩は固体であるために、プロピレンカーボネートやエチレンカーボネートなどの有機溶剤に溶解した液状電解液として使用しなければならなかった。これらの有機溶剤の使用は、電解液の揮発性を高め、可燃性であることから、電池の熱的・電気化学的安定性を不十分なものにする要因となり得ることから、近年室温で液体状の電解質塩(以下、イオン液体という。)の使用が試みられている。イオン液体は、塩のみからなるために高いイオン伝導性を有し、不揮発性、難燃性、高い熱安定性を有するので、二次電池用電解液として高い効率と安全性を得るものと考えられている。
【0004】
そこで、本発明者らは、すでにイオン液体であるDEMEカチオン〔n,n-diethyl-N-methyl-N-(2-methoxyethyl)ammoniumカチオン〕がリチウムイオン二次電池用の優れた電解質材料であることを確認した(非特許文献1)。
【0005】
また、該電解質材料がグリニアー試薬についても可逆的なマグネシウムの溶解/析出挙動に有効であることも確認した。しかし、DEMEカチオンは、イオン伝導性が低く、より効率の高いイオン伝導性材料として、イミダゾリウム系イオン液体について検討を行った。
【0006】
イミダゾリウム系電解液としてはすでに下記一般式で表わされるイオン液体が提案されている(特許文献1)。
【0007】
【化1】
JP0005471972B2_000002t.gif
(R~Rは水素原子又は置換されてもよい炭素数C~Cの範囲のアルキル、アルケニル、アルキニル、シクロアルキル若しくはアリル基、XはCl、Br、I)20~80mol%と、各種金属ハロゲン化物MXn(M:K、Ca、Li、Al、Mg、Zn、Fe、X:Cl、Br、I:n=1、2、3)とを混合した混合溶融塩からなることを特徴とする二次電池用電解液が開示されている。
【0008】
しかしながら、特許文献1においては、イオン伝導物質としては金属のハライドを用いており、イオン伝導性が十分とは言えない。なお、特許文献1にはグリニアー試薬を用いるという示唆はない。
【0009】
また、リチウムイオン電池用の電解液としてイミダゾールの1及び/又は3の位置にアリル基を導入したものも提案されている(特許文献2)。
【0010】
しかしながら、特許文献2には、マグネシウム二次電池用の電解液としての作用については全く示されていないし、ましてグリニアー試薬の併用については何ら教示されていない。
【0011】
本発明者らは更に高効率のマグネシウム二次電池の開発を目指し、本発明を完成するに至った。
【先行技術文献】
【0012】

【特許文献1】特開平3-34270号公報
【特許文献2】特開2005-239580号公報
【0013】

【非特許文献1】J.Power Sources(2010);195(7),2096
【発明の概要】
【発明が解決しようとする課題】
【0014】
本発明は高いイオン伝導度を保ちつつ、熱的及び電気化学的安定性の高いマグネシウムイオン伝導体、特にマグネシウムの溶解/析出反応が可能な電解液及びこれを用いたマグネシウム二次電池を提供することを目的とする。
【課題を解決するための手段】
【0015】
本願の請求項1に記載の発明は、下記一般式(1)で示されるイミダゾリウム誘導体カチオンとグリニアー試薬とが含まれるマグネシウム二次電池用電解液である。
【0016】
【化2】
JP0005471972B2_000003t.gif
(R及びRは、それぞれ同一又は異なり、置換基を有するか又は有しないアルキル基、アルケニル基、アルコキシアルキル基、(アルコキシ-ポリアルキレンオキシ)アルキル基〔-R(OR’)-OR”:R,R’はアルキレン基、R”はアルキル基、nは整数〕、Rはアルキル基、R、Rは水素原子、アルキル基、アルケニル基である。)
また、請求項2に記載の発明は、請求項1記載の一般式(1)で示されるイミダゾリウム誘導体カチオンとグリニアー試薬とが2対1~1対2(モル比)の割合で含まれる請求項1記載のマグネシウム二次電池用電解液である。
【0017】
更に請求項3に記載の発明は、請求項1記載のイミダゾリウム誘導体カチオンにおいて、R及びRがそれぞれアルコキシアルキル基、及びアルケニル基の中から選ばれる基であり、且つRがアルキル基であることを特徴とするマグネシウム二次電池用電解液である。
【0018】
更に請求項4に記載の発明は、請求項1記載のイミダゾリウム誘導体カチオンにおいて、R、Rがアリル基及びメトキシエチル基の中から選ばれる基であり、且つRがメチル基であることを特徴とする請求項3記載のマグネシウム二次電池用電解液である。
【0019】
更にまた、請求項5記載の発明は、負極がマグネシウム又はマグネシウムを含む合金であり、且つ電解液として請求項1乃至4のいずれかに記載の電解液を用いたマグネシウム二次電池である。
【発明の効果】
【0020】
本発明は、特に1位、3位の位置にアルキル基、アルケニル基、又はアルコキシ基等を有する基を持ち、且つ2位の位置にアルキル基を有するイミダゾリウム誘導体カチオンとグリニアー試薬とが含まれる電解液であり、マグネシウム二次電池用に好適に使用される。特に高いイオン伝導度を示し、しかも熱的及び電気化学的安定性が高く、マグネシウム二次電池に用いた場合、リチウムイオン二次電池を凌駕する電気容量を示し、次世代の電池として各種電気化学デバイスに使用される可能性を有する。
【図面の簡単な説明】
【0021】
【図1】は、1,2-ジメチル、3-エチルイミダゾリウムとグリニアー試薬(MeMgBr)を1対1(モル比)用いた場合のサイクリックボルタモグラム。
【図2】は、1,2-ジメチルイミダゾリウムにおける3位置換基の影響を示すグラフ。
【図3】は、1-アリル、2-メチルイミダゾリウムの3位置換基の影響を示すグラフ。
【発明を実施するための形態】
【0022】
本発明はイミダゾリウム誘導体カチオンとグリニアー試薬とを併せ用いることを必須とする。

【0023】
この場合、イミダゾリウム誘導体カチオンは、少なくとも下記構造式において、1、2及び3の位置に置換基を有することを必須とする。

【0024】
【化3】
JP0005471972B2_000004t.gif
すなわち、1、2又は3の位置は共役系であり、いずれか一方の窒素原子が4級化され+イオンとなるが本明細書では、これをいずれか一方をNと記す場合又は下記のように表わす場合もある。なお、5員環内の1~5の数字は、各元素の位置を表すものである。

【0025】
【化4】
JP0005471972B2_000005t.gif
また2の位置にアルキル基が存在することも必須である。すなわち、本願の各発明においてグリニアー試薬を共存させる場合、2の位置に保護基が存在していない場合は、マグネシウムに対する酸化還元性が次第に失われ、マグネシウム二次電池としてのリサイクルの効率が悪くなる。

【0026】
また、1位及び/又は3位の置換基が特に不飽和基又は、エーテル結合を有することにより、一段と電流密度・イオン伝導度が向上し、且つ電気化学的安定性も増す。

【0027】
また、イミダゾリウム誘導体カチオンに対する対イオンは、特に限定されないが、一般にハロゲンイオン、BF、PF、ビス(トリフルオロメタン)スルホニルイミド(TFSI)、トリフルオロメタンスルホン酸等が一般に用いられる。なかでもTFSIが特に優れている。

【0028】
また、グリニアー試薬は次の一般式(2)で示される化合物である。

【0029】
【化5】
JP0005471972B2_000006t.gif
(但し、Rは炭化水素基、Xはハロゲン原子を表す。)
本発明にあっては、グリニアー試薬/イミダゾリウム誘導体カチオンは、2対1~1対2(モル比)の範囲で用いられる。これらの範囲を逸脱した場合、次第に電気容量が小さくなり、最大電流値も小さくなる。一般に1対1近傍が最もよい。

【0030】
本発明のマグネシウム二次電池用電解液にあっては、上記イミダゾリウム誘導体塩とグリニアー試薬のみとすることもできるが、更にプロピレンカーボネート又はエチレンカーボネートの如き溶媒や活性化剤を加えてもよい。

【0031】
以下に本発明を更に詳細に説明する。

【0032】
本発明における下記一般式(1)に示されるイミダゾール誘導体カチオン

【0033】
【化6】
JP0005471972B2_000007t.gif
におけるR及びRは同一又は異なり、置換基を有するか又は有しないアルキル基、アルケニル基、アルコキシアルキル基、(アルコキシ-ポリアルキレンオキシ)アルキル基〔-R-(OR’)-OR”〕(R、R’はアルキレン基、R”はアルキル基、nは整数であって一般に1~4を表す。)であり、代表的な基としてはメチル基、エチル基、プロピル基、ブチル基、ペンチル基等のアルキル基、ビニル基、アリル基、イソプロペニル基、3-ブテニル基等のアルケニル基、メトキシエチル基、エトキシエチル基、プロピルオキシエチル基、等のアルコキシアルキル基、メトキシポリエチレンオキサイド基、メトキシポリプピロレンオキサイド基等の(アルコキシ-ポリアルキレンオキシ)アルキル基であり、これらは1位と3位とが同一の基であってもよいし、また、一方がメチル基であり、他方がブチル基のように同一の分類に属する基ではあるが、異なる炭素数のものや、一方がアリル基であり、他方がアルキル基等、構造の異なる炭化水素基、或いは置換基を有する炭化水素基であってもよい。同様に一方がアリル基であり、他方がアルコキシ基、アルコキシアルキル基、(アルコキシ-ポリアルキレンオキシ)アルキル基等、含酸素基であってもよい。

【0034】
これらのうちで、特に表1に示すように一方がアリル基である場合は、特に電流密度の最高値(ピーク電流値)が高くなり、且つ電気容量も大きくなる。なかでも両方ともアリル基又は一方がアルコキシ基或いは両方がアルコキシ基の場合、最も良好な結果が得られるうえ、広い電気化学窓となる。

【0035】
特に一方がアリル基で、他方がメトキシエチル基、エトキシエチル基等のエトキシアルキル基、又は(メトキシ-ジエチレンオキシ)エチル基等の(アルコキシ-ポリアルキレンオキシ)アルキル基の場合には、ピーク電流値が大きくなるので好ましい。

【0036】
また、これらの置換基の長さ(炭素の数)は図2、図3に示すように少ない方が一般的に高い効果を得る傾向にあり、アルキル基の場合はメチル基が最も好ましい結果となる。

【0037】
はアルキル基であり、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ターシャーリーブチル基等が一般的であるが、特にメチル基が有効である。

【0038】
、Rは水素原子、アルキル基又はアルケニル基であり、これらの置換基が大きくなる程一般に電気伝導度が悪くなる傾向にあるので、水素原子がよく、次いでメチル基が好ましい。

【0039】
下記一般式(2)で示されるグリニアー試薬において、

【0040】
【化7】
JP0005471972B2_000008t.gif
Rは炭化水素基であり、アルキル基、シクロアルキル基、アルキレン基、フェニル基等が有効であるが、炭素数の大きいものは電気伝導度が劣る傾向にあるので、メチル基、或いはエチル基が好ましい。

【0041】
本発明の電解液は、負極としてマグネシウム又はマグネシウム合金を用いるとき、マグネシウムの酸化、還元を繰り返し行ってもほとんど電流量や最高電流値及びその時の電圧位置がほとんど変化しないため、マグネシウム二次電池として極めて有効である。

【0042】
マグネシウム二次電池とする場合、電池の性能は一般に正極の材料にも影響される。本発明のマグネシウム二次電池においても、正極の影響を無視することはできないが、一般に提案されている正極、例えば鉄、ニッケル、白金、硫化鉄、酸化バナジン等公知の材料を用いることができる。

【0043】
本発明の電解液は、正極上にデンドライトを生じ難いという特徴を有する。
【実施例】
【0044】
(合成例)
(1)1-methyl-3-ethylimidazolium TFSI合成(表1中、C Im TFSIと略す)
n-methylimidazole(82.1g/mol,5.0g)に1.2倍モル量のBromoethane(109.0g/mol,8.0g)を加えてTHF中で、2日間還流(80℃)した。還流後、脱溶媒した後に過剰量のジエチルエーテル中に滴下することで未反応物質を除いた。2回のジエチルエーテルによる精製後、乾燥して1-methyl-3-ethylimidazolium bromide(191.1g/mol)を得た(収率>90%)。
1-methyl-3-ethylimidazolium bromide(191.1g/mol,3g)に等モル量のリチウムビストリフルオロメタンスルホン酸イミド(LiTFSI,287.11g/mol,4.5g)を水中で混合し、1晩室温で反応させた。2回の水での精製の後、80℃で1日以上、真空乾燥を行うことにより1-methyl-3-ethylimidazolium TFSI(391.4g/mol)を得た(収率=85%)。
1H-NMR(CD3OD,
d/ppm
relative to TMS): 7.61 (1H, s), 7.53 (1H, s), 4.26 (2H, q, J = 7.0 Hz), 3.93
(3H, s), 1.53 (3H, t, J = 8.7 Hz).

【実施例】
【0045】
(2)1,2-dimethyl-3-ethylimidazolium
TFSI合成(C Im TFSIと略す)
1,2-dimethylimidazole(96.1g/mol,5.0g)に1.2倍モル量のBromoethane(109.0g/mol,6.8g)を加えてTHF中で、2日間還流(80℃)した。還流後、脱溶媒した後に過剰量のジエチルエーテル中に滴下することで未反応物質を除いた。2回のジエチルエーテルによる精製後、乾燥して1,2-dimethyl-3-ethylimidazolium bromide(205.1g/mol)を得た(収率=90%)。
1,2-dimethyl-3-ethylimidazolium
bromide(205.1g/mol,3g)に等モル量のリチウムビストリフルオロメタンスルホン酸イミド(LiTFSI,287.11g/mol,4.2g)を水中で混合し、1晩室温で反応させた。2回の水での精製の後、80℃で1日以上、真空乾燥を行うことにより1,2-dimethyl-3-ethylimidazolium
TFSI (405.4g/mol)を得た(収率=87%)。
1H-NMR(CD3OD,
d/ppm
relative to TMS): 7.50 (1H, s), 7.45 (1H, s), 4.21 (2H, q, J = 7.9 Hz), 3.83
(3H, s), 2.64 (3H, s), 1.48 (3H, t, J = 7.0 Hz).
1,2-dimethyl-3-ethylimidazolium TFSIを用いて、グリニアー試薬(CH3MgBr)を等モル加えた電解液について、サイクリックボルタングラムの測定を行った。
その結果を図1に示す。
【実施例】
【0046】
(3)1,2-dimethyl-3-propylimidazolium
TFSI合成(C Im TFSIと略す)
1,2-dimethylimidazole(96.1g/mol,5.0g)に1.2倍モル量のBromopropane(123.0g/mol,7.7g)を加えてTHF中で、2日間還流(80℃)した。還流後、脱溶媒した後に過剰量のジエチルエーテル中に滴下することで未反応物質を除いた。2回のジエチルエーテルによる精製後、乾燥して1,2-dimethyl-3-propylimidazolium bromide(219.1g/mol)を得た(収率=90%)。
1,2-dimethyl-3-propylimidazolium bromide(219.1g/mol,3g)に等モル量のリチウムビストリフルオロメタンスルホン酸イミド(LiTFSI, 287.11g/mol,3.9g)を水中で混合し、1晩室温で反応させた。2回の水での精製の後、80℃で1日以上、真空乾燥を行うことにより1,2-dimethyl-3-propylimidazolium TFSI(419.4g/mol)を得た(収率=90%)。
【実施例】
【0047】
(4)1,2-dimethyl-3-butylimidazolium
TFSI合成(C Im TFSIと略す)
1,2-dimethylimidazole(96.1g/mol,5.0g)に1.2倍モル量のBromobutane(137.0g/mol,8.6g )を加えてTHF中で、2日間還流(80℃)した。還流後、脱溶媒した後に過剰量のジエチルエーテル中に滴下することで未反応物質を除いた。2回のジエチルエーテルによる精製後、乾燥して1,2-dimethyl-3-butylimidazolium bromide(233.1g/mol)を得た(収率=91%)。
1,2-dimethyl-3-butylimidazolium
bromide(233.1g/mol,3g)に等モル量のリチウムビストリフルオロメタンスルホン酸イミド(LiTFSI,287.11g/mol,3.7g)を水中で混合し、1晩室温で反応させた。2回の水での精製の後、80℃で1日以上、真空乾燥を行うことにより1,2-dimethyl-3-butylimidazolium TFSI (433.4g/mol)を得た(収率=95%)。
1H-NMR(CD3OD,
d/ppm
relative to TMS): 7.50 (1H,
s), 7.45 (1H, s), 4.15 (2H, s), 3.82 (3H, s), 2.63 (3H, s), 1.82 (2H, s), 1.41
(2H, d, J = 8.5 Hz), 1.01 (3H, t, J = 6.1 Hz).
【実施例】
【0048】
(5)1,2-dimethyl-3-pentylimidazolium
TFSI合成(C Im TFSIと略す)
1,2-dimethylimidazole(96.1g/mol,5.0g)に1.2倍モル量のBromopentane(151.0g/mol,9.4g)を加えてTHF中で、2日間還流(80℃)した。還流後、脱溶媒した後に過剰量のジエチルエーテル中に滴下することで未反応物質を除いた。2回のジエチルエーテルによる精製後、乾燥して1,2-dimethyl-3-pentylimidazolium bromide(247.1g/mol)を得た(収率=88%)。
1,2-dimethyl-3-pentylimidazolium
bromide(247.1g/mol,3g)に等モル量のリチウムビストリフルオロメタンスルホン酸イミド(LiTFSI,287.11g/mol,3.5g)を水中で混合し、1晩室温で反応させた。2回の水での精製の後、80℃で1日以上、真空乾燥を行うことにより1,2-dimethyl-3-pentylimidazolium TFSI (447.4g/mol)を得た(収率=92%)。
1H-NMR(CD3OD,
d/ppm
relative to TMS): 7.45 (1H,
s), 7.40 (1H, s), 4.12 (2H, s), 3.79 (3H, s), 2.60 (3H, s), 1.81 (2H, s), 1.36
(4H, s), 0.93 (3H, s).
【実施例】
【0049】
(6)1,2-dimethyl-3-allylimidazolium
TFSI合成(C A Im TFSIと略す)
1,2-dimethylimidazole(96.1g/mol,5.0g)に1.2倍モル量のallyl bromide(121.0g/mol,7.6g)を加えてTHF中で、2日間還流(80℃)した。還流後、脱溶媒した後に過剰量のジエチルエーテル中に滴下することで未反応物質を除いた。2回のジエチルエーテルによる精製後、乾燥して1,2-dimethyl-3-allylimidazolium bromide(217.1g/mol)を得た(収率=83%)。
1,2-dimethyl-3-allylimidazolium bromide(217.1g/mol,3g)に等モル量のリチウムビストリフルオロメタンスルホン酸イミド(LiTFSI,287.11g/mol,4.0g)を水中で混合し、1晩室温で反応させた。2回の水での精製の後、80℃で1日以上、真空乾燥を行うことにより1,2-dimethyl-3-allylimidazolium TFSI (417.4g/mol)を得た(収率=92%)。
1H-NMR(CD3OD,
d/ppm
relative to TMS): 7.49 (1H,
d, J = 8.5 Hz), 7.48 (1H, s), 6.05 (1H, dq, J = 22.3, 5.4 Hz), 5.42 (1H, d, J =
11.6 Hz), 5.28 (1H, d, J = 17.7 Hz), 3.86 (3H, s), 2.64 (3H, s).
【実施例】
【0050】
(7)1,2-dimethyl-3-methoxyethylimidazolium
TFSI合成(C201 A Im TFSIと略す)
1,2-dimethylimidazole(96.1g/mol,5.0g)に1.2倍モル量のmethoxyethylbromide(139.0g/mol,8.7g)を加えてTHF中で、2日間還流(80℃)した。還流後、脱溶媒した後に過剰量のジエチルエーテル中に滴下することで未反応物質を除いた。2回のジエチルエーテルによる精製後、乾燥して1,2-dimethyl-3-methoxyethylimidazolium bromide(235.1g/mol)を得た(収率=75%)。
1,2-dimethyl-3-methoxyethylimidazolium
bromide(235.1g/mol,3g)に等モル量のリチウムビストリフルオロメタンスルホン酸イミド(LiTFSI,287.11g/mol,3.7g)を水中で混合し、1晩室温で反応させた。2回の水での精製の後、80℃で1日以上、真空乾燥を行うことにより1,2-dimethyl-3-methoxyethylimidazolium TFSI (435.4g/mol)を得た(収率=92%)。
1H-NMR(CD3OD,
d/ppm
relative to TMS): 7.44 (1H,
s), 7.40 (1H, s), 4.30 (2H, t, J = 4.6 Hz), 3.80 (3H, s), 3.69 (2H, t, J = 4.3
Hz), 3.32 (3H, s), 2.60 (3H, t, J = 0.3 Hz).
【実施例】
【0051】
(8)1,2-dimethyl-3-ethoxyethylimidazolium
TFSI合成(C202 A Im TFSIと略す)
1,2-dimethylimidazole(96.1g/mol,5.0g)に1.2倍モル量のethoxyethylbromide(153.0g/mol,9.6g)を加えてTHF中で、2日間還流(80℃)した。還流後、脱溶媒した後に過剰量のジエチルエーテル中に滴下することで未反応物質を除いた。2回のジエチルエーテルによる精製後、乾燥して1,2-dimethyl-3-ethoxyethylimidazolium bromide(249.2g/mol)を得た(収率=78%)。
1,2-dimethyl-3-ethoxyethylimidazolium bromide(249.2g/mol,3g)に等モル量のリチウムビストリフルオロメタンスルホン酸イミド(LiTFSI,287.11g/mol,3.5g)を水中で混合し、1晩室温で反応させた。2回の水での精製の後、80℃で1日以上、真空乾燥を行うことにより1,2-dimethyl-3-ethoxyethylimidazolium TFSI (449.4g/mol)を得た(収率=92%)。
1H-NMR(CD3OD,
d/ppm
relative to TMS): 7.50 (1H,
s), 7.46 (1H, s), 4.35 (2H, s), 3.84 (3H, s), 3.77 (2H, s), 3.52 (2H, s), 2.65
(3H, s), 1.17 (3H, s).
【実施例】
【0052】
(9)1-allyl-2-methyl-3-ethylimidazolium
TFSI合成(A C Im TFSIと略す)
脱水テトラヒドロフラン(THF)中で、2-メチルイミダゾール(82.10g/mol,5g)に等モル量のNaOH(40g/mol,2.5g)を加えて攪拌し、氷浴中で1.2倍モル量の塩化アリル(76.52g/mol,5.6g)を滴下した。2日間、室温で反応させた後に、脱溶媒後、エーテルを用いて1-allyl-2-methylimidazole(122.17g/mol)を抽出した(収率>85%)。
得られた1-allyl-2-methylimidazole(122.2g/mol,3g)に1.2倍モル量のBromoethane(109.0g/mol,3.2g)を加えてTHF中で、2日間還流(80℃)した。還流後、脱溶媒した後に過剰量のジエチルエーテル中に滴下することで未反応物質を除いた。2回のジエチルエーテルによる精製後、乾燥して1-allyl-2-methyl-3-ethylimidazolium bromide(231.2g/mol)を得た(収率=85%)。
1-allyl-2-methyl-3-ethylimidazolium
bromide(231.2g/mol,3g)に等モル量のリチウムビストリフルオロメタンスルホン酸イミド(LiTFSI,287.11g/mol,3.7g)を水中で混合し、1晩室温で反応させた。2回の水での精製の後、80℃で1日以上、真空乾燥を行うことにより1-allyl-2-methyl-3-ethylimidazolium TFSI(431.4g/mol)を得た(収率=92%)。
1H-NMR(CD3OD,
d/ppm
relative to TMS): 7.52 (1H, s), 7.44 (1H, s), 6.00 (1H, dq, J = 22.1, 5.3 Hz),
5.37 (1H, d, J = 11.0 Hz), 5.22 (1H, d, J = 16.5 Hz), 4.18 (2H, dd, J = 15.0,
8.9 Hz), 2.60 (3H, s), 1.45 (3H, t, J = 7.0 Hz).
【実施例】
【0053】
(10)1-allyl-2-methyl-3-propylimidazolium
TFSI合成(A C Im TFSIと略す)
脱水テトラヒドロフラン(THF)中で、2-メチルイミダゾール(82.10g/mol,5g)に等モル量のNaOH(40g/mol,2.5g)を加えて攪拌し、氷浴中で1.2倍モル量の塩化アリル(76.52g/mol,5.6g)を滴下した。2日間、室温で反応させた後に、脱溶媒後、エーテルを用いて1-allyl-2-methylimidazole (122.17g/mol)を抽出した(収率>85%)。
得られた1-allyl-2-methylimidazole(122.2g/mol,3g)に1.2倍モル量のBromopropane(123.0g/mol,3.6g)を加えてTHF中で、2日間還流(80℃)した。還流後、脱溶媒した後に過剰量のジエチルエーテル中に滴下することで未反応物質を除いた。2回のジエチルエーテルによる精製後、乾燥して1-allyl-2-methyl-3-propylimidazolium bromide(245.2g/mol)を得た(収率=85%)。
1-allyl-2-methyl-3-propylimidazolium bromide(245.2g/mol,3g)に等モル量のリチウムビストリフルオロメタンスルホン酸イミド(LiTFSI,287.11g/mol,3.5g)を水中で混合し、1晩室温で反応させた。2回の水での精製の後、80℃で1日以上、真空乾燥を行うことにより1-allyl-2-methyl-3-propylimidazolium TFSI(445.4g/mol)を得た(収率=92%)。
【実施例】
【0054】
(11)1-allyl-2-methyl-3-butylimidazolium
TFSI合成(A C Im TFSIと略す)
脱水テトラヒドロフラン(THF)中で、2-メチルイミダゾール(82.10g/mol,5g)に等モル量のNaOH(40g/mol,2.5g)を加えて攪拌し、氷浴中で1.2倍モル量の塩化アリル(76.52g/mol,5.6g)を滴下した。2日間、室温で反応させた後に、脱溶媒後、エーテルを用いて1-allyl-2-methylimidazole(122.17g/mol)を抽出した(収率>85%)。
得られた1-allyl-2-methylimidazole(122.2g/mol,3g)に1.2倍モル量のBromobutane(137.0g/mol,4.0g)を加えてTHF中で、2日間還流(80℃)した。還流後、脱溶媒した後に過剰量のジエチルエーテル中に滴下することで未反応物質を除いた。2回のジエチルエーテルによる精製後、乾燥して1-allyl-2-methyl-3-butylimidazolium bromide(259.2g/mol)を得た(収率=85%)。
1-allyl-2-methyl-3-butylimidazolium bromide(259.2g/mol,3g)に等モル量のリチウムビストリフルオロメタンスルホン酸イミド(LiTFSI,287.11g/mol,3.3g)を水中で混合し、1晩室温で反応させた。2回の水での精製の後、80℃で1日以上、真空乾燥を行うことにより1-allyl-2-methyl-3-butylimidazolium TFSI(459.4g/mol)を得た(収率=92%)。
【実施例】
【0055】
(12)1-allyl-2-methyl-3-pentylimidazolium
TFSI合成(A C5 Im TFSIと略す)
脱水テトラヒドロフラン(THF)中で、2-メチルイミダゾール(82.10g/mol,5g)に等モル量のNaOH(40g/mol,2.5g)を加えて攪拌し、氷浴中で1.2倍モル量の塩化アリル(76.52g/mol,5.6g)を滴下した。2日間、室温で反応させた後に、脱溶媒後、エーテルを用いて1-allyl-2-methylimidazole(122.17g/mol)を抽出した(収率>85%)。
得られた1-allyl-2-methylimidazole(122.2g/mol,3g)に1.2倍モル量のBromopentane(151.0g/mol,4.4g)を加えてTHF中で、2日間還流(80℃)した。還流後、脱溶媒した後に過剰量のジエチルエーテル中に滴下することで未反応物質を除いた。2回のジエチルエーテルによる精製後、乾燥して1-allyl-2-methyl-3-pentylimidazolium bromide(273.2g/mol)を得た(収率=88%)。
1-allyl-2-methyl-3-pentylimidazolium
bromide(273.2g/mol,3g)に等モル量のリチウムビストリフルオロメタンスルホン酸イミド(LiTFSI,287.11g/mol,3.2g)を水中で混合し、1晩室温で反応させた。2回の水での精製の後、80℃で1日以上、真空乾燥を行うことにより1-allyl-2-methyl-3-pentylimidazolium TFSI(473.4g/mol)を得た(収率=88%)。
【実施例】
【0056】
(13)1,3-diallyl-2-methylimidazolium
TFSI合成(A C A Im TFSIと略す)
脱水テトラヒドロフラン(THF)中で、2-メチルイミダゾール(82.10g/mol,5g)に等モル量のNaOH(40g/mol,2.5g)を加えて攪拌し、氷浴中で1.2倍モル量の塩化アリル(76.52g/mol,5.6g)を滴下した。2日間、室温で反応させた後に、脱溶媒後、エーテルを用いて1-allyl-2-methylimidazole
(122.17g/mol)を抽出した(収率>85%)。
得られた1-allyl-2-methylimidazole(122.2g/mol,3g)に1.2倍モル量のallyl bromide(121.0g/mol,3.6g)を加えてTHF中で、2日間還流(80℃)した。還流後、脱溶媒した後に過剰量のジエチルエーテル中に滴下することで未反応物質を除いた。2回のジエチルエーテルによる精製後、乾燥して1,3-diallyl-2-methylimidazolium bromide(243.2g/mol)を得た(収率=88%)。
1,3-diallyl-2-methylimidazolium
bromide(243.2g/mol,3g)に等モル量のリチウムビストリフルオロメタンスルホン酸イミド(LiTFSI,287.11g/mol,3.5g)を水中で混合し、1晩室温で反応させた。2回の水での精製の後、80℃で1日以上、真空乾燥を行うことにより1,3-diallyl-2-methylimidazolium TFSI (443.4g/mol)を得た(収率=88%)。
1H-NMR(CD3OD,
d/ppm
relative to TMS): 7.52 (2H, s), 6.07-6.01 (2H, m), 5.42 (2H, d, J = 11.0 Hz),
5.25 (2H, d, J = 12.8 Hz), 2.62 (3H, s).
【実施例】
【0057】
(14)1-allyl-2-methyl-3-methoxyethylimidazolium
TFSI合成(A C201 Im TFSIと略す)
脱水テトラヒドロフラン(THF)中で、2-メチルイミダゾール(82.10g/mol,5g)に等モル量のNaOH(40g/mol,2.5g)を加えて攪拌し、氷浴中で1.2倍モル量の塩化アリル(76.52g/mol,5.6g)を滴下した。2日間、室温で反応させた後に、脱溶媒後、エーテルを用いて1-allyl-2-methylimidazole(122.17g/mol)を抽出した(収率>85%)。
得られた1-allyl-2-methylimidazole(122.2g/mol,3g)に1.2倍モル量のmethoxyethylbromide(139.0g/mol,4.1g)を加えてTHF中で、2日間還流(80℃)した。還流後、脱溶媒した後に過剰量のジエチルエーテル中に滴下することで未反応物質を除いた。2回のジエチルエーテルによる精製後、乾燥して1-allyl-2-methyl-3-methoxyethylimidazolium
bromide(261.2g/mol)を得た(収率=88%)。
1-allyl-2-methyl-3-methoxyethylimidazolium
bromide(261.2g/mol,3g)に等モル量のリチウムビストリフルオロメタンスルホン酸イミド(LiTFSI,287.11g/mol,3.3g)を水中で混合し、1晩室温で反応させた。2回の水での精製の後、80℃で1日以上、真空乾燥を行うことにより1-allyl-2-methyl-3-methoxyethylimidazolium TFSI(461.4g/mol)を得た(収率=92%)。
1H-NMR(CD3OD,
d/ppm
relative to TMS): 7.56 (1H, s), 7.50 (1H, s), 6.06 (1H, dq, J = 22.0, 5.3 Hz),
5.42 (1H, d, J = 11.0 Hz), 5.22 (1H, d, J = 14.0 Hz), 4.38 (2H, t, J = 4.9 Hz),
3.75 (2H, t, J = 4.3 Hz), 3.36 (4H, s), 2.66 (3H, s).
【実施例】
【0058】
(15)1-allyl-2-methyl-3-ethoxyethylimidazolium
TFSI合成(A C202 Im TFSIと略す)
脱水テトラヒドロフラン(THF)中で、2-メチルイミダゾール(82.10g/mol,5g)に等モル量のNaOH(40g/mol, 2.5g)を加えて攪拌し、氷浴中で1.2倍モル量の塩化アリル(76.52g/mol,5.6g)を滴下した。2日間、室温で反応させた後に、脱溶媒後、エーテルを用いて1-allyl-2-methylimidazole(122.17g/mol)を抽出した(収率>85%)。
得られた1-allyl-2-methylimidazole(122.2g/mol,3g)に1.2倍モル量のethoxyethylbromide (153.0g/mol,4.5g)を加えてTHF中で、2日間還流(80℃)した。還流後、脱溶媒した後に過剰量のジエチルエーテル中に滴下することで未反応物質を除いた。2回のジエチルエーテルによる精製後、乾燥して1-allyl-2-methyl-3-ethoxyethylimidazolium
bromide(275.2g/mol)を得た(収率=88%)。
1-allyl-2-methyl-3-ethoxyethylimidazolium
bromide(275.2g/mol,3g)に等モル量のリチウムビストリフルオロメタンスルホン酸イミド(LiTFSI,287.11g/mol,3.1g)を水中で混合し、1晩室温で反応させた。2回の水での精製の後、80℃で1日以上、真空乾燥を行うことにより1-allyl-2-methyl-3-ethoxyethylimidazolium TFSI (475.4g/mol)を得た(収率=92%)。
1H-NMR(CD3OD,
d/ppm
relative to TMS): 7.58 (1H, s), 7.52 (1H, s), 6.06 (1H, s), 5.42 (1H, s), 5.21
(1H, d, J = 17.1 Hz), 4.39 (2H, s), 3.79 (2H, s), 3.52 (2H, s), 2.67 (4H, s),
1.16 (3H, s).
【実施例】
【0059】
(物性の測定)
合成例1~15について、グリニアー試薬(CHMgBr)を等モル加えた電解液についてイオン伝導度(σ/mS・cm-1)、ガラス転移点(Tg)、電気化学窓(Ew/V VS Mg)及びピーク電流値(mA・cm-2)を測定した。
【実施例】
【0060】
(1)イオン伝導度の測定
インピーダンスアナライザー(FRA;Solartoron1260、Solartoron1287)を用いて交流インピーダンス法にて測定した。測定範囲は-20度~60度の温度範囲でアルゴン雰囲気下で行った。
【実施例】
【0061】
(2)ガラス転移点の測定
熱物性は示差走査熱量測定(Shimadzu;DSC-50)を用いて行い、-120度まで急冷した後に昇温速度10℃/min.での昇温課程で測定した。
【実施例】
【0062】
(3)電気化学窓(Ew/V VS Mg)
電気化学窓はHZ-5000(北斗電工)を用いて行った。測定セルは白金線を用いた2電極セルを使った。測定は全てアルゴン雰囲気下で行った。
【実施例】
【0063】
(4)サイクリックボルタングラムの測定
電気化学窓はHZ-5000(北斗電工)を用いて行った。測定セルは作用極として、ニッケルディスク電極、対極として白金シート、参照極としてマグネシウム線を用いた3電極セルを使った。測定は全てアルゴン雰囲気下で行った。これを5回繰り返し、5回目の値を結果として示す。
【実施例】
【0064】
(結果)
測定結果をまとめて表1に示す。
【実施例】
【0065】
【表1】
JP0005471972B2_000009t.gif
図面
【図1】
0
【図2】
1
【図3】
2