TOP > 国内特許検索 > 六方晶窒化ホウ素への異方性エッチング方法 > 明細書

明細書 :六方晶窒化ホウ素への異方性エッチング方法

発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2016-201403 (P2016-201403A)
公開日 平成28年12月1日(2016.12.1)
発明の名称または考案の名称 六方晶窒化ホウ素への異方性エッチング方法
国際特許分類 H01L  21/302       (2006.01)
C01B  21/064       (2006.01)
FI H01L 21/302 201A
C01B 21/064 ZNMM
請求項の数または発明の数 3
出願形態 OL
全頁数 12
出願番号 特願2015-078841 (P2015-078841)
出願日 平成27年4月8日(2015.4.8)
発明者または考案者 【氏名】カリタ ゴラップ
【氏名】種村 眞幸
【氏名】サラマ スバス
【氏名】サチン シンデ
出願人 【識別番号】304021277
【氏名又は名称】国立大学法人 名古屋工業大学
審査請求 未請求
テーマコード 5F004
Fターム 5F004CA04
5F004DA23
5F004DA24
5F004DB00
5F004EA05
5F004EA06
要約 【課題】六方晶窒化ホウ素又はその膜に、三角形、多角形の孔を形成する異方性エッチング方法を提供する。
【解決手段】導電性基板12又は非導電性基板14上に、六方晶窒化ホウ素またはその膜16を形成した後、導電性基板12の場合には、SiO2ナノ粒子を堆積させ、非導電性基板14の場合には、金属ナノ粒子を堆積させた後に、水素を含むガス中で加熱することによる異方性エッチングを施し、導電性基板12又は非導電基板14の金属残渣を溶剤により除去し乾燥させることにより、六方晶窒化ホウ素膜16に三角形又は多角形の孔を形成する。
【選択図】図1
特許請求の範囲 【請求項1】
少なくとも表面が導電材料である導電性基板または非導電性基板上に、六方晶窒化ホウ素を形成した後、異方性エッチングを施すことにより、
六方晶窒化ホウ素に三角形または多角形の孔を形成することを特徴とする六方晶窒化ホウ素への異方性エッチング方法。
【請求項2】
導電性基板の場合には、SiO2ナノ粒子を堆積させ、
水素を含むガス中で加熱することによる異方性エッチングを施した後、
導電性基板または非導電性基板の金属残渣を、溶剤により除去した後、
乾燥させることを特徴とする請求項1記載の六方晶窒化ホウ素への異方性エッチング方法。
【請求項3】
非導電性基板の場合には、金属ナノ粒子を堆積させた後、
水素を含むガス中で加熱することによる異方性エッチングを施した後、
導電性基板または非導電性基板の金属残渣を、溶剤により除去した後、
乾燥させることを特徴とする請求項1記載の六方晶窒化ホウ素への異方性エッチング方法。
発明の詳細な説明 【技術分野】
【0001】
本発明は、六方晶窒化ホウ素への異方性エッチング方法に関する。
【背景技術】
【0002】
近年、二次元材料は、電子デバイスに利用可能な材料として注目されている。
【0003】
この二次元材料の異方性エッチング技術が、ナノエレクトロニクスのためには不可欠である。
【0004】
ここで、グラフェンにはジグザグ端またはアームチェア端が存在しており、これはCVD(化学気相成長)法による異方性エッチングが大きく寄与している。
【0005】
また、グラフェンのジグザグ端またはアームチェア端に六角形の孔を形成することも知られている。
【0006】
これは、グラフェンのジグザグ端またはアームチェア端の化学反応性の違いを利用した高異方性エッチングによるものである。
【0007】
また、六方晶窒化ホウ素は、グラフェンと似たハニカム格子構造であり、B(ホウ素)とN(窒素)原子から成り、バンドギャップがあるため、電気絶縁層材料である。
【0008】
また、窒素とホウ素を使用した例として、窒素原子とホウ素原子のsp2結合からなる六角形ネットワークを有し、1立方センチメータあたり10の18乗個以下に制御された酸素不純物濃度を有し、励起手段によって励起されて波長224nmから233nmに最大発光ピークを有する固体発光素子があった(特許文献1参照)。
【0009】
また、金属又は金属化合物からなる基体の表面を、表面粗さ5nmRmax以下に研磨した後、この被研磨面をテンプレートとして、基体表面に窒化ホウ素薄膜を形成する方法もあった(特許文献2参照)。
【0010】
しかし、上記従来の方法では、基板上に、欠陥がなく、六方晶窒化ホウ素またはその膜を形成すること、六方晶窒化ホウ素またはその膜に三角形または多角形の孔を形成すること、はできなかった。
【0011】
このため、六方晶窒化ホウ素またはその膜に形成された三角形または多角形の孔に別の二次元材料を充填して、特性を変更すること、同、表面へのSiO2や金属ナノ粒子による異方性エッチング手法は皆無であった。
【先行技術文献】
【0012】

【特許文献1】特許第4859173号公報
【特許文献2】特開2013-67549公報
【0013】

【非特許文献1】Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666 (2004).
【非特許文献2】Mas-Balleste, R.; Gomez-Navarro, C.; Gomez-Herrero, J.; Zamora, F. 2D materials: to graphene and beyond. Nanoscale 3, 20-30 (2011)
【発明の概要】
【発明が解決しようとする課題】
【0014】
本発明は上記欠点に鑑み、基板上に、欠陥がなく、六方晶窒化ホウ素またはその膜を形成すると共に、三角形または多角形の孔を形成する異方性エッチング方法を提供することである。
【課題を解決するための手段】
【0015】
本発明は、少なくとも表面が導電材料からなる導電性基板または非導電性基板上に、六方晶窒化ホウ素を形成した後、導電性基板の場合には、その表面にSiO2ナノ粒子を堆積させ、非導電性基板の場合には、金属ナノ粒子を堆積させた後、水素を含むガス中で加熱することによる異方性エッチングを施すことにより、六方晶窒化ホウ素に三角形または多角形の孔を形成することを特徴とする。
【図面の簡単な説明】
【0016】
【図1】本発明に係る六方晶窒化ホウ素膜への異方性エッチング方法を示す模式図であり、(a)は導電性基板を使用する場合、(b)は非導電性基板を使用する場合を示す。
【図2】同、六方晶窒化ホウ素膜に形成した孔の画像であり、(a) は一様に成長した三角形の六方晶窒化ホウ素結晶のSEM画像、(b)は銅箔の冷延線近傍の多結晶のSEM画像、(c)は六方晶窒化ホウ素膜に形成された、三角形の孔が2方向に表れた状態を示すSEM画像、(d)は成長時間を30 分とした六方晶窒化ホウ素膜の画像、(e)(f)は三角形に表れた六方晶窒化ホウ素結晶の画像であり、(e)は光学顕微鏡、(f)は原子間力顕微鏡、による画像。
【図3】(a)は紫外可視吸収スペクトルを示すグラフ、(b)はタルクバンドギャップを決定する六方晶窒化ホウ素膜のプロットを示すグラフ、(c)はBを1秒、(d)はNを1秒、それぞれXPSスペクトルとして合成した六方晶窒化ホウ素のエネルギー、強度グラフ。
【図4】(a)はアニール処理温度を850℃とした異方性エッチングによる銅箔上の六方晶窒化ホウ素膜の光学顕微鏡画像、(b)は同、アニール処理温度を900℃とした六方晶窒化ホウ素膜の画像、(c)は同、アニール処理温度を950℃とした六方晶窒化ホウ素膜の画像、(d)は同、アニール処理温度を1020℃とした六方晶窒化ホウ素膜の画像、(e)は同、六方晶窒化ホウ素膜に形成されたリボン形(矩形)の孔を示す画像。
【図5】(a)は銅箔上の六方晶窒化ホウ素膜のエッチングエリアを示すSEM画像、(b)(c) はエッチングエリアのオージェスペクトルを示すグラフ。
【図6】(a)は異方性エッチングにより形成された三角形の六方晶窒化ホウ素膜を示す画像、(b)は同、単結晶六方晶窒化ホウ素に形成された孔を示す画像、(c)は大規模エッチングを施した状態を示す画像、(d)は三角形の孔の向きを示す画像、(e)は形成された孔およびナノ粒子を示す画像、(f)はSiOのEDXスペクトルを示すグラフ。
【図7】(a)は異方性エッチングにより中央に三角形の孔が形成された単結晶の窒化ホウ素を示す顕微鏡画像、 (b)はその分子構造図、(c)はリボン形の孔を示す画像、(d)は多数の三角形の孔を示す画像、(e)は三角形の孔の分子構造図、(f)は三角形の孔の模式図。
【発明を実施するための形態】
【0017】
以下、図1を参照し、本発明に係る単層または多層の六方晶窒化ホウ素またはその膜への異方性エッチング方法の実施形態について説明する。

【0018】
本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限り、変更、修正、改良を加え得るものである。

【0019】
円筒状容器内でキャリアガスを流す方向の上流側に昇華あるいは蒸発させる原料を配置し、下流側に、少なくとも表面が導電材料からなる導電性基板12または非導電性基板14を、配置する。

【0020】
すなわち、本発明においては、上流側に六方晶窒化ホウ素の化合物、下流側に導電性基板12または非導電性基板14を配置させる。

【0021】
導電性基板12を使用する場合には、上流側から、下流側に少なくとも水素を含むキャリアガスにより前記蒸気を導き、下流側において、前記化合物を導電性基板12上で熱分解させることにより、導電性基板12の表面あるいは全域に六方晶窒化ホウ素膜16を形成する。この際、六方晶窒化ホウ素の単結晶は三角形であり、この単結晶が多数重合する(成長する)ことにより、一様の膜となる。

【0022】
導電性基板12としては、少なくともその表面が、Cu、Co、Ni、Fe、等のいずれかまたはそれらの合金、あるいはそれらの化合物、であること好ましい。

【0023】
なお、導電性基板12は600℃~1100℃に加熱することが好ましい。

【0024】
その後、この導電性基板12上の六方晶窒化ホウ素16に、SiOナノ粒子を堆積させ(塗布、蒸着、スパッタ蒸着させ)、水素を含むガス中で加熱することにより、異方性エッチングを施す(図1(a)参照)。

【0025】
この際、このエッチング温度は900℃~1100℃に加熱することが好ましい。

【0026】
導電性基板12に代えて非導電性基板14を使用する場合には、基板14上の六方晶窒化ホウ素16に、金属ナノ粒子を堆積させ、水素を含むガス中で加熱することにより、異方性エッチングを施す(図1(b)参照)。

【0027】
非導電性基板14としては、Al23、 Si、等のいずれか、またはそれらの化合物、が好ましく、金属ナノ粒子としては、Cu、Co、Ni、Fe、等のいずれか、またはそれらの合金、あるいはそれらの化合物、が好ましい。

【0028】
この際、このエッチング温度は、導電性基板と同様、900℃~1100℃に加熱することが好ましい。

【0029】
その後、導電性基板12の場合には金属および金属残差を、また非導電性基板14の場合には金属残渣を、溶剤により除去する。

【0030】
最後に、乾燥させる。
【実施例1】
【0031】
以下、本発明を実施例に基づいて説明する。なお、本発明はこれら実施例に限定されるものではない。
【実施例1】
【0032】
まず、大気圧CVD法によりh-BN(六方晶窒化ホウ素)膜を、アンモニアボラン(B)を前躯体として導電性基板12である銅箔上に、形成させる。
【実施例1】
【0033】
本例において、アンモニアボラン(常温固体)のB(ホウ素)とN(窒素)の比率は1:1である。
【実施例1】
【0034】
また、使用する合成炉は、単一炉である。
【実施例1】
【0035】
その後、合成炉内で、石英管からアンモニアボラン7mgを投入すると共にアニール処理(焼きなまし)を行った。
【実施例1】
【0036】
この際、銅箔を1020℃に加熱し、H(水素) 雰囲気中で30分間アニール処理した。
【実施例1】
【0037】
本例において、H雰囲気として、H(2.5sccm)とAr(アルゴン:85sccm)を混合した混合ガスとしたところ、三角形のh-BNの単結晶が得られた。この三角形のh-BNの単結晶が多数重合する(成長する)ことにより膜が形成される。
【実施例1】
【0038】
この場合、初期条件としてアンモニアボラン前駆体の温度を徐々 に上昇させ、約130 ℃で安定させた。
【実施例1】
【0039】
また、アンモニアボランは、アンモニアボランと高分子アミノアンモニアボランに分解する。
【実施例1】
【0040】
分解された高分子アミノアンモニアボランにより、銅箔上にh-BNが、黒い斑点状に形成される。
【実施例1】
【0041】
h-BN膜に形成される三角形の結晶の成長を、異なる熱処理温度(850、900、950、1020℃)での異方性エッチングにより、観察した。
【実施例1】
【0042】
この異方性エッチング工程は、アンモニアボランのフロー成長が完了後、停止した。
【実施例1】
【0043】
エッチング工程を制御するため、アニール時間を5-30分として、観察した。
【実施例1】
【0044】
h-BN結晶の成長および異方性エッチング評価を行った。
【実施例1】
【0045】
銅箔上のh-BN結晶の合成前、および異方性エッチング完了後、については、電子顕微鏡VHX-500を使用した。
【実施例1】
【0046】
また、電子顕微鏡解析については、日本電子社のJSM-7800F、h-BN結晶を確認するためエリオニクス社のESM-9000、を使用した。
【実施例1】
【0047】
また、原子間力顕微鏡解析は、JSPM-5200走査型プローブ顕微鏡を使用した。
【実施例1】
【0048】
また、分光光度解析は、ジャスコ社のV-670Kを使用した。
【実施例1】
【0049】
また、X線分光解析は、励起ソース(1486.6 eV)のALKαベスタプローブを使用した。
【実施例1】
【0050】
さらに、h-BN結晶の元素分析は、JAMP-7800オーガーのAESを使用した。
【実施例1】
【0051】
その評価、解析結果を以下に説明する。
【実施例1】
【0052】
図2(a)に示すように、銅箔上に一様に成長した三角形のh-BN結晶が確認できた。
【実施例1】
【0053】
図2(b)に示すように、多数の三角形のh-BN結晶の核形成の活性化エネルギーを最小限に抑えるような粗い表面を確認した。
【実施例1】
【0054】
これは、高温アニール処理により、銅箔上の線、欠陥が最小限に抑えられたためである。
【実施例1】
【0055】
図2(c)に示すように、隣接するエッジが120度で、互いに向きが異なる2つの三角形のh-BN結晶を確認した。
【実施例1】
【0056】
この三角形のh-BN結晶は複数の場所で観察できた。
【実施例1】
【0057】
図2(d)に示すように、増加成長時間約30分で、一様なh-BN膜が形成される。
【実施例1】
【0058】
図2(e)に示すように、構造変形していない三角形のh-BN結晶を確認した。
【実施例1】
【0059】
この合成h-BN結晶の厚さは原子間力顕微鏡(AFM)観察にて推定した。
【実施例1】
【0060】
図2(f)に示すように、非導電性基板14であるSiO2/Si 基板に形成したh-BN結晶の厚さは約1.3nmであった。
【実施例1】
【0061】
ただし、すべての三角形のh-BN結晶の厚さは均一として原子間力顕微鏡により観察した。
【実施例1】
【0062】
図3(a)に示すように、合成後のh-BN膜の紫外吸収可視スペルトルを確認した。
【実施例1】
【0063】
このh-BN膜は、可視赤外線 (IR) 波長から透明性が高いものであった。
【実施例1】
【0064】
図3(b)に示すように、光学的なバンドギャップはタルクプロットで計算できる。
【実施例1】
【0065】
6.02ev前後で、光学的なバンドギャップを確認した。
【実施例1】
【0066】
図3(c)に示すように、B結合エネルギーに対応する190.2eVでピークとなるスペクトルを確認した。
【実施例1】
【0067】
同様に、図3(d)に示すように、B結合エネルギーに対応する397.7eVでピークとなるスペクトルを確認した。
【実施例1】
【0068】
XPSスペクトル定量解析により、BとNの原子比率がほぼ1:1であることが判った。
【実施例1】
【0069】
この結果、最適化したCVD法による銅箔上へのh-BN膜成長を確認した。
【実施例1】
【0070】
図4(a)に、850℃で7分間アニールした銅箔上のh-BN膜が示されており、いくつかの隙間を確認できた。
【実施例1】
【0071】
図4(b)に示すように、アニール温度を900℃としたところ、異方性エッチングによるh-BN結晶端を確認できた。
【実施例1】
【0072】
図4(c)に示すように、アニール温度を950℃としたところ、異方性エッチングによる三角形の結晶と孔とを確認できた。
【実施例1】
【0073】
図4(d)に示すように、さらに1020℃まで温度上昇させたところ、多数の三角形の孔を確認できた。
【実施例1】
【0074】
図4(e)に示すように、エッチングによるリボン形(矩形)の孔を作製することができ、異方性エッチングにより、ナノリボン作製の可能性が確認できた。
【実施例1】
【0075】
図5(a)に、銅箔上のh-BN膜のエッチングエリアが示されており、さらに異方性エッチング効果を確かめるため、オージェ電子分光(AES) 解析を行った。
【実施例1】
【0076】
図5(b)(c)に、h-BN膜のエッチングエリアのオージェスペクトルが示されており、このエッチングエリアには、B、Nのピークは確認できなかった。
【実施例1】
【0077】
この場合、Cu(銅)と共に、C(炭素)、O(酸素)のピークを247ev、469evにて確認できた。
【実施例1】
【0078】
一方、ほぼ同等強度のB、Nのピークは、171ev、382evにて確認できた。
【実施例1】
【0079】
エッチング現象において、h-BNが分離し、N、BはそれぞれHと結合し、NH、BHとなる。
【実施例1】
【0080】
図 6(a)は 、1000 ℃ で7分間、熱処理を施した、相互に連結された三角形のh-BN多結晶が示されており、異方性エッチングは、欠陥や結晶端のような結晶欠陥から形成される。
【実施例1】
【0081】
異方性エッチングによりジグザク方向に、三角形が多数形成されることを確認した。
【実施例1】
【0082】
図6(b)には、同じ形をした個々の三角形のh-BN結晶と異方性エッチングにより形成された孔の方向が示されており、アニール時間の増加と共にエッチングエリアが増加し、最終的には全体の結晶特有の形である三角形または四角形(多角形)がなくなることが判った。
【実施例1】
【0083】
図6(c)には、拡大倍率を下げ、広範囲のエッチングを観察した画像が示されている。
【実施例1】
【0084】
図6(d)には、結晶内の三角形の孔が同じ方向に形成されることが示されており、矢印は2つの異なるh-BN結晶のエッチングによる三角形の孔の向きを指しており、同一結晶内に形成された三角形の孔は同じ向きとなることを確認した。
【実施例1】
【0085】
図6(e)(f)に示すように、エッチングされた領域にナノ粒子が確認でき、EDXスペクトルにより、その粒子がSiOナノ粒子であることを確認した。
【実施例1】
【0086】
図7(a)に示すように、異方性エッチング工程により、h-BNの単結晶内に一つの三角形の孔が形成されたことを確認した。
【実施例1】
【0087】
図7(b)は、その分子構造図であり、図7(c)(d)に示すように、異方性エッチングにより連続したh-BN膜に三角形の孔を作成することができた。
【実施例1】
【0088】
図7(e)にその分子構造図が、図7(f)にその模式図が示してある。
【実施例1】
【0089】
これら孔に電子・磁気特性を制御する導電性(二次元)材料を、充填した後、ガラス等の非導電性材料に転写して使用する際、スピントロニクス制御ができるため、トランジスタ、等の各種電子デバイスでの利用が大いに望まれる。
【実施例1】
【0090】
このように、導電性または非導電性基板上にCVD法により形成された単結晶または多結晶の六方晶窒化ホウ素またはその膜へ、異方性エッチングにて三角形(または矩形)の孔が形成されるのを実証することができた。
【実施例1】
【0091】
なお、本例において、導電性または非導電性基板上の、三角形の孔が形成された六方晶窒化ホウ素膜は単層であるが、膜形成、エッチング工程、を繰返すことにより、多層構造とすることは自明である。
【実施例1】
【0092】
また、膜形成はCVD法によるものであるが、剥離法、その他の形成手法を採用することは自明である。
【実施例1】
【0093】
また、導電性または非導電性基板上に形成された三角形の孔を、平行、垂直、または両方向に重合させた形状、例えば矩形、等の多角形とすることは自明である。
【実施例1】
【0094】
また、電性基板には半導体が含まれることは自明である。
【産業上の利用可能性】
【0095】
本発明に係る六方晶窒化ホウ素への異方性エッチング方法は、電子デバイスに限らず、各種分野への応用が可能である。
【符号の説明】
【0096】
12 導電性基板
14 非導電性基板
16 六方晶窒化ホウ素(またはその膜)



図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6