TOP > 国内特許検索 > 微生物発電装置、微生物発電装置用電極およびその製造方法 > 明細書

明細書 :微生物発電装置、微生物発電装置用電極およびその製造方法

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第5990746号 (P5990746)
登録日 平成28年8月26日(2016.8.26)
発行日 平成28年9月14日(2016.9.14)
発明の名称または考案の名称 微生物発電装置、微生物発電装置用電極およびその製造方法
国際特許分類 H01M   8/16        (2006.01)
H01M   8/02        (2016.01)
H01M   8/04        (2016.01)
H01M   4/86        (2006.01)
H01M   4/90        (2006.01)
C02F   3/00        (2006.01)
C02F   3/34        (2006.01)
C12N   1/02        (2006.01)
C12N   1/00        (2006.01)
FI H01M 8/16
H01M 8/02 E
H01M 8/04 N
H01M 4/86 B
H01M 4/90 Y
C02F 3/00 G
C02F 3/34 Z
C12N 1/02
C12N 1/00 A
請求項の数または発明の数 10
全頁数 30
出願番号 特願2013-544168 (P2013-544168)
出願日 平成24年9月18日(2012.9.18)
国際出願番号 PCT/JP2012/073864
国際公開番号 WO2013/073284
国際公開日 平成25年5月23日(2013.5.23)
優先権出願番号 2011250557
優先日 平成23年11月16日(2011.11.16)
優先権主張国 日本国(JP)
審査請求日 平成27年9月10日(2015.9.10)
特許権者または実用新案権者 【識別番号】304021277
【氏名又は名称】国立大学法人 名古屋工業大学
発明者または考案者 【氏名】吉田 奈央子
【氏名】平石 明
【氏名】サンドゥー アダルシュ
【氏名】岩佐 精二
【氏名】岡田 浩
【氏名】手老 龍吾
【氏名】長尾 祐二
個別代理人の代理人 【識別番号】100149320、【弁理士】、【氏名又は名称】井川 浩文
審査官 【審査官】守安 太郎
参考文献・文献 特開2007-095471(JP,A)
特開2006-114375(JP,A)
特開2007-287413(JP,A)
特開2011-049067(JP,A)
特開2000-133297(JP,A)
特開2007-335251(JP,A)
特開2007-335250(JP,A)
特開2005-243619(JP,A)
国際公開第2012/066806(WO,A1)
Everett C. Sales et al.,Reduction of Graphene Oxide via Bacterial Respiration,ACS NANO,2010年,VOL.4 NO.8,4852-4856
調査した分野 H01M 8/16
H01M 4/86
H01M 4/90
H01M 4/96
特許請求の範囲 【請求項1】
有機性物質を含む液体と負極とを有し、嫌気雰囲気下で微生物により有機性物質を生分解する負極部と、正極を有する正極部と、前記正極と前記負極とを電気的に接続する外部回路とを備え、その外部回路を経由して前記負極部から前記正極部に電子を移送して発電する微生物発電装置において、
前記負極部は、グラフェンを備え、該グラフェンは酸化グラフェンを還元する微生物が付着した状態で疎密な凝集構造を形成していることを特徴とする微生物発電装置。
【請求項2】
前記グラフェンは、液体中において酸化グラフェンを微生物で還元して生成されるものであることを特徴とする請求項1に記載の微生物発電装置。
【請求項3】
前記グラフェンは、前記負極部に導入された酸化グラフェンが前記負極部内の微生物にて還元され生成されたものであることを特徴とする請求項1または2に記載の微生物発電装置。
【請求項4】
前記負極部は、有機性物質を含み酸化グラフェンが投与された土壌と、負極とを有するものであり、前記正極部と前記負極部とに十分量の液体が供給されていることを特徴とする請求項1ないし3のいずれかに記載の微生物発電装置。
【請求項5】
有機性物質を含む液体を供給する供給口と、
その供給口から供給された液体が、前記負極部および前記正極部を経由した後に排出される排出口とを有し、
前記正極部は、供給される液体を貯留可能に形成されると共に、前記正極に酸素を供給する酸素供給手段を備えており、且つ、グラフェンが導入されていることを特徴とする請求項1から4のいずれかに記載の微生物発電装置。
【請求項6】
前記正極部から排出される液体を貯留する貯留槽と、
その貯留槽の壁面上方に設けられた開口部であって前記貯留槽に貯留される液体の上澄みを放出する放出口と、
前記貯留槽に沈降した汚泥を前記正極部に返送する返送手段とを備えていることを特徴とする請求項5に記載の微生物発電装置。
【請求項7】
微生物が有機性物質を生分解する際に生成される電子を外部に取り出して発電を行う微生物発電装置に用いられる電極であって、酸化グラフェンを還元する微生物が付着した状態でグラフェンが集積した導電性構造体を有することを特徴とする微生物発電装置用電極。
【請求項8】
微生物が有機性物質を生分解する際に生成される電子を外部に取り出して発電を行う微生物発電装置に用いられる微生物発電装置用電極の製造方法において、
有機性物質と酸化グラフェンとを含む液体を、微生物存在下で嫌気雰囲気に保持する培養工程を備えており、
その培養工程において、酸化グラフェンを微生物によってグラフェンに還元すると共に、生成されるグラフェンが、酸化グラフェンを還元する微生物を付着した状態で自己凝集により一体化して導電性構造体を形成することを特徴とする微生物発電装置用電極の製造方法。
【請求項9】
嫌気雰囲気下で有機性物質を微生物により生分解すると共に、生分解に伴って産生される電子を負極から外部回路によって正極へ送出して発電を行う微生物を利用した電力生産方法において、
前記負極と微生物との間にグラフェンを介在させ、且つ該グラフェンは酸化グラフェンを還元する微生物が付着した状態で疎密な凝集構造を形成させたものを使用し、微生物が産生する電子を前記負極へ伝達することを特徴とする微生物を利用した電力生産方法。
【請求項10】
嫌気雰囲気下で有機性物質を微生物により生分解すると共に、生分解に伴って産生される電子を負極から外部回路によって正極へ送出して発電を行う微生物を利用し、前記負極と微生物との間にグラフェンを介在させ、微生物が産生する電子を前記負極へ伝達するようにしてなる電力生産方法において、該電力生産方法に用いられる微生物の培養方法であって、
有機性物質および水素を電子供与体、酸化グラフェンを電子受容体として含むアガロース固形培地を用い、環境中の試料を微生物接種源として、当該微生物接種源に付着する微生物を前記アガロース固形培地によって培養し、酸化グラフェンが還元されて生成された黒色グラフェンを指標として、酸化グラフェンを還元する微生物を選択的に分離することを特徴とする微生物の選択的培養方法。
発明の詳細な説明 【技術分野】
【0001】
本発明は、微生物を利用して発電を行う微生物発電装置、微生物発電装置用電極およびその製造方法、更には微生物を利用した電力生産方法及びその電力生産方法に用いられる微生物の選択的培養方法に関し、特に、グラフェンを用いて電力生産力を向上させることのできる微生物発電装置、微生物発電装置用電極およびその製造方法、微生物を利用した電力生産方法及びその電力生産方法に用いられる微生物の選択的培養方法に関するものである。
【背景技術】
【0002】
近年、地球環境に配慮した発電方法へのニーズが高まり、微生物発電の技術開発も進められている。微生物発電は、微生物が有機物を酸化分解(代謝)する際に発生する還元力(電子)を電流として取り出すことにより発電する方法である。即ち、微生物発電装置は微生物を触媒とする燃料電池である。
【0003】
例えば、微生物発電装置は、負極、微生物、基質となる有機物が収納された負極室と、正極が内包される正極室とを備えて構成され、負極室と正極室とはカチオンが透過可能な隔膜によって隔てられている。負極と正極とを外部回路を介して接続することで、負極に渡された電子は正極に移動して、正極に接する電子受容体に渡される。このような電子の移動により正極と負極との間に電流が生じ、電力を外部に取り出すことができるようになっている。
【0004】
ここで、従来の微生物発電装置は、化学的燃料電池に比べて電力生産能力が低い。このため、電力生産量を増大させるべく、電子伝達物質(電子メディエータ)を負極室内に添加することが行われている。電子メディエータは、細胞膜を介して微生物の体内外を往来し、微生物体内にて電子を受け取った電子を電極へ移送する、或いは、細胞外に放出された電子を電極まで移送するものである。このような電子メディエータとしては、キノン類などが用いられることが多い。
【0005】
一方で、微生物発電装置は、有機物を分解しつつ電力を生産するものであるので、廃水中の有機物を微生物によって分解する浄化処理と組合せ、浄化処理を行いつつ発電を行う発電システムが提案されている(例えば、特許文献1,2参照)。一般的な廃水処理は、大量の廃水を処理するものであるため、電力生産量を向上させるために電子メディエータを用いようとすれば、高価な電子メディエータが大量に必要となる。また、系外に放出される電子メディエータを継続して補充しなくてはならないため、発電コストが嵩んでしまう。その上、電子メディエータには毒性を備えるものも多く、安易に電子メディエータを使用することはできない。
【0006】
このため、電子メディエータに代えて酸化鉄などを含む導電性微粒子を用いた微生物発電装置が検討されている(例えば、特許文献3参照)。
【0007】
また、電力生産力を向上させる手法として、電池材料にナノカーボン材料を用いることが検討されている。ナノカーボン材料は、優れた導電材料である上、化学的に安定であることから、電池材料として注目されており、例えば、グラファイトやカーボンクロスの基本電極にカーボンナノチューブやグラフェンなどの電気伝導性材料を修飾させるといったナノテクノロジーを用いた負極が報告されている(例えば、非特許文献1,2参照)。更には、物理化学的に合成したフレーク状のグラフェンシートをゾルゲルマトリクス中に包含させ、酵素から電極への電子伝達物質(流動性電極)としてグラフェンを用いることで、グルコースオキシダーゼを触媒とした酵素電池の電力生産が活発化することが報告されている(例えば、非特許文献3参照)。
【先行技術文献】
【0008】

【特許文献1】特開2006-81963号公報
【特許文献2】特開2006-114375号公報
【特許文献3】WO2009/119846号公報
【0009】

【非特許文献1】Zhao, Y., Nakanishi, S., Watanabe, K.,Hashimoto, K. (2011). Hydroxylated and aminated polyaniline nanowire networksfor improving anode performance in microbial fuel cells. Journal of Bioscienceand Bioengineering.112:63-66
【非特許文献2】Zhang, Y., Mo, G., Li, X., Zhang, W.,Zhang, J., Ye, J., Huang, X., Yu, C. (2011) A graphene modified anode toimprove the performance of microbial fuel cells. Journal of Power Sources196:5402-5407.
【非特許文献3】Liu, C., S. Alwarappan, et al. (2010)."Membraneless enzymatic biofuel cells based on graphene nanosheets."Biosensors and Bioelectronics 25(7): 1829-1833.
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかしながら、従来の微生物発電装置では、取り出せる電力が水素燃料電池などの化学燃料電池に比べて著しく低く、実用に際して更なる電力生産量の向上が必要であるという問題点があった。
【0011】
更に、非特許文献1から3に示されるようにナノカーボン材料を用いれば、電池特性を向上させることができるが、ナノカーボン材料の製造には高度な技術が要求され、電気伝導性に優れたものを低コストで量産することは困難である。このため、ナノカーボン材料の使用はコストを上昇させ、大型の発電装置になるほどコストが膨大になるという問題点があった。加えて、非特許文献1および2に開示される技術は、そもそも、反応槽全体に存在する微生物の内、負極に接触する僅かな微生物から集電を行う仕組みであるため、負極の改良によって電池性能が改良されても、電力生産を大幅に向上させることは困難であるという問題点があった。
【0012】
また、非特許文献3に開示される酵素電池の技術では、疎水性グラフェンが水溶液の中で分散し効率的に触媒である酵素と接触することは難しいため、酵素電池を用いた実証試験で示されている効果は、グラフェン非投入系の2倍程度と限定的である。従って、当該技術を微生物発電装置に単純に適用しても、電力生産を大幅に向上させることはできず、その結果、低コストで且つ十分な電力生産力を備えた現実的に利用できる微生物発電装置は提供されないままとなっていた。
【0013】
本発明は、上記問題点を解決するためになされたものであり、特に、電力生産力を向上させると共に発電コストを抑制することのできる微生物発電装置、微生物発電装置用電極およびその製造方法、微生物を利用した電力生産方法及びその電力生産方法に用いられる微生物の選択的培養方法を提供することを目的としている。
【課題を解決するための手段】
【0014】
この目的を達成するために、微生物発電装置に係る発明の第1の構成は、有機性物質を含む液体と負極とを有し、嫌気雰囲気下で微生物により有機性物質を生分解する負極部と、正極を有する正極部と、前記正極と前記負極とを電気的に接続する外部回路とを備え、その外部回路を経由して前記負極部から前記正極部に電子を移送して発電するものであり、前記負極部は、グラフェンを備えている。
【0015】
尚、負極部内には、有機性物質を含む液体と共に汚泥、泥しょう、水域堆積物などの固形物が含まれても良く、液体のみが保持されていても良い。また、液体と共に固形物が保持される場合においては、液体分よりも固体分の体積割合を大きくした状態であっても良く、例えば、水分を含む土壌のような状態であっても良い。さらに、嫌気雰囲気下において微生物が生分解する有機性物質は、微生物の活動を維持するために外部から適宜供給しても良く、微生物発電装置内に植物を植栽するなどにより、当該植物から放出されるものを利用しても良い。
【0016】
微生物発電装置に係る発明の第2の構成は、前記第1の構成において、前記グラフェンは、液体中において酸化グラフェンを微生物で還元して生成されるものである。
【0017】
微生物発電装置に係る発明の第3の構成は、前記第1または第2の構成において、前記グラフェンは、前記負極部に導入された酸化グラフェンが前記負極部内の微生物にて還元され生成されたものである。
【0018】
微生物発電装置に係る発明の第4の構成は、前記第2または第3の構成において、前記グラフェンは、酸化グラフェンを還元する微生物が付着した状態で疎密な凝集構造を形成している。
【0019】
微生物発電装置に係る発明の第5の構成は、前記第1から第4のいずれかの構成において、有機性物質を含む液体を供給する供給口と、その供給口から供給された液体が、前記負極部および前記正極部を経由した後に排出される排出口とを有し、前記正極部は、供給される液体を貯留可能に形成されると共に、前記正極に酸素を供給する酸素供給手段を備えており、且つ、グラフェンが導入されている。
【0020】
尚、「酸素供給手段」は、正極を正極部に内包した場合に、正極部に開口を設けて正極の少なくとも一部分が大気に暴露されるように配設することや、正極部に貯留される液体に曝気を行う構成が例示される。また、「酸素を供給する」とは、酸素ガスの状態で供給されても良く、酸素と他のガスとの混合ガスや空気の状態で供給されても良い。
【0021】
微生物発電装置に係る発明の第6の構成は、前記第5の構成において、前記正極部から排出される液体を貯留する貯留槽と、その貯留槽の壁面上方に設けられた開口部であって前記貯留槽に貯留される液体の上澄みを放出する放出口と、前記貯留槽に沈降した汚泥を前記正極部に返送する返送手段とを備えている。
【0022】
微生物発電装置用電極に係る発明の構成は、微生物が有機性物質を生分解する際に生成される電子を外部に取り出して発電を行う微生物発電装置に用いられる電極であって、酸化グラフェンを還元する微生物が付着した状態でグラフェンが集積した導電性構造体を有する。
【0023】
微生物発電装置用電極の製造方法に係る発明の構成は、微生物が有機性物質を生分解する際に生成される電子を外部に取り出して発電を行う微生物発電装置に用いられる微生物発電装置用電極の製造方法であって、有機性物質と酸化グラフェンとを含む液体を、微生物存在下で嫌気雰囲気に保持する培養工程を備えており、その培養工程において、酸化グラフェンを微生物によってグラフェンに還元すると共に、生成されるグラフェンが、酸化グラフェンを還元する微生物を付着した状態で自己凝集により一体化して導電性構造体を形成する。
【0024】
微生物を利用した電力生産方法に係る発明の構成は、嫌気雰囲気下で有機性物質を微生物により生分解すると共に、生分解に伴って産生される電子を負極から外部回路によって正極へ送出して発電を行うものであり、前記負極と微生物との間にグラフェンを介在させ、微生物が産生する電子を前記負極へ伝達する。
【0025】
微生物の選択的培養方法に係る発明の構成は、前記電力生産方法に係る発明において用いられる微生物の培養方法であって、有機性物質および水素を電子供与体、酸化グラフェンを電子受容体として含むアガロース固形培地を用い、環境中の試料を微生物接種源として、当該微生物接種源に付着する微生物を前記アガロース固体培地によって培養し、酸化グラフェンが還元されて生成された黒色グラフェンを指標として、酸化グラフェンを還元する微生物を選択的に分離する。
【発明の効果】
【0026】
微生物発電装置に係る発明の第1の構成によれば、負極部において嫌気雰囲気下で微生物により有機性物質が生分解され、生成される電子が負極から外部回路を経由して正極に移送される。負極部でのかかる反応に伴って生成したカチオンは、正極側へ移動し、外部回路を経由して正極部に移送された電子との電気化学反応において消費される。これにより発電が生じる。負極部に備えられたグラフェンは、優れた電子伝導材料であるので、かかるグラフェンによって微生物から負極までの電子伝達を容易化することができ、電力生産量を向上させることができるという効果がある。また、有機性物質を適宜供給することにより微生物の活動を維持させることができ、さらに、微生物発電装置内に植栽した植物から有機性物質を放出させる場合には、有機性物質を外部から供給することなく当該発電装置内において自給させることができる。
【0027】
微生物発電装置に係る発明の第2の構成によれば、前記第2の構成の奏する効果に加え、グラフェンは、液体中において微生物が酸化グラフェンを還元することで生成されるため、簡便且つ容易にグラフェンを得ることができるという効果がある。また、特殊な装置や微生物を用いることなく、更に、物理化学的な作製手法に比べて大量にグラフェンを作製できるので、本装置にグラフェンを導入しても、装置コストを抑制することができるという効果がある。
【0028】
微生物発電装置に係る発明の第3の構成によれば、前記第1または第2の構成の奏する効果に加え、グラフェンは、負極部に導入された酸化グラフェンが負極部内の微生物により還元され生成されたものであるので、本装置内でグラフェンを作製することができるという効果がある。即ち、別体で製造装置を設けることなく、本装置をそのままグラフェンの製造装置として利用できる上、作製したグラフェンはそのまま負極部にて使用できるので、グラフェンの製造から発電を行うまでの全体工程を簡略化して作業性を向上させることができる。
【0029】
また、グラフェンを生成する(酸化グラフェンを還元する)微生物は、固形の電子受容体を還元可能な細胞外電子伝達微生物であり、即ち電流生産微生物である。ここで、細胞外電子伝達を行う微生物は、代謝によって産生された電子を受け渡す物質が自己の近傍に存在するほうが好ましい。そのため、酸化グラフェンを還元する微生物は生成されたグラフェン上に集積される。言い換えれば、電流生産微生物が選択的に集積することとなって、電流生産効率を促進し得る。
【0030】
微生物発電装置に係る発明の第4の構成によれば、前記第2または第3の奏する効果に加えて、グラフェンは、酸化グラフェンを還元する微生物が付着した状態で疎密な凝集構造を形成しているものであるので、グラフェンのみが凝集した場合に比べて、凝集体全体に空隙が分布する嵩高い状態とし得る。このため、負極部内の広い範囲にグラフェンを分布させることができ、負極部全体に存在する微生物から広く集電を行うことができる。故に、電流生成に寄与する微生物数を増大させ、生産電力の向上を図ることができるという効果がある。
【0031】
微生物発電装置に係る発明の第5の構成によれば、前記第1ないし第4のいずれかの構成の奏する効果に加えて、供給口から供給された有機性物質を含む液体は、負極部および正極部を経由して排出口から排出される。ここで液体は正極部に貯留され、正極には酸素供給手段により酸素が供給される。よって、正極において、正極周りに存在する酸素を利用して、酸素とプロトンと電子とが関与する電気化学反応(還元反応)を円滑に行わせることができるという効果がある。
【0032】
更には、好気的環境となる正極部に液体を貯留することができるので、正極部において液体中の有機物の好気的分解を促進することができ、排出口から排出される液体中の有機性物質を低減して排液の水質を向上させることができる。即ち、供給される液体を廃水とすれば、本装置にて廃水処理を実行することができる。
【0033】
ここで、プロトンは液相を移動して正極に到達するため、正極は液体に接している構造となるが、液体中では正極上への酸素供給量が低下するため、電気化学反応の反応性が低下する。しかし、正極部での反応にグラフェンを触媒として作用させることができるので、かかるグラフェンの触媒作用により正極部での電気化学反応の反応性を向上させることができる。故に、廃水処理を行いつつ良好に発電を行うことができる。
【0034】
微生物発電装置に係る発明の第6の構成によれば、前記第5の構成の奏する効果に加えて、正極部から排出される液体は、貯留槽に貯留され、その貯留槽の壁面上方に設けられた放出口から上澄みが放出される。正極部で好気的分解が行われると汚泥が増加し、曝気や撹拌が行われた場合、正極部からの液体の排出に伴って汚泥も流出する。正極部からの液体が貯留槽に貯留されることにより、液体中の汚泥が沈降し、放出口から処理水(上澄み分)のみを外部に放出することができる。ここで、正極部からグラフェンも貯留槽へ流出するが、汚泥中に当該グラフェンが存在することにより、汚泥の沈降性を向上させることができるという効果がある。また、貯留槽内で沈降した汚泥は、返送手段にて正極部に返送されるので、流出したグラフェンを容易に回収でき、繰り返してグラフェンを使用することができるという効果がある。
【0035】
微生物発電装置用電極に係る発明の構成によれば、酸化グラフェンを還元する微生物が付着した状態でグラフェンが集積した導電性構造体を有して形成されているので、グラフェンによって電子伝導を行う電極構造とすることができ、金属やグラファイトを用いた電極に比べて電子伝導性を向上させることができるという効果がある。微生物からの電気回収を促進するために一般に白金などの貴金属触媒が電極に用いられる。本電極では、グラフェンが備える微生物からの電気回収の促進作用により、貴金属触媒を代替することができるので、白金などの貴金属触媒の使用量を低減でき、低コスト化を図ることができるという効果がある。
【0036】
更に、酸化グラフェンを還元する微生物は、細胞外電子伝達を行うことのできる微生物であり、本電極は、かかる微生物が付着した状態でグラフェンが集積した導電性構造体を備える。このため、微生物が産生する電子をグラフェンによって効率的に伝導することができる。また、液中に浮遊する微生物が電極に接触することのみによって微生物から電極へ電子が伝達される場合と比べて、高頻度に微生物から電極への電子伝達が実行される。よって、本微生物発電装置用電極を用いることで、優れた発電性能を発揮させ得るという効果がある。
【0037】
微生物発電装置用電極の製造方法に係る発明の構成によれば、培養工程により、有機性物質と酸化グラフェンとを含む液体が、微生物存在下で嫌気雰囲気に保持される。すると、その培養工程において、酸化グラフェンが微生物による有機酸酸化により生じた還元力によってグラフェンに還元されると共に、生成されたグラフェンが、酸化グラフェンを還元する微生物を付着した状態で自己凝集により一体化して導電性構造体を形成する。故に、高度で大掛かりな装置を用いることなく、簡便且つ安価に電子伝導性に優れた電極を製造することができるという効果がある。また、本製造方法にて製造された微生物発電装置用電極を用いることで、微生物発電装置に優れた発電性能を発揮させ得るという効果がある。
【0038】
微生物を利用した電力生産方法に係る発明の構成によれば、嫌気雰囲気下で有機性物質が微生物により生分解されると共に、生分解に伴って微生物が産生する電子が、負極と微生物との間に介在するグラフェンによって負極へ伝達される。負極へ伝達された電子は、外部回路によって正極へ送出されて発電が行われる。これにより、微生物が産生した電子が負極へ伝達されることを容易化することができ、電力生産量を向上させることができるという効果がある。
【0039】
微生物の選択的培養方法に係る発明の構成によれば、酸化グラフェンが還元されて生成された黒色グラフェンを指標として、酸化グラフェン還元微生物を選択的に分離することができるので、例えば、黒色グラフェンを目視検出することで、簡便且つ効率的に酸化グラフェンを還元する微生物を選択的に分離することができるという効果がある。
【図面の簡単な説明】
【0040】
【図1】本発明の一実施形態に係る微生物発電装置の概要を示す図である。
【図2】第2実施形態の微生物発電装置の概略構成を示す図である。
【図3】第3実施形態の微生物発電装置の概略構成を示す図である。
【図4】第3実施形態の微生物発電装置に併設して設けられるグラフェン製造装置の概略構成図である。
【図5】本発明の一実施形態の微生物発電装置用電極の概略およびその製造方法を説明する図である。
【図6】微生物発電装置にかかる実施形態の応用例の概略構成を示す図である。
【図7】微生物発電装置にかかる実施形態の応用例の概略構成を示す図である。
【図8】グラフェン電極を使用した発電状態を示すグラフである。
【図9】土壌電池の実施例の概略構成を示す図である。
【図10】土壌電池の実施例の発電状態を示すグラフである。
【図11】稲電池の実施例の概略構成を示す図である。
【図12】稲電池の実施例の発電状態を示すグラフである。
【発明を実施するための形態】
【0041】
以下、本発明の好ましい実施形態について、添付図面を参照して説明する。以下の図において、同一部材には同一符号を付し、説明を省略または簡略化する。図面は発明の構成を模式的に示すものであり、構成の一部を省略または簡略化しており、寸法も実際の装置とは必ずしも同一ではない。

【0042】
図1は、本発明の一実施形態に係る微生物発電装置1の概要を示す図である。図1(a)は微生物発電装置1の概略構成図であり、図1(b)は、図1(a)のIで示す部分を拡大して示した部分拡大図である。

【0043】
図1(a)に示すように、微生物発電装置1は、非導電性材料にて形成された筐体2を備えている。筐体2は上面が開放された有底の円筒状に形成されており、その内部に負極室11と正極室12とを備えている。

【0044】
負極室11は、筐体2の下方に形成されており、有機物質(基質4)を含む水系液体にて負極室11の内部は満たされている。このため、上面の開口部からの空気の流入は遮断され、負極室11内は、嫌気的環境に保たれている。水系液体には、土、泥しょう、汚泥などの固形分が混合された状態となっている。また、負極室11には水系液体と共に、微生物とグラフェンとが保持されている。

【0045】
ここで、負極室11内において電子が産生される反応機構を、図1(b)の負極室11内の部分拡大図を用いて説明する。

【0046】
負極室11には、初期状態において、有機物質(基質4)を含む水系液体、土、泥しょう、汚泥、水域堆積物等と共に、酸化グラフェン(図1(b)においてGOで指し示す白六角形にて図示)が投入されている。土、泥しょう、汚泥、水域堆積物などには、微生物や有機物質が含まれているため、これらを投入することにより、負極室11に微生物と有機物質とが導入される。尚、基質4となる有機物質を、別途、負極室11に添加してもよい。

【0047】
添加する基質としては、例えば、グルコースなどの糖類、乳酸や酢酸などの低級脂肪酸、ペプトンや酵母エキスなどの複合有機抽出物などが例示される。好適には、酢酸が用いられる。

【0048】
また、水系液体とは、水、有機物や無機物などの溶質が溶解した水溶液、有機溶媒が混在する混合溶媒、エマルション、サスペンジョンなどを含む概念である。

【0049】
投入された酸化グラフェンは親水性であるため、水系液体中に良好に分散し、負極室11の全体に広く分布する。また、負極室11は嫌気的環境となっているため、嫌気性微生物によって有機物質(基質4)が代謝(生分解)される。その過程で電子(図1(b)においてeにて示す)が生成される。尚、図示を省略しているが、代謝産物として水素イオンが放出される。

【0050】
嫌気性微生物の内、細胞外電子伝達を行う還元微生物3は、有機酸酸化により生成した電子を酸化グラフェンに供与し、酸化グラフェンはグラフェン(図1(b)においてGで指し示す黒六角形にて図示)に還元される。その後、還元微生物3によって基質4の酸化から発生した電子はグラフェンに回収され、さらに接触した別のグラフェンを介して負極14へ伝達される。これより、還元微生物3から負極14への直接の電子伝達に併せて、さらにグラフェンを介した電子伝達物質が行われることで、総じて電子伝達は促進される。このため、外部へ取り出すことのできる電力を向上させることができる。

【0051】
このように、酸化グラフェンを添加することで、酸化グラフェンをグラフェンに還元する還元微生物3が集積(選択的に濃縮培養)される。嫌気性微生物による代謝機構では、細胞内あるいは細胞外で電子の授受が行われる。ここで還元微生物3は、元来、細胞外電子伝達能を有する微生物であるため、負極室11には、細胞外電子伝達を行う微生物が集積されることとなる。故に、細胞外電子伝達を行う微生物が産生する電子を外部回路16に取り出すことができるのである。従って、微生物体内から電子を取り出すための電子メディエータを外部から投入することは不要とできる。更に、グラフェンは、優れた導電性材料である上、酸などの化学物質に対しても安定である。このため、水系液体中においても長期的に電気的特性が維持され、当該グラフェンを電子伝達物質に用いることにより、本微生物発電装置1は、安定した発電性能を保持することができる。

【0052】
また、微生物が放出する電子を受容し、導電性物質であるグラフェンを介して負極へ電子を受け渡すことで発電を行う手法において、微生物が導電性物質に多く接触するほど電力生産量が向上するので、導電性物質の比表面積が大きいほど有効である。グラフェンは体積と等しい表面積を有することから金属微粒子などと比べて格段に表面積が高いことから、優良な導電性物質となる。

【0053】
従来、化学気相成長法や物理的手法によってグラフェンを生産する方法が提案されているが、これらの従来法ではグラフェンを大量に生産することは困難である。しかし、本実施形態では、安価なグラファイトを酸で処理をして簡便に得ることのできる酸化グラフェンを原料とし、微生物(還元微生物3)で還元することにより従来法と比較して大量のグラフェンを容易に生産することができる。その上、従来法では、多量のグラフェンが得られたとしても水系液体に投入すれば直ちに凝集してしまうために、グラフェン本来の比表面積を有効に活用することができない。

【0054】
しかし、本手法では、得られたグラフェンは還元微生物3が付着した状態となっており、水系の液体中でフロック状(疎密な凝集構造)となる。このため、負極室11内に存在する細胞外電子伝達を行う微生物が接触する面積(利用できるグラフェンの面積)を十分に確保することができ、より多くの微生物をグラフェンに接触可能として電流生成に寄与させ、外部回路16に取り出すことのできる電流量を向上させることができる。

【0055】
尚、ここで、負極室11に保持される微生物(還元微生物3)としては、細胞外電子伝達可能な微生物であり、デルタプロテオバクテリア網のジオバクター属細菌、シュワネラ属細菌、デスルフォビブリオ属細菌などで、これらを1、または2以上含む微生物群集が例示される。

【0056】
また、負極室11の底部近傍には、外部回路16の導線16bと電気的に接続される負極14が配設されている。負極14は、導電性材料により形成され、微生物が有機物質を分解する微生物の代謝反応において産生される電子を集電するものである。負極14は、嫌気的環境において有機物質を分解する微生物から電子を受取るため、より嫌気度の高い筐体底部近傍に配置されている。

【0057】
この負極14には、負極室11内で発生する酸などに対し耐久性を備えたものが選択される。具体的には、例えば、グラファイト、カーボンクロス、カーボンペーパーなどの炭素電極または金属等を用いて形成されたものが用いられる。尚、後述する本発明のグラフェン電極を用いても良い。

【0058】
図1(a)に戻って説明する。負極室11の上方には、負極室11と正極室12とを画設する画設部材13が設けられている。この画設部材13は、筐体2の内部を負極室11と正極室12とに分画するものであり、負極室11からのグラフェンおよび微生物の流入を防ぐとともに、負極11への酸素供給を防ぐ効果を有する。具体的には、不織布で構成されている。画設部材13の周部は、筐体2の内壁に内接しており、画設部材13の下側面によって負極室11の一面が形成され、画設部材13の上側面によって正極室12の一面が形成されている。

【0059】
画設部材13は、負極室11中のグラフェンや泥しょうなどの固形物が正極室12へ流入することを遮断する一方、負極室11で生成したカチオン(プロトン)を正極室12へ透過させるようになっている。このため、画設部材13の下側面は負極室11内に貯留される水系液体の液面に密接しており、正極室12には、水系液体が貯留されている。これにより、負極室11或いは正極室12から浸入した液体にて満たされた状態となり、負極室11から正極室12まで連続した液相が形成される。故に、負極室11で発生したプロトンは、画設部材13を透過して正極室12側へ移動可能となる。尚、不織布に代えて、画設部材13を、ろ紙、0.05~0.5mm直径ガラスビーズ堆積層で構成してもよく、また、プロトン透過膜や陽イオン交換膜で構成しても良い。更には、負極室11の水系液体に土壌など固形物が多く配合され、負極室11がスラリー状の液状体で満たされる場合には、画設部材13を非設としても良い。

【0060】
正極室12は、上面が開口しており、大気に暴露された好気的環境に保持されている。正極室12内には、上記したように、水系液体が貯留されており、気液界面が形成されている。この気液界面に正極15が配設されている。

【0061】
正極15は、導電性材料で構成され、外部回路16を介して負極14と金属導線に接続されている。この正極15は、平板状に成形されており、面方向が液面と略水平となるように配設されている。正極15では、大気中の酸素と液中のプロトンとを消費する電気化学反応が生じる。このため、反応効率を向上させるべく、正極15の広い面が大気と貯留される水系液体との両方に、より広面積で触れるように、面方向が液面と略水平となるように配設され、下面側が液面に接する高さ(気液界面)に配置されている。図1においては、正極15の下面が液面上に位置するように配設されているが、正極15の一面が大気に触れていれば良く、他の部分は液中に浸漬されていても良い。

【0062】
即ち、正極15が、気液界面に配設されるとは、正極15の一部が液相に接する一方、一部が大気中に暴露していることを意味するものである。尚、正極15は、必ずしも平板状である必要はなく、例えば、中実または中空の筒状、円柱状、直方体等で形成され、正極15の下面(画設部材上)に載置すれば、その一部が液面より上に露出するものを選択しても良い。

【0063】
このように、気液界面に正極15は配設されるので、正極15を定常的に空気と液体とに暴露することができる。よって、正極15において、正極15周りに豊富に存在する酸素を利用して、酸素とプロトンと電子とが関与する還元反応を行わせることができ、速やかに反応を進行させることができる。また、正極15に酸素を供給するための曝気を不要として装置全体の小型化を図ることができる。

【0064】
この正極15は、負極14と同様にグラファイト、白金、カーボンクロス、白金担持カーボン、その他の金属を用いて形成された電極が用いられる。尚、後述する本発明のグラフェン電極を用いても良い。

【0065】
上記のような構成を備えた微生物発電装置1において、負極14に取り込まれた電子は、抵抗16aと導線16bとを備えた外部回路16を経て正極15へと移動する。また、正極室12には、分子状酸素が導入されており、正極15上で、電子及び画設部材13を通過したプロトンと結合することによって水分子へと変化する電気化学反応(還元反応)が生じる。これら一連の反応によって、負極14及び正極15の間で電子の移動が行われ、電流が発生することになる。

【0066】
尚、上記微生物発電装置1において、画設部材13を高分子固体電解質とし、該高分子固体電解質中をプロトンが移動する構造としても良い。その場合、正極室15に水系液体が貯留される必要はない。また、正極15での反応は、プロトンと酸素とを利用する上記の電気化学反応に限られず、電子受容体に電子を受け渡す反応であれば良く、負極室11で生成されたカチオンが消費されるものであれば、上記の電気化学反応に限定されるものでない。また、微生物は、少なくとも負極室11に存在していれば良く、正極室12での反応は、微生物の介在しない化学反応であってよい。また、微生物発電装置1の負極室11内の液体を撹拌するための撹拌機構を設けても良い。これにより、酸化グラフェン或いはグラフェンのフロックは、生成される水流によって負極室11内の広い範囲に移動して、各部に存在する微生物が放出する電子を獲得することができる上、負極14に接触する確率が向上するため、獲得した電子のより多くを負極14へ伝達することができる。

【0067】
次に、第2実施形態の微生物発電装置20について説明する。なお、第2実施形態の微生物発電装置20の構成のうち、第1実施形態の微生物発電装置1の構成と同一のものについては、同一の符号を付して説明を省略する。

【0068】
図2は、第2実施形態の微生物発電装置20の概略構成を示す図である。図2(a)は、微生物発電装置20の構造の概略図であり、図2(b)は、図2(a)のIIで示す部分を拡大して示す部分拡大図である。

【0069】
図2(a)に示すように微生物発電装置20は、第1実施形態と同様に、筐体2の下方側に負極室11が形成され、筐体2の上方側に正極室12が形成されている。

【0070】
また、微生物発電装置20の筐体側面には、外部と連通する連通口22a,22bが穿設されている。連通口22aは、筐体2の下方側に設けられ負極室11と外部とを連通するものである。連通口22bは、筐体2の上方側に設けられ正極室12と外部とを連通するものである。

【0071】
連通口22aは外部から負極室11内に有機物質を含む水系液体(原水)を供給する供給口となっており、水系液体を外部から供給する非図示の配管が接続されている。連通口22aから供給された原水は、負極室11から画設部材13を通過して、正極室12へと流入し連通口22bから外部へ排出される。

【0072】
負極室11には、画設部材13を支持するための複数の突起部17が、負極室11内壁の周方向に沿って所定間隔で突設されており、画設部材13は、この突起部17に掛架されている。画設部材13を挟んで正極室側には、厚み方向に貫通する複数の貫通孔を備え筐体2の内径(即ち負極室内径)と略同径で形成された円板18が嵌設されている。このため、微生物発電装置20の内部で負極室11から正極室12に向かって液体が流動しても、画設部材13は、突起部17と円板18とによって、筐体内部の予め定めた高さ(位置)に係留される。

【0073】
正極室12は、更に、間仕切り板19を具備している。間仕切り板19は、正極室12内を上部と下部とに間仕切るものであり、筐体2の内径(即ち正極室内径)と略同径で形成された円板部材で形成され、正極室12の内部において所定位置に固定されている。この間仕切り板19の外縁近傍には、上下方向に貫通する貫通孔19aが穿設されている。このため、負極室11から正極室12へ流入した水系液体は、正極室12の下部側から貫通孔19aを通過して正極室12の上部側へ流入する。

【0074】
間仕切り板19の上面には、曝気装置23の散気部23cが設置されている。曝気装置23は、例えばエアポンプ、ブロア等で構成される曝気手段23aと、当該曝気手段23aからの空気を送気する送気管23bと、送気管23bの終端に設けられ送気管23bにて送気された空気を吐出する複数の開口を備えた散気部23cとを備えて構成されている。外部に設けられた曝気手段23aから供給される空気は、曝気手段23aから正極室12内まで延設されたパイプ状の送気管23bによって正極室12へと送出され、正極室12内において散気部23cの上面に形成された開口から吐出される。

【0075】
これにより、間仕切り板19にて区画された正極室12の上方部に貯留される水系液体に分子状酸素が供給され、好気的環境が形成される。このため、正極室12内の好気性微生物が活性化され液中の有機物の好気的分解が促進される。また、間仕切り板19によって正極室12の下方側へのエア供給は阻害されるので、負極室11の嫌気的環境が悪化することを抑止できる。

【0076】
図2(b)は、第2実施形態の微生物発電装置20の負極室11内のIIの部分の拡大図であり、微生物発電装置20の内部構造を模式的に説明する図である。酸化グラフェンを還元して生成したグラフェンは、微生物(還元微生物3)が付着した状態で凝集し、水系液体中で疎密な凝集構造(フロック)を形成する。尚、図2(b)において、Gで指し示す黒色六角形にてグラフェンを図示している。この凝集構造は、還元微生物3が介在するために、グラフェンのみで形成される凝集構造に比べて疎密で嵩高い構造となる。第2実施形態の微生物発電装置20では、酸化グラフェンの投入量(濃度)を調整することにより、負極室11内全体にグラフェンのフロックが形成されている。このため、室内全体に導電性のパス(導通路)がネットワーク形成され、還元微生物3の産生する電子の利用率(集電率)を向上させることができる。グラフェンのフロックには空隙が存在し、かかる空隙には水系液体が流入するため、基質と微生物とグラフェンとを効率良く接触させ、生産できる電力を向上させることができる。

【0077】
このように第2実施形態の微生物発電装置20によれば、装置内に、有機物質を連続的に供給することができ、持続的な発電を行うことができる。更に、装置内に導入された原水は、負極室11、正極室12を経由して装置外へ排出されるので、原水に廃水を用いれば、負極室11において液中の有機物質の嫌気的分解を、正極室12において液中の有機物質の好気的分解を行うことができる。故に、発電を行いつつ、廃水処理を行うことができる。

【0078】
次に、第3実施形態の微生物発電装置30について説明する。なお、第3実施形態の微生物発電装置30の構成のうち、第1実施形態の微生物発電装置1の構成と同一のものについては、同一の符号を付して説明を省略する。

【0079】
図3は、第3実施形態の微生物発電装置30の概略構成を示す図である。微生物発電装置30は、廃水処理を可能とする装置であり、処理槽31と導入槽35と沈降槽36とを備えている。処理槽31は、嫌気処理槽32、好気処理槽33を備えて構成されている。嫌気処理槽32、好気処理槽33、沈降槽36は、コンクリート、ガラス、セラミックなどの固形材料や金属材料で形成され、より好ましい態様としては、これらの槽は分割成形体として適宜に成形型を用いプレキャスト方式の如きにより工場生産された単位体がそれぞれの施工現場に搬入され、連結組立てられる。尚、嫌気処理槽32には負極が設けられて負極室となっており、好気処理槽33には正極が設けられて正極室となっている。

【0080】
嫌気処理槽32は、上面が閉塞された箱状に形成され有機性廃水を貯留可能となっている。嫌気処理槽32の筐体の上流側の側面には、外部から有機性廃水を供給するための供給口32aが貫通形成されている。また、嫌気処理槽32には、供給口32aから供給された有機性廃水を撹拌するための撹拌装置39と負極14とが設けられている。更に、嫌気処理槽32の上面には、槽内へ酸化グラフェンを投入するための非図示の投入口が設けられている。図3において嫌気処理槽32の上側に示す矢印方向に従って酸化グラフェンは投入され、投入された酸化グラフェンは、槽内に供給された原水に生育する微生物(還元微生物3)によって還元される。このため、嫌気処理槽32の槽内には生成したグラフェンが保持されている。また、嫌気処理槽32では必ずしも撹拌は必要ではなく、撹拌装置39を非設としても良い。その場合、グラフェンは底部へ堆積されるので、負極14は、堆積されるグラフェン集積物に接するように底部近傍に配設される。

【0081】
好気処理槽33は、嫌気処理槽32と同様、上面が閉塞された箱状に形成され液体を貯留可能な構造を備えている。好気処理槽33内には曝気装置23の散気部23cが配置されると共に正極15が設けられている。尚、本実施形態では、散気部23cの下面に開口が形成されており、下方側に向かって空気が吐出されるようになっている。嫌気処理槽32と好気処理槽33との間は、隔壁34によって画設されており、隔壁34の上方には、嫌気処理槽32と好気処理槽33とを連通する連通口34aが形成されている。連通口34aには、画設部材13が固定されている。このため、嫌気処理槽32において有機物質の嫌気的分解処理がなされた後の処理水が、画設部材13を介して正極室12に流入する。尚、嫌気処理槽32において、撹拌装置39が非設である場合は、グラフェンや、嫌気処理槽32で発生する汚泥の大部分は、嫌気処理槽32の底部に蓄積され、上澄みにはこれらの固形物は含まれないので、画設部材13を非設としても良い。

【0082】
好気処理槽33では、曝気装置23によって液中に酸素が供給され好気的環境となっている。このため、液中の有機物質の好気的分解を良好に行うことができる。また、本実施形態においては、正極15は液中に浸漬されている。曝気装置23によって液中に空気(分子状酸素)が供給されているが、正極15表面に供給される量は、大気中に正極15が暴露される場合に比べて大幅に低減する。このため、正極15で酸素とプロトンとを消費して水が生成される一連の電気化学反応速度が低下する。故に、本実施形態においては好気処理槽33にもグラフェンが導入されている。

【0083】
例えば、一般的な燃料電池において、正極における電気化学反応が、酸素とプロトンと電子とが関与する還元反応である場合、通常、反応速度を向上させるために白金などの貴金属触媒が多量に使用される。しかし、本微生物発電装置30では、グラフェンの作用によって上記還元反応を促進することができるので、正極15に使用する高額な貴金属触媒の使用量を低減または不使用とすることもできる。

【0084】
また、本装置30においては、好気処理槽33に存在する好気微生物が酸素還元触媒となり、微生物を保持するグラフェンから正極15の電子を受け取り、散気部23cから供給される分子状酸素の還元が生じる。そのため正極15上だけでなく、正極に電子パスネットワークを形成する好気処理槽内のグラフェン-好気微生物複合体と分子状酸素が効率的に接触することで広く酸素還元反応を行うことが可能になる。正極室12内の各所において、プロトンと電子を用いた微生物による酸素還元反応をグラフェンが介在することによって促進することができることから、正極15表面のみの電気化学反応にて電力の生産を行う場合に比べて、電力生産を向上させることができる。また、正極15は、酸素還元触媒として白金を用いた空気極として好気処理槽の空気—液界面に設置されても良い。

【0085】
尚、好気処理槽33に導入されるグラフェンは、嫌気処理槽32にて生成されたものであっても良く、嫌気処理槽32とは別の反応槽において微生物を用いて酸化グラフェンから生成したもの(例えば、後述するグラフェン製造装置40を用いて生成したもの)であっても良い。

【0086】
好気処理槽33の下流側の壁部には、好気処理槽33から処理水を排出するための排出口33aが形成されている。排出口33aは、好気処理槽33に隣接して形成された導入槽35と好気処理槽33とを連通するものである。導入槽35は好気処理槽33の下流側に設けられた沈降槽36と好気処理槽33とを接続する流路であり、排出口33aの反対側に設けられた下流側の開口35aによって沈降槽36に接続されている。これにより、好気処理槽33での処理を経た処理水が沈降槽36へ流入する。尚、本実施形態では、導入槽35は、好気処理槽33からの処理水を貯留しない形態で設計されているが、これに代えて、沈降槽36の手前で一時的に処理水を貯留できるように形成すると共に、凝集剤添加機構と撹拌機構とを設け、汚泥フロックの形成を促進するようにしても良い。

【0087】
沈降槽36は、逆円錐状に形成された汚泥沈降部36aを備え、この汚泥沈降部36aの最下部には汚泥引抜管37が配管されている。沈降槽36には、好気処理槽33からグラフェンを含む汚泥が処理水と共に流入し、流入した汚泥は沈降して汚泥沈降部36aに堆積する。堆積した汚泥は、汚泥引抜管37から引き抜かれる。汚泥引抜管37は下流側で2方向に分岐し、分岐の一方は返送ライン38aに接続され、他方は排出ライン38bに接続されている。汚泥引抜管37から引き抜かれた汚泥の一部は、非図示のポンプによって返送ライン38a内を圧送され、返送ライン38aの終端から好気処理槽33に投入される。排出ライン38bへ流入した汚泥は、系外に取り出される。

【0088】
沈降槽36の上方には、下流側において外部と連通する排出口36bが形成されており、沈降槽36に貯留された処理水の上澄みは、排出口36bを介して装置外部へ排出される。このように、第3実施形態の微生物発電装置30によれば、廃水処理を行いつつ発電を行うことができる。

【0089】
更に、微生物発電装置30にて、微生物から電子を獲得しつつ廃水処理を行うと、微生物の増殖が過剰となることを抑制でき、結果として、汚泥の発生量を減量することができる。

【0090】
ここで、本発明の微生物発電装置および微生物を利用した電力生産方法は、嫌気処理を行う嫌気処理槽に酸化グラフェンを投入すると共に負極を配置し、好気処理を行う処理槽に正極を配置して両極を外部回路によって電気的に接続すれば良い。よって、既存の廃水処理施設の構成をそのまま利用でき、大掛かりな設備投資を不要として、容易且つ低コストで電力生産を実現できる。

【0091】
図4は、微生物発電装置30に併設して設けられるグラフェン製造装置の概略構成図である。微生物発電装置30は、一家庭用から大規模廃水処理を可能とする容量で形成される。このため、嫌気処理槽32に保持すべきグラフェンの量も処理槽の容量に応じて大量になる。嫌気処理槽32で直接的にグラフェンを生成すると、酸化グラフェンが還元微生物3によりグラフェンへ還元されるまでにはタイムラグがあるため、発電が開始されるまで(所望の電力が得られるまでに)時間がかかってしまいかねない。そこで、必要量のグラフェンを嫌気処理槽32に適宜投入できるように、予め、微生物発電装置30の装置外においてグラフェンを生成するグラフェン製造装置40が併設されている。

【0092】
図4に示すように、グラフェン製造装置40は、有底の円筒状に形成された反応槽41と反応槽41に覆設される蓋体42とを備えている。反応槽41は、その内部に液体を貯留可能に構成されている。反応槽41の内部には、2台の撹拌装置45が設けられている。撹拌装置54は、反応槽41の側壁内面に固定された台座に回動可能に軸支されたシャフトとそのシャフトの外周に所定間隔で取り付けられた複数枚の略矩形板状の撹拌羽根とを有している。撹拌羽根は、長手方向の中央部にてシャフトの外周に固定され、シャフトの軸から外側に向かって延出されている。このため、シャフトの回転に伴って反応槽41に貯留される液体が撹拌される。2台の撹拌装置54は、それぞれの撹拌羽根が互いに接触しない位置に配設されている。

【0093】
蓋体42の左方側端部近傍には、略逆台形錐状の投入口と投入口の底面から反応槽41の内部に向かって延出された導入管とを有する投入ホッパ43が設けられている。投入ホッパ43の投入口上面には開閉可能に設けられた開閉蓋43aが設けられている。この投入ホッパ43は、基質となる有機物質や酸化グラフェン、水、微生物の担持体である泥しょう、土、廃水、等を反応槽41内へ案内するものである。

【0094】
また、蓋体42の右側端部近傍には、反応槽41内に溜まったガスを外部に排出するための、開閉弁44が設けられている。これにより、反応槽41内に溜まったガスを適宜排出することができる。

【0095】
投入ホッパ43の外周面、開閉弁44の外周面と、これらが貫入された蓋体42の内周面との間の隙間を介して空気が反応槽41内に侵入することがないように、蓋体42におけるこれらの貫入箇所には、Oリングやパテなどのシーリング材を用いて気密性が確保されている。

【0096】
反応槽41の下方には、反応槽41内の内容物を外部に排出するための排出管46が設けられている。排出管46内には、開閉可能に形成された弁が備えられており、作業者の操作によって開放できるようになっている。反応槽41内は槽内をほぼ満たす多量の液体(水系液体)が貯留されており、生成されるグラフェンは、微生物が付着したフロック状となっている。このため排出口46から水抜きを行うことにより、容易に外部へ取り出すことができる。

【0097】
ここで、微生物発電装置30へグラフェンを投入する場合には、微生物発電装置30へ導入する原水(廃水)を用いて反応槽41でグラフェンを生成させる。このため、微生物発電装置30にて処理する原水に順応する最適な微生物群集を集積させることができ、かかる微生物によってグラフェンを大量生成することができる。このため、本装置40にて製造したグラフェンを嫌気処理槽32および好気処理槽33に導入して、円滑に廃水処理を行うことができ、更に良好な発電特性を実現することができる。

【0098】
尚、反応槽41の温度を測定する温度センサや、反応槽41内の酸素濃度を測定する酸素濃度センサ、反応槽41内の有機廃棄物のPHを測定するPHセンサ等の各種センサを設け、反応槽41内の状態を管理するようにしても良い。

【0099】
尚、第1、第2実施形態の微生物発電装置1,20においても、このグラフェン製造装置40を用いる等して、微生物発電装置1,20外にて微生物還元によってグラフェンを製造し、予め得たグラフェンを負極室11へ投入するようにしてもよい。

【0100】
以上説明したように、上記した微生物発電装置1,20,30では、例えば、廃水、泥しょう、活性汚泥に生息する微生物において、酸化グラフェンを還元する微生物(還元微生物3)が集積される。このため、微生物の多様性を確保することができ、多種多様な有機物質が含まれる廃水を燃料に用いても、多様な微生物によって各種有機物質を分解することができ、安定して発電を行うことができる。

【0101】
次に、図5を用いて、本発明の一実施形態の微生物発電装置用電極、およびその製造方法を説明する。

【0102】
図5は、本発明の一実施形態の微生物発電装置用電極の概略およびその製造方法を説明する図である。

【0103】
図5に示すように、具体的には、微生物発電装置50は、負極室51と、正極52と、カチオン透過膜(プロトン伝導膜53)とを備えている。

【0104】
負極室51は、方形の外形を備えた筐体を有し、正極52側となる背面は端部周縁を残して開口されている。開口部には、開口部周縁を接着しろとしてプロトン伝導膜53が張設されている。負極室51の筐体上面には、原料を導入するための導入口57、ガスや余剰の液体を排出するための排出口58、導線56を引き出すための引出口59とが貫通形成されている。

【0105】
また、負極室51内には、グラフェン電極54の支持体となる導電体が吊設されている。本実施形態においては導電体にカーボンクロス54aが用いられている。カーボンクロス54aの上方側端部には導線56が接続され、固定されている。導線56は、引出口59から負極室51の外へ、延出されている。

【0106】
正極52は、白金を担持したカーボンペーパー電極や白金電極であり、矩形状に加工され、上方側端部には導線56が接続されている。この正極52はいわゆるエアカソードとして構成されている。正極52は、プロトン伝導膜53を介し負極室53に対向して配設される。

【0107】
グラフェン電極の製造においては、まず、負極室51の開口から導線56を固定したカーボンクロス54aが負極室51に挿入され、引出口59から導線が引き出された後、カーボンクロス54aを吊設した状態に固定する。その後、開口を覆うようプロトン伝導膜53が位置決めされ、負極室51背面に接着される。接着面からの液漏れがないように好適にはシーリング剤が用いられてプロトン伝導膜53が固定される。その後、プロトン伝導膜53に密接させて正極52が固定される。これにより微生物発電装置50の筐体が組み上がる(図5(a)参照)。

【0108】
その後、導入口57を介して、泥しょう、汚泥、土、水域堆積物などの所定量が負極室51に投入され、次いで、酸化グラフェンと有機物質とを含む水溶液が投入され、負極室51内が液体で満たされる。これにより、負極室51内は嫌気雰囲気となる。投入された泥しょう、汚泥、土、水域堆積物などには微生物が生息しているので、酸化グラフェンを電子受容体とする微生物が集積し、これに伴い酸化グラフェンはグラフェンに還元される(図5(b)参照)。尚、図5(b)、図5(c)においては、模式的に、GOにより指し示す白六角形にて酸化グラフェンを図示し、Gにより指し示す黒六角形にてグラフェンを図示している。また、予め、別の容器や装置(例えば、上記したグラフェン製造装置40)を用いて、泥しょう、汚泥、土、水域堆積物などの所定量、酸化グラフェン、有機物質を含む水溶液との混合物を嫌気雰囲気に設置し、生成されるグラフェンを微生物摂取源として、上記した泥しょう、汚泥、土、水域堆積物などの所定量に代えて負極室51に投入しても良い。

【0109】
酸化グラフェンは親水性であるため水中で良好に分散するが、グラフェンは疎水性であるため凝集し、カーボンクロスに付着、集積する。また、生じたグラフェンには、グラフェン生成に関与した微生物(還元微生物3)が付着しており、そのままカーボンクロスに積層され、一体となってグラフェン電極54が生成する(図5(c)参照)。これにより、微生物発電装置用電極(グラフェン電極54)を得ることができる。グラフェンは、グラファイトや金属に比べて優れた電子伝導材料であり、グラフェンが集積された本電極は優れた電極となる。また、作製されたグラフェン電極54に担持されている還元微生物3は細胞外電子伝達を行う微生物である。即ち、本グラフェン電極54は、電子を取り出す触媒として機能する微生物が担持された状態で電極が形成されていることとなり、単に導電体だけで形成される電極に比べて電流生産効率に優れた電極となる。

【0110】
また、微生物発電装置50は、正極52に接続される導線56と、負極室51から延出する導線56とを電気的に接続することにより電流が流れるので、そのまま電池として使用することができる。尚、導入口57から負極室51に基質を追加投入すれば、持続的に発電を行うことができる。追加投入する基質は、グラフェン生成の際に用いたものと異なるものを用いてもよく、例えば、電力を向上させるべく酢酸に比べてより酸化還元電位が低い、即ち電気エネルギー回収率のよいグルコース等を用いても良い。

【0111】
更に、投入する酸化グラフェンの量を調整することにより、負極室51内全体に、グラフェン電極54を形成することができる。言い換えれば負極室51全体が電極として機能するものとなる。ここで、形成されるグラフェン電極54は、還元微生物3が付着して形成される疎密な凝集構造となっている。このため、電極構造中の空隙には水系液体を流入させることができ、基質と還元微生物3とグラフェンとを効率良く接触させ、生産できる電力を向上させることができる。

【0112】
更に、生成されたグラフェンは自発的に集積して構造体を形成するため、負極室51内の所定の場所にグラフェン電極54を形成することができる。このため、1の容器内において、支持体(カーボンクロス54aなど)を正極52から所定距離以上離してグラフェン電極54を製造すれば、生成するグラフェンによって両者が導通することはない。このため、プロトン伝導膜53を不要とする電池構造とすることもできる。かかる容器として、例えば後述する実施例のようにT字管などを用いても良い。

【0113】
尚、上記実施形態の微生物発電装置用電極の製造方法は、作製された電極をそのまま使用して発電ができるように微生物発電装置50の中で製造するものであったが、これに代えて、別の容器で電極を製造するようにしても良い。この場合、当該容器は、液体を貯留できる有底の容器であればよく、容器中に、泥しょう、汚泥、土、水域堆積物などの所定量と、酸化グラフェンと、酢酸などの基質を含む水溶液とが投入される。かかる状態で静置すれば、生成したグラフェンが容器内にて集合し、容器内形状に対応した態様で一体化する。このため、容器内に導線となる材料を予め導入しておけば、導線が埋入されたグラフェン電極が作製される。尚、導線となる材料としては、例えば、白金コイルや白金線、銅線などの金属材料が例示される。これによれば、作製したグラフェン電極を単体で得ることができ、容器から取り出して、他の微生物燃料電池の電極として用いることができる。

【0114】
上記の製造方法により作製された電極は、上述のように、微生物発電装置用の電極として優れたものであるが、その用途は、当該微生物発電装置の電極に限定されるものではなく、他の装置における通常の電極としても使用することも可能である。

【0115】
なお、微生物を利用した電力生産方法に係る発明の構成は、上記した実施形態1から実施形態3の各微生物発電装置1,20,30によって電力を生産する方法が該当する。上記した微生物発電装置用電極の製造方法の実施形態においてグラファイトシート54a表面に微生物と共に付着、集積したグラフェンの態様が、微生物発電装置用電極に係る発明およびその製造方法に係る発明の構成に記載する導電性構造体に該当する。また、上記した微生物発電装置用電極の製造方法の実施形態において、泥しょう、汚泥、土などの所定量を負極室51に投入し、次いで、酸化グラフェンと基質としての酢酸とを含む水溶液を投入して負極室51内を液体で満たし、嫌気雰囲気で酸化グラフェンを電子受容体とする微生物を集積する工程が、微生物発電装置用電極の製造方法に係る発明の構成に記載する培養工程に該当する。

【0116】
次に、上述の微生物発電装置の応用例(実施形態の変形例)について説明する。図6は、いわゆる土壌電池として構成した状態を示す図である。この図に示すように、異なる二種類の土壌A,Bを調整し、両者を区分して積層したものである。下層の土壌Aは、有機物質を含む土、泥しょう、汚泥、水域堆積物等に酸化グラフェンを投与したものであり、上層の土壌Bは、酸化グラフェンが投与されていない土、泥しょう、汚泥、水域堆積物等で構成されている。土壌Aの上方に土壌Bを積層させることにより、土壌Aが外気から遮断され、嫌気的環境下に存在させることができ、この土壌Aに嫌気性微生物を培養または供給することにより、当該土壌Aにおいて有機物質が代謝されて電子が生成される。他方、土壌Bは外気に触れる状態であり好気的環境とすることができる。そして、両土壌A,Bには、十分な量の水等の液体(図示せず)が供給されており、下層の土壌Aにおける微生物の代謝産物として発生したプロトンが上層の土壌Bに移動できるようになっている。また、土壌Aには負極14が埋設され、土壌Bの表面には正極15が設置されており、外部回路16を介して両者を接続することにより発電装置(土壌電池)が形成されるのである。この場合、正極15は酸素の供給を得るために、少なくとも一部が土壌Bの表面から露出するように設けられる。

【0117】
上記のような構成であるから、下層の土壌Aの範囲を負極領域(負極室)11が形成され、上層の土壌Bの範囲を正極領域(正極室)12が形成されるものである。ここで、上記応用例は、負極領域(負極室)11と正極領域(正極室)12との境界に画設部材を設けていない。これは、既述のように、負極領域(負極室)11が多くの固形物を含む場合に、画設部材を非設とすることができることを示す例であり、この応用例では、負極領域(負極室)11から正極領域(正極室)12へのグラフェンおよび微生物の流入を抑えられることから、画設部材を省略したものである。また、この応用例を示す図は、特定の容器内に土壌A,Bを投入する構成ではなく、屋外の地表面に構成される状態を示しており、このように、屋外地表面を使用することにより広大な面積において土壌電池を構成することができる。なお、当然のことながら、同様の構成により有底の容器を使用した土壌電池を作製することも可能である。

【0118】
次に、他の応用例(さらなる変形例)について説明する。図7は、いわゆる植物電池(例えば稲を使用した稲電池など)として構成した例を示す図である。二層の土壌A,Bは、前記土壌電池の例と同様であり、下層の土壌Aには酸化グラフェンが投入され、上層の土壌Bには酸化グラフェンが投入されていないものである。従って、下層の土壌Aを上層の土壌Bによって覆うことにより、下層の土壌Aが嫌気的環境下におくことができ、当該土壌Aの範囲を負極領域(負極室)11とするものである。つまり、下層の土壌において、嫌気性微生物による有機物質の代謝を行わせることができるのである。また、両土壌A,Bには十分な量の水等の液体が浸透され、その液体は上層の土壌Bを覆う程度に供給されている。当該水等の液体により、上層の土壌Bの上方には、水等の液体による層(以下、液層という)Cが流入されており、この液層Cと上層の土壌Bとで正極領域(正極室)12が形成されている。これにより、上記代謝により生成されるプロトンを液層Cに移動させることができるものである。なお、上層の土壌Bは外気に接していないが、液層Cの溶存酸素により好気的環境下とすることができる。好気的条件が不足する場合には、液層Cを曝気するように構成しても良い。上記構成において、下層の土壌Aに負極14a,14bを埋設し、水Cの層の表面に浮上させた正極15a,15bを設け、外部回路16を介して両極を接続することにより発電装置(植物電池)を形成することができる。

【0119】
ところで、この応用例で使用される植物Dは、水生植物が好ましく、比較的旺盛に光合成を行う稲などが好ましい。すなわち、負極領域(負極室)11で発生するプロトンを正極領域(正極室)へ移動させるために十分な水等の液体を供給する必要があり、水性植物でなければ生育できない可能性があるためである。また、植物Dが生育することにより、植物Dの光合成により生成される有機化合物が、根から土壌内に放出されるため、土壌Aに対して有機物質を追加して供給することなく微生物の代謝を可能にする環境とし得るのである。すなわち、長期間の電池としての機能を発揮させることができるのである。なお、植物Dの根は成長とともに下方に伸びることから、土壌Bに植物Dを植え付ければ足りるが、根を下層の土壌Aに到達させるように植え付けることにより、植物Dによる有機物質の供給が早期から実現することとなる。

【0120】
なお、負極14a,14bおよび正極15a,15bはそれぞれ複数設置しているが、これは、植物Dの根および茎・葉等が成長する際の妨げにならないようにしたものであり、図示のように複数の電極を使用する際には、同極同士を直列に接続すれば良いものである。この応用例では、比較的小さい2個の電極を直列に接続しているが、これらの電極の大きさおよび数は、植栽する植物の種類・数等の状態に応じて適宜決定することができる。また、この応用例では、屋外の地表面を使用し(例えば水田を利用し)、広大な面積に構築することができるものであるが、有底の容器を使用して構成しても良い。さらに、土壌A,Bには、水田土壌を使用することができる。

【0121】
以上、実施の形態に基づき本発明を説明したが、本発明は上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能であることは容易に推察できるものである。

【0122】
例えば、本実施の形態である微生物発電装置1,20,30においては、負極室11(嫌気処理槽32)、正極室12(好気処理槽33)は、各1ずつであったが、負極室の数、正極室の数はこれに限られるものでなく、複数設けても良い。その場合、正極室12の好気的環境を保持するために、曝気装置23にて各正極室12へそれぞれ空気を供給するように装置は構成される。また、上記した微生物発電装置1,20,30は、各室または各槽に配設される電極はそれぞれ1ずつであったが、これに代えて、複数の電極を設置しても良い。また、上記した微生物発電装置1,20は正極室12にグラフェンを含まない構成として説明したが、これに代えて正極室12にグラフェンが導入されていても良い。かかる場合には、微生物発電装置20は、微生物発電装置に係る発明の第5の構成に該当する。
【実施例】
【0123】
以下に、実施例を挙げてより詳細に説明する。尚、本発明がこれらの実施例に限定されるものではないことは、いうまでもない。
【実施例】
【0124】
(実施例1)
酸化グラフェンは、V.C. Tung, M.J. Allen, Y. Yang and R.B. Kanerによる2009 年発行のNature Nanotechnology 4巻25-29頁に記載の方法で作製し、4g-dry・L-1に調整した。これを酸化グラフェンストック溶液とした。
【実施例】
【0125】
酸化グラフェンを還元する酸化グラフェン還元微生物(以下単に、GO還元微生物と称す。)による発電試験の微生物接種源には、水田土壌を用いた。本土壌に蒸留水を加えスラリー状化した。このスラリー状土壌を2.0mm径のふるいに通し、水分含量35%になるよう調製し、湛水状態のまま、ビニールバックで密閉し、22℃に保存した。
【実施例】
【0126】
GO還元微生物による発電試験に用いたAGO-FS培地は下記のように調製した。AGO-FS培地の組成を表1に示す。
【実施例】
【0127】
【表1】
JP0005990746B2_000002t.gif
【実施例】
【0128】
まず、表1に示すミネラル塩を蒸留水に溶解し、80℃程度まで熱した後、室温になるまで30~60分間窒素ガスを曝気した。これを必要量ガラスバイアル瓶に分注した後、再度ガスを5~15分程度曝気した後ブチルゴム栓およびアルミシールで密閉固定した後、オートクレーブ滅菌(121℃、15分)した。
【実施例】
【0129】
GO還元微生物発電試験は、以下のように行った。およそ60gの水田土壌とおよそ40mLの酸化グラフェン希釈溶液を混練し、酸化グラフェンの最終濃度がおよそ0.1g/Lになるように添加した。培養開始時に、AGO-FS培地(但し酸化グラフェン濃度は最終濃度0.1g/Lとする)に、さらに電子供与体として10mMグルコースを添加した。およそ400mL容量の電池槽の底部に50mL容積の酸化グラフェンおよび水田土壌の混練物を投入した後、銅線に接続したグラファイトフェルトをのせ、さらに50mL容積の酸化グラフェンおよび水田土壌の混練物を投入した。この上に、さらに酸化グラフェンを添加していない水田土壌を200mL程度加えた後、水田土壌上部に、銅線に接続したグラファイトフェルトを載せ、必要に応じて、底部に敷いたグラファイトフェルトと、抵抗、電圧計または電流計を介して銅線で接続した。発電量は、100~10KΩの抵抗を用いて2極間の電圧を測定することにより算出した。
【実施例】
【0130】
また、比較のため、酸化グラフェンストック溶液にかわり蒸留水40mLを添加した酸化グラフェン非添加培養物を用い、それ以外は実施例1と同様に調製し、比較例1とした。
【実施例】
【0131】
GO還元微生物発電試験の結果、培養0日目にはゼロに等しかった電力が培養開始後3~4日には酸化グラフェン非添加培養物で2μW/cm2、酸化グラフェン添加培養物ではおよそ10μW/cm2であり、酸化グラフェン添加による電力生産の促進効果が観察された。さらに酸化グラフェン添加培養物においては、酸化グラフェンを混練した底部で明らかな培養物の黒色化が観察された。ことから、酸化グラフェンがグラフェンへと還元されていることが目視で確認された。酸化グラフェンは水によく分散した茶色物質であるがグラフェンへと還元されると疎水性の黒色構造物へと変化する。これより、酸化グラフェン添加培養物において、酸化グラフェンが微生物代謝により電気伝導性に優れたグラフェンへと還元されることで、微生物の接触効率に極めて優れた流動性電極となり、微生物からグラファイト電極(陰極)に至る電子パスが形成され、電力生産力が向上したことが示唆された。
【実施例】
【0132】
(実施例2)
GO還元微生物の集積培養試験の微生物接種源には、河川堆積物、用水路泥しょう、水田土壌および海砂を用いた。表1に示す培地を上述の通り調製し、乾燥重量0.5g程度の河川堆積物、用水路泥しょう、水田土壌および海砂をそれぞれ投入して、28℃で静置培養を行なった。酸化グラフェン還元の有無は、水によく分散した茶色物質である疎水性の黒色構造物(グラフェンの集合体)の有無を目視観察し、黒色構造物を形成した培養物をGO還元微生物培養物とした。3~10日間の培養の後、疎水性の黒色構造物を形成した培養物をGO還元微生物培養物については、1mLを採取し新しいAGO-FS培地に投入し植え継ぎ培養を繰り返した。培養物中の微生物はProLong Gold antifade reagent
with DAPI(Invitrogen)を用いて核酸蛍光染色し顕微観察することにより検出した。また、培養液中の酢酸濃度は、培養液と等量の85%リン酸を混合することで酸性化した溶液2μLを、FID検出器およびUnisole F-200 30/60 ガラスカラムを装着したガスクロマトグラフ分析装置GC-2014(島津製作所)に注入することで測定した。この際、キャリアーガスとして窒素を用い、カラム温度200℃、意注入口、検出器温度は250℃とした。
【実施例】
【0133】
さらに、比較のため、オートクレーブ滅菌した接種源を投入した培養物、酢酸ナトリウムを添加していない培養物、酸化グラフェンを添加していない培養物、酢酸も酸化グラフェンも添加していない培養物についても併せて調製し比較例2とした。尚、その他の調製方法は実施例2と同様とした。
【実施例】
【0134】
実施例2で調製した各培養物では、すべての接種源について、グラフェン様の黒色構造物の形成が確認された。一方、比較例2のオートクレーブ滅菌した環境試料を投入した培養物では、黒色構造物の形成が観察されなかった。これより、実施例2では酸化グラフェン還元が生物学的反応により生じており、酸化グラフェン還元を担う微生物は環境中に普遍的に存在することが示唆された。
【実施例】
【0135】
さらに、河川堆積物由来GO還元微生物植え継ぎ培養物を用いて、酸化グラフェン還元前後の酢酸濃度変化を調べた結果、比較例2の酸化グラフェン非添加培養物では酢酸が消費されないのに対し、実施例2の酸化グラフェン添加培養物では、1~2mMの酢酸ナトリウムが消費されることが示された。さらに、培養物中の微生物を顕微鏡観察すると、実施例2の酸化グラフェンおよび酢酸が添加された培養物でのみ100~300倍の微生物増殖が観察された。一方、比較例2の培養物ではこのような微生物増殖は観察されなかった。これより、実施例2の培養物には、酢酸を電子供与体、酸化グラフェンを電子受容体とした細胞外電子伝達呼吸により生育する微生物、即ち電極による電子回収が可能な電流生産微生物が選択的に集積されることが示唆された。
【実施例】
【0136】
さらに、上述の方法で集積した実施例2の河川堆積物由来GO還元微生物集積培養物を用いて、以下の方法でカーボンクロスを支持体として微生物発電装置内で電極形成を試みた。直径3cm、長さ8cmの直管に分岐管を有するT型ガラス円筒管を、直管を鉛直方向にして容器として用いた。底部をガラスフランジおよびチェーンクランプで密閉し、横口に、片面に白金を塗布したカーボンペーパーを白金塗布面が外側になるように装着し、さらに白金線をのせ、エストラマーシールおよびチェーンクランプで固定した。ここへ25mL程度のAGO-FS培地、1mLのGO還元微生物集積培養物および50mm長の攪拌子を投入した後、白金線を縫いつけたカーボンクロスを投入した後、上口をブチルゴム栓で密閉した。培養物はおよそ25℃程度の室温下、500rpmで攪拌しながら培養した。容器内培養物のサンプリング、容器内への培地や電子供与体の供給などは、必要に応じて針を装着したシリンジを上部ブチルゴム栓に挿入することで行った。また、比較例2の酸化グラフェン非添加培養物も同様に調製、培養した。
【実施例】
【0137】
上記実施例2の河川堆積物由来GO還元微生物集積培養物を用いて、微生物発電装置内で酸化グラフェンをグラフェンへと還元するか試みた結果、培養開始時には均一に分散していた茶色の酸化グラフェンが黒色構造体のグラフェンへと還元され、さらにはカーボンクロス回りおよび電池底部に自己凝集することを確認した。カーボンクロスに負極と横口の白金塗布カーボンペーパー陽極間に、47~10KΩの抵抗および電圧計を接続し電力測定を行った結果、実施例2の酸化グラフェン添加培養物では20μW/cm2であった。一方、比較例2の酸化グラフェン非添加培養物では発電量は3.3μW/cm2であった。このように、土が存在しない高度に集積された培養物においても酸化グラフェン添加により発電が促進されることが示された。また、グラフェンの自己凝集によって電極が形成されることが示された。
【実施例】
【0138】
また、上記の実施例2の河川堆積物を由来としたGO還元集積培養物について、16S rRNA遺伝子クローンライブラリー法による生息微生物の同定解析を以下の方法で行った。まず、GO還元微生物、グラフェンを含む培養物およそ10mLを採取し、滅菌水に濃縮懸濁した後、プロテナーゼKおよびリゾチウムを用いた菌体溶解反応を行った。この菌体溶解液から、フェノールクロロホルム抽出およびエタノール沈殿法によりDNAを抽出した。次いで、この抽出DNAをテンプレートとして、細菌16S rRNA遺伝子に特異的なプライマー(27F:5'-AGAGTTTGATCCTGGCTCAG, 1492R:TACGGYTACCTTGTTACGACTT)を使用してポリメラーゼ連鎖反応(polymerase chain reaction, PCR)法を用いて増幅した。得られたPCR産物についてTOPO(登録商標) TAクローニングキット(Invitrogen)を用いてクローン化した。クローン化した配列は、BigDye(登録商標) Terminator v3.1 Cycle Sequencing Kit(Applied biosystems)を用いてシークエンシング反応を行いキャピラリーシーケンサー(Applied biosystems)により泳動を行った。
【実施例】
【0139】
上記の河川堆積物由来のGO還元微生物集積培養物について16SrRNAクローンライブラリーを構築し、10クローンについてシーケンス解析を行った結果、このうち5クローンが電流生産微生物として知られるデルタプロテオバクテリア綱ジオバクター属細菌に97%以上の相同性を示した。残り5クローンは、おなじくデルタプロテオバクテリア綱デスルフォビブリオ属細菌に98%以上の相同性を示した。このうち2クローンは、鉄還元能即ち電流生産能を有するデスルフォビブリオ ブルガリスに最類縁であった。これにより、酢酸および酸化グラフェンを電子供与体および受容体として用いることにより電流生産菌を選択的に集積できることが示された。
【実施例】
【0140】
(実施例3)
実施例2のGO還元微生物集積物からGO還元微生物を以下の方法により分離培養した。2倍濃度のAGO-FS培地5mLを含む30mL容積のガラスバイアル瓶を用意し、ここへ集積培養物を10-1~10-7に連続希釈する。ここへ5mLのオートクレーブ溶解の後40℃の湯浴で保温しておいた1%低融点アガロースを添加し、手で軽く振って混和した後、氷水に5分間程度保冷し、ゲル化する。この培養物を28℃で培養する。1ヵ月の培養の後、グラフェン様物質の産生による黒色を呈したコロニーを採取し、AGO-FS培地に投入後、28℃で培養することにより、単一のGO還元微生物を含む培養物を得た。
【実施例】
【0141】
GO還元集積培養物を微生物接種源とし、アガロース培地を用いた固形培地に混釈し分離培養を行ったところ、固形培地中における酸化グラフェン還元が観察されたと共に、この黒色に変色した部分をさらに液体培地に接種し再培養した結果、酸化グラフェン還元が確認された。これより、酸化グラフェンを含むアガロース混釈培地を用いることにより、環境中から効率的にGO還元微生物を分離できることが示された。
【実施例】
【0142】
(実施例4)
本実施例では、微生物電池とは別の容器内でグラフェン電極を作製した。実施例2のGO還元微生物集積物について、最終濃度0.25g/Lの酸化グラフェンを投入し、0.9Lを密閉容器内で28℃の環境下において10日間静置培養した。培養前は均一に分散した酸化グラフェンが、培養後においては、グラフェンとGO還元微生物との混合物が自己凝集により直径3cm・高さ3cmの略円柱形の塊状となったものを得た。この混合物を負極側の電極として使用した場合の微生物発電装置における電力生産量を測定した。使用した微生物発電装置は、実施例1と同様とし、前記混合物を容器内から取り出して負極側の電極とし、10kΩ~1Ωの抵抗を用いて正極間の電圧を測定することにより発電量を算出した。なお、比較のために、グラファイトフェルトを負極側の電極とした微生物発電装置を作製し、当該発電装置内で、導入した酸化グラフェンからグラフェン電極が生成される場合を比較例とした。その結果を図8に示す。なお、図中の黒丸は本実施例で作製した電極を使用した場合を示し、白丸は比較例を示す。
【実施例】
【0143】
図8から明らかなとおり、本実施例により作製した電極を使用した場合は、最大で50mW/L以上の電力を生産し、微生物発電装置内でグラフェン電極が生成される場合と比較すると、約10倍の電力生産促進効果が観察された。
【実施例】
【0144】
(実施例5)
本実施例では、酸化グラフェンを添加した土壌を使用した土壌電池を作製した。使用する土壌として二種類調整し、一方が酸化グラフェンを添加した土壌A、他方が酸化グラフェンを添加しない土壌Bとした。酸化グラフェン添加土壌Aは、市販される園芸用土壌300gに対し、蒸留水150mL~200mL、酸化グラフェン1gおよび酢酸ナトリウム10mMを添加し、pH7.0に調整した後、十分に混練したものを使用した。酸化グラフェン非添加土壌Bは、同様の園芸用土壌200gに対し、蒸留水100mLおよび酢酸ナトリウム10mMを添加し、pH7.0に調整した後、十分に混練したものを使用した。本実施例の土壌電池は、図9(a)に示すような構成であり、その作製方法は、まず、500mLのガラス容器に、酸化グラフェン添加土壌Aを約100g投入した。この土壌Aの表面に導線に接続されたグラファイトフェルト(負極)14を敷き、その上から酸化グラフェン添加土壌Aを約200g投入した。さらに、その上に酸化グラフェン非添加土壌Bを200g投入し、表土が大気に触れないように密閉し、28℃の環境下において10日間培養した。培養後、密閉を解除し酸化グラフェン非添加土壌Bの表面に導線を接続したグラファイトフェルト(正極)15を設置した。この状態で28℃の環境下において培養しつつ発電量を測定した。なお、比較のために、図9(b)に示す比較例を作製した。比較例の作製方法は、実施例5において投入した酸化グラフェン添加土壌Aに代えて酸化グラフェン非添加土壌Bを投入したものであり、他は、実施例5と同様に行った。
【実施例】
【0145】
発電量を測定するために、1kΩの抵抗16aを介して両極の導線を接続し、抵抗16aの両側の電圧を測定し、電力量を算出した。電圧は1時間の間隔で測定し、6日間(144時間)行った。その結果を図10に示す。なお、図中の黒丸は本実施例で作製した土壌電池の発電量を示し、白丸は比較例の発電量を示す。
【実施例】
【0146】
図10から明らかなとおり、酸化グラフェン添加土壌Aを使用した土壌電池の発電量は、最大で415μw/Lに達するものであったのに対し、比較例の発電量は、最大でも42μw/L程度であった。この結果から、酸化グラフェンを投入した土壌電池における電力生産の促進効果を観察することができた。
【実施例】
【0147】
(実施例6)
本実施例では、酸化グラフェンを添加した土壌を使用した稲電池を作製した。本実施例においても使用する土壌として二種類調整し、一方が酸化グラフェンを添加した土壌A、他方が酸化グラフェンを添加しない土壌Bとした。酸化グラフェン添加土壌Aは、市販される園芸用土壌に対し、酸化グラフェン3g/Lを添加し、十分に混練したものを使用した。酸化グラフェン非添加土壌Bは、同様の園芸用土壌そそのまま使用した。本実施例の土壌電池は、図11(a)に示すような構成であり、その作製方法は、まず、15Lの容積を有するポリ容器(バケツ)に、酸化グラフェン非添加土壌を3kgと、十分な量の水道水と、酸化グラフェン添加土壌Aを2kgとを投入し、容器内で混練した。その表面に導線に直列に接続された3枚のグラファイトフェルト(負極)14a,14b,14cを適宜間隔で並べて敷き、その上から酸化グラフェン添加土壌Aを2.5kg投入した。さらに、その上から酸化グラフェン非添加土壌Bを3kg投入し、十分な量の水道水を流入して容器を水道水で満たし、室外において10日間培養した。培養後、3本の稲苗D1,D2,D3を上層土壌Bに植え、さらに、導線に直列に接続された3枚のグラファイトフェルト(正極)15a,15b,15cを水面上に浮かべた。この状態で室外において培養しつつ発電量を測定した。なお、比較のために、図11(b)に示す比較例を作製した。比較例の作製方法は、実施例6において投入した酸化グラフェン添加土壌Aに代えて酸化グラフェン非添加土壌Bを投入したものであり、他は、実施例6と同様に行った。
【実施例】
【0148】
発電量を測定するために、22Ω~1kΩの外部抵抗16aを介して両極の導線を接続し、抵抗16aの両側の電圧を測定し、電力量を算出した。電圧は1時間の間隔で測定し、約3ヶ月間行った。その結果、観察期間3ヶ月のうち、約60日において顕著に異なる発電量を示した。代表的な7日目、15日目、27日目、82日目をピックアップし、図12に示す。なお、図12(a)が本実施例であり、図12(b)が比較例である。
【実施例】
【0149】
この図から明らかなとおり、本実施例の稲電池は、19~54μW/m2の発電量であったのに対し、比較例の稲電池は、6~20μW/m2の発電量であった。この結果から、酸化グラフェンを投入した稲電池では電力生産の促進効果を観察することができた。また、82日目においても30μW/m2程度の発電量を示しており、長期間の発電能力を有することが観察できた。
【符号の説明】
【0150】
1,20,30,50 微生物発電装置
11,51 負極室(負極部)
12 正極室(正極部)
14,54 負極
15 正極
16 外部回路
22a 連通口(供給口)
22b 連通口(排出口)
23 曝気装置(酸素供給手段)
32 嫌気処理槽(負極部)
32a 供給口
33 好気処理槽(正極部)
33a 排出口
36 沈降槽(貯留槽)
36b 排出口(放出口)
38a 返送ライン(返送手段の一部)
52 正極(正極、正極部)
54 グラフェン電極、微生物発電装置用電極(微生物発電装置用電極)
A 酸化グラフェン添加土壌
B 酸化グラフェン非添加土壌
C 液層
D 水性植物(稲)
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11