TOP > 国内特許検索 > 鉄損分布測定装置 > 明細書

明細書 :鉄損分布測定装置

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第5048139号 (P5048139)
公開番号 特開2012-173280 (P2012-173280A)
登録日 平成24年7月27日(2012.7.27)
発行日 平成24年10月17日(2012.10.17)
公開日 平成24年9月10日(2012.9.10)
発明の名称または考案の名称 鉄損分布測定装置
国際特許分類 G01N  25/72        (2006.01)
H01F  41/00        (2006.01)
G01J   5/48        (2006.01)
G01R  33/12        (2006.01)
FI G01N 25/72 Z
H01F 41/00 Z
G01J 5/48 A
G01R 33/12 Z
請求項の数または発明の数 3
全頁数 18
出願番号 特願2011-039080 (P2011-039080)
出願日 平成23年2月24日(2011.2.24)
新規性喪失の例外の表示 特許法第30条第1項適用 平成22年11月3日 大分大学発行の「11th International Workshop on 1&2 Dimensional Magnetic Measurement and Testing」に発表
特許法第30条第1項適用 平成22年11月4日 国立大学法人大分大学主催の「11th International Workshop on 1&2 Dimensional Magnetic Measurement and Testing」において文書をもって発表
審査請求日 平成24年6月22日(2012.6.22)
特許権者または実用新案権者 【識別番号】508324433
【氏名又は名称】公益財団法人大分県産業創造機構
発明者または考案者 【氏名】下地 広泰
【氏名】榎園 正人
【氏名】戸高 孝
早期審査対象出願または早期審理対象出願 早期審査対象出願
個別代理人の代理人 【識別番号】100116573、【弁理士】、【氏名又は名称】羽立 幸司
審査官 【審査官】▲高▼見 重雄
参考文献・文献 特開平09-138205(JP,A)
特開平03-186748(JP,A)
特開2006-329982(JP,A)
石井隆, 齋藤兆古,ビッター法による動的磁区挙動に関する研究,電気学会マグネティックス研究会資料,日本,2010年11月25日,Vol.MAG-10, No.150-155,Page.17-22
矢後克二, 長江洋典,アモルファス変圧器《第四報》,愛知電機技報,日本,1992年12月,No.13,Page.3-7
山本 孝明, 大宅 良宏, 野沢 忠生, サーミスタブリッジによる電気鉄板の局所鉄損測定装置,電気学会論文誌. A,日本,1978年 6月20日,Vol.98 , No.6,pp.331-338
調査した分野 G01N 25/00-25/72
G01J 5/48
G01R 33/12
H01F 41/00
特許請求の範囲 【請求項1】
測定対象物に生じた鉄損の各位置及び各大きさを示す分布を測定する鉄損分布測定装置であって、
前記測定対象物は真空状態におかれ、
前記真空状態におかれた測定対象物に対する励磁を行う励磁手段と、
前記励磁手段の動作を制御する制御手段と、
前記真空状態におかれた測定対象物が励磁されている際にその温度分布を示す温度分布データを1回の一括した非接触の測定により測定する温度分布測定手段と、
前記温度分布測定手段が時間経過に応じて複数回測定した複数の温度分布データに基づいて励磁中の温度勾配の分布を求めるとともに求められた複数の温度勾配の分布データを用いて平均化処理を行う温度勾配平均化処理手段と、
前記平均化処理により温度分解能が向上して得られた温度勾配の分布データを鉄損の分布データに変換して鉄損の分布を測定する変換手段とを備えた、鉄損分布測定装置。
【請求項2】
前記温度分布測定手段は、温度分布を測定するサーモグラフィカメラである、請求項1記載の鉄損分布測定装置。
【請求項3】
前記複数の温度分布データは、前記励磁手段の動作が停止して初期状態が一定とみなせる時間間隔により得られたデータである、請求項1又は2記載の鉄損分布測定装置。
発明の詳細な説明 【技術分野】
【0001】
本発明は、鉄損分布測定装置に関し、特に測定対象物に生じた鉄損の各位置及び各大きさを示す分布を測定する鉄損分布測定装置に関する。
【背景技術】
【0002】
まず、電気機器は電磁鋼板が用いられることが多く、その損失は大きく分けて銅損、機械損、鉄損に分けられる。鉄損による損失は熱に変換されるため、電気機器における発熱源となり、小型化の阻害要因と言われており、鉄損の測定は難しいとも言われている。そのため、鉄損測定は磁化特性の測定と並んで基本的な測定の一つとなっている。電気機器の鉄損は、損失分離により評価されることが多く、全体の損失から各種損失を引いた残りを鉄損とすることが多い。このような測定では、全体の平均損失が電力計などで測定されることで得られるが、精度の点で疑問が残っていることに加えて、局所的な鉄損分布を把握することは困難である。これは、鉄損が主に電磁鋼板中で発生するが、磁束密度に起因して発生するため、均一ではなく、局所的に損失を把握することが難しいためである。これに対して、鉄損を直接測定するためには小さな探針センサーとHコイルにより測定が可能である。
【0003】
一方、鉄損は熱に変換されるため、温度上昇による損失の特定は本質的であり、損失の同定には有効である。そのため、電磁鋼板の鉄損の直接測定においては、局所的に温度を測定することによる、熱電対やサーミスターによる方法が提案されている(例えば、非特許文献1及び非特許文献2参照)。
【0004】
それらの報告によると1.2T程度で約0.0035K/s程度の温度上昇率が有り、熱電対出力に対して0.14μVの変化率を与える。そのため、微小な熱起電力を応答よく増幅し、記録することが必要とされる。また、サーミスターと熱電対は、センサーの応答性が鉄損測定の精度に影響する。また、温度変化が微小であるため、外界との熱伝達の影響についても詳細に検討されており、5~10秒以内であれば、精度良く測定が可能であることが示されている。
【0005】
なお、鉄損ではないが、特許文献1に記載されているように、電界/磁界分布可視化装置が提案されており、例えば赤外線カメラによって可視化して磁界の空間分布状態を把握することも提案されている。また、非特許文献3に記載のように、ビッター法による磁区画像の鉄損分布の可視化についての研究も報告されている。
【先行技術文献】
【0006】

【特許文献1】特開2001-66337号公報
【0007】

【非特許文献1】社団法人電気学会発行 電気学会論文誌 VOL.94-A,NO.4,Apr.,1974(昭和49年4月) 電気鉄板の熱電的部分鉄損測定法 成田賢仁 今村正明 p167(39)~p174(46)
【非特許文献2】社団法人電気学会発行 電気学会論文誌 昭和53年6月98巻A分冊6号 サーミスタブリッジによる電気鉄板の局所鉄損測定装置 山本孝明 大宅良宏 野沢忠生 p331(41)~p338(46)
【非特許文献3】法政大学情報メディア教育研究センター研究報告Vol.21 2008年ビッター法による磁区画像の鉄損分布の可視化 須永高志 齋藤兆古 p91~95
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、鉄損は電磁鋼板中の磁束密度に起因した損失であるため、鉄損を直接測定するためには小さな探針センサーとHコイルにより測定が可能であるものの局所的な領域の損失であり、一部の測定で全体の損失とするには精度や簡便性に問題がある。すなわち、簡便で精度良く、鉄損を局所的にも把握して全体も把握することが困難であった。
【0009】
また、非特許文献1及び非特許文献2に記載の測定法のいずれも、多くの制約条件があり、測定が難しい。また、全体の損失を把握しようとすれば、局所的に温度センサーを設置して複数の測定ポイントを測定する必要があり、その労力は大きすぎて多数のサンプル点の測定には不向きという問題がある。しかも、電磁鋼板を使用した電気機器では、一般的に材料は一様に磁化されているとは限らず、部分的に、磁束密度の大きさ、方向、磁束波形などの磁束条件によって異なることも問題になってくる。また、電磁鋼板は多結晶であるため、材料自身でも局所的には磁気特性が異なるということも問題になってくる。さらに、電磁鋼板では、圧延により、磁化容易方向と困難方向が存在し、それぞれ磁気特性が異なることも報告され、この点も問題になってくる。さらに、鉄損が発生する熱量は大変小さく、例えば0.003度/Hzの高感度の測定が必要とされるという問題もある。さらに、電磁鋼板は熱伝達があることから、損失の発生源を特定するためには短い時間で測定することが望ましいが、短い時間とすればするほど温度上昇が小さく測定が難しいという問題もある。
【0010】
なお、特許文献1に記載のように、赤外線カメラ(サーモグラフィカメラ)も用いれば、簡便な方法で温度を広範囲に一度に測定でき、多サンプルの要求にも応えることができるが、温度分解能が低く、測定されたデータをそのまま用いるのでは、精度が問題となる。また、非特許文献3に記載の手法では、磁区像を用いた鉄損推定には磁区の大きさ等から鉄損を推定しているため、精度に問題がある。さらに、磁区を観察するためには、カー効果又はX線を用いた装置を用いる必要が有り、電磁鋼板の皮膜を除去しなくてはいけない複雑さがあるという問題がある。そして、通常電磁鋼板は積層して渦電流を抑制することで損失を下げており、そのため、鋼板間の絶縁を保つため数ミクロンの絶縁皮膜が有る結果、非特許文献3の技術は材料開発には使用できる得る面があるとも思われるが、実機のように複雑形状には対応が難しいという問題がある。
【0011】
すなわち、従来のいずれの技術を用いても、測定対象物の形状の自由度を大きくしながら、簡便に精度良く、鉄損を局所的にも測定して全体も測定することが十分ではなかった。
【0012】
ゆえに、本発明は、測定対象物の形状の自由度を大きくしながら、簡便に精度良く、鉄損の測定を局所的にも全体としても測定できる鉄損測定装置を提供することを目的とする。
【課題を解決するための手段】
【0013】
請求項1に係る発明は、測定対象物に生じた鉄損の各位置及び各大きさを示す分布を測定する鉄損分布測定装置であって、前記測定対象物は真空状態におかれ、前記真空状態におかれた測定対象物に対する励磁を行う励磁手段と、前記励磁手段の動作を制御する制御手段と、前記真空状態におかれた測定対象物が励磁されている際にその温度分布を示す温度分布データを1回の一括した非接触の測定により測定する温度分布測定手段と、前記温度分布測定手段が時間経過に応じて複数回測定した複数の温度分布データに基づいて励磁中の温度勾配の分布を求めるとともに求められた複数の温度勾配の分布データを用いて平均化処理を行う温度勾配平均化処理手段と、前記平均化処理により温度分解能が向上して得られた温度勾配の分布データを鉄損の分布データに変換して鉄損の分布を測定する変換手段とを備えたものである。
【0014】
請求項2に係る発明では、請求項1において、前記温度分布測定手段が、温度分布を測定するサーモグラフィカメラである。
【0015】
請求項3に係る発明では、請求項1又は2において、前記複数の温度分布データが、前記励磁手段の動作が停止して初期状態が一定とみなせる時間間隔により得られたデータである。
【発明の効果】
【0016】
請求項1の発明によれば、まず、測定対象物を真空中におくことによって大気による熱伝達の影響を排除することにより、大気中で測定する場合よりも長い時間での測定を可能にする環境が整う。その上で、1回の一括した非接触で測定対象物の温度分布のデータが得られ、鉄損の分布を測定するための基礎となるデータとして温度分布のデータが広範囲で非接触で直接得られる。このように非接触での測定とすることにより測定対象物の形状の自由度は高いものであってもよいという利点が得られる。そして、時間経過に応じて複数回測定した複数の温度分布データに基づいて励磁中の温度勾配の分布を求めるとともに求められた複数の温度勾配の分布データを用いて温度勾配の平均化処理を行い、この平均化処理により温度分解能が向上して得られた温度勾配の分布データを鉄損の分布データに変換することで、簡便で精度良く鉄損の分布を広範囲で非接触で直接的に得ることができる。特に請求項2の発明によれば、一般的にサーモグラフィカメラの温度感度が最小で0.02度程度と言われているが、このままの感度で短時間測定による鉄損測定ではなく、時間経過に応じた複数回の繰り返し測定を行うことにより、温度勾配の平均化処理を施して温度分解能を向上させることにより、従来では克服できなかった簡便さと高精度というという鉄損では相反する課題を克服できる。さらに、請求項3の発明によれば、時間経過に応じた複数回の測定にあたり励磁停止後の適切な時間間隔とすることにより、初期状態を一定(同一)にみなして損失による熱量以外の影響を排除することができ、鉄損の発熱量は小さいものの、高精度の測定を実現できる。
【図面の簡単な説明】
【0017】
【図1】本発明の実施の形態にかかる鉄損分布測定装置の概略を示すブロック図である。
【図2】温度勾配測定方法を説明するための図である。
【図3】温度分布の時間に対する標準偏差を示す図である。
【図4】解析モデルとしてのベクトル磁気特性装置を示す図である。
【図5】鉄損分布の解析結果を示す図である。
【図6】1秒後と10秒後の温度勾配から求めた推定される鉄損分布結果を示す図である。
【図7】測定モデルを示した図である。
【図8】図7の測定エリアAと測定エリアBのサーモグラフィカメラによる測定結果を示す図である。
【図9】図7の測定エリアAと測定エリアBの探針センサーでの最大磁束密度分布を示す図である。
【図10】図7の測定エリアAと測定エリアBの探針センサーでの最大磁界強度分布を示す図である。
【発明を実施するための形態】
【0018】
図1は、本発明の実施の形態にかかる鉄損分布測定装置の概略を示すブロック図である。

【0019】
鉄損分布測定装置1は、測定対象物3を内部に収容する真空チャンバー5と、真空チャンバー5の上部に設けられた観察窓7に対抗する位置に配置されるサーモグラフィカメラ9と、サーモグラフィカメラ9にとっての焦点距離を合わせるために測定対象物3を移動させる移動機構10と、サーモグラフィカメラ9及び真空チャンバー5内の後述する励磁部6に接続するコンピュータ15とを備える。

【0020】
真空チャンバー5は、最大真空度0.001Pa程度、最大直径800mmまでの測定装置が設置可能なものを使用している。ここで、一般的なサーモグラフィカメラの温度分解能は熱電対測定に比べ、10倍~100倍感度が劣ると言われる。そのため、ここでの測定では、長時間の温度測定が必要とされる。その一方で、測定対象物が真空中にあるとすれば、大気による熱伝達の影響を排除することにより、大気中で測定する場合よりも長い時間での測定を可能にする環境が整う。すなわち、熱伝達は無視でき、測定対象物(例えば電磁鋼板)内部の熱伝導の影響と輻射熱の影響を考慮すれば足りることになる。したがって、図1に示すように、測定対象物3は、真空チャンバー5の中に収容されている。また、真空チャンバー5内には、測定対象物3に対して励磁を行う励磁部6が設けられている。なお、測定対象物のみが真空中におかれるようにしておけば測定機器などの通常使用が可能になる。

【0021】
サーモグラフィカメラ9は、上部の観察窓7を介して赤外線によって測定対象物3の温度分布の測定を行うものである。そのため、観察窓7は、赤外線を透過させるサファイアガラス(厚さ10mm)が使用されている。そして、鉄損は後述するように温度勾配に比例するため、測定された温度結果から温度勾配を得ることは重要であり、温度分布の測定が複数回行われることにより励磁中の温度勾配を得ることができるようにしている。ここで、サーモグラフィカメラ9の仕様を説明する。検出器として量子型センサInSb FPAが用いられている。検出器素子数は256(H)×256(V)、検出器冷却方式はスターリングクーラ冷却方式、検知波長は3.5~4.1μm,4.5~5.1μm、最小温度分解能は0.025℃以下、取得フレーム数は30fpsとしている。なお、サーモグラフィカメラ9の測定値は赤外線のカウント値で得られる。その赤外線カウント値が補正されることで通常は温度が求められるが、本測定で求めるものは極小の温度変化であり、赤外線量の勾配と温度勾配は線形関係であると言え、発熱量は赤外線カウント値の勾配により求めることができる。

【0022】
次に、移動機構10は、測定対象物3をその上部側で支持するシリンダー11と、シリンダー11の下部側に接続して測定対象物3の上下動を可能にするリフト13とを備える。この移動機構10によって、目視で焦点距離を調整してもよく、焦点距離を図る図示していないセンサとその検出出力とリフト13とを連動させて設定された距離に自動調整できるようにしてもよい。

【0023】
コンピュータ15は、制御部17と、平均化処理部19と、変換部21と、表示部23とを備える。制御部17はタイマー25を備える。制御部17は、タイマー25を用いて測定対象物3を励磁させる励磁部6を制御するとともにサーモグラフィカメラ9を制御する。平均化処理部19は、サーモグラフィカメラ9の撮像により得られる測定対象物3の複数の温度分布のデータをもとにして温度勾配の分布データについて平均化処理を行う。この平均化処理は、多数の温度勾配の分布データを平均化することにより温度分解能を向上させるための処理であり、これによりサーモグラフィカメラ9の本来の温度分解能と測定されるべき各位置での温度勾配(言いかえると鉄損)を測定するための精度との関係についての問題を解決して、高精度での温度勾配の測定を分布として行えている。なお、上記もしたが、平均化処理には赤外線検出器から得られたカウント値の勾配を使用することもできる。一般的に赤外線カウント値から温度を求める場合は非線形となるため、カウント値の勾配と温度勾配は異なる。しかしながら、微少な温度変化の場合は、カウント値と温度変化は線形であると言えるため、カウント値の勾配に係数をかけた値を鉄損値として用いることが可能である。複数回の温度勾配値は正規分布に従うため、平均化処理することにより真値に近づく。そのため、分布の精度が必要な場合は、短時間(例えば1秒~5秒、温度上昇が小さい)の測定を多数回(10000回等)行うことにより熱伝導による熱の広がりを抑えた高精度な鉄損分布を得ることが可能である。また、分布の精度を要求しない場合は、5秒~10秒(温度上昇が大きい)を1回の測定とし、100回程度の測定で鉄損分布を得ることが可能である。変換部21は、平均化処理部19が求めた平均化処理後の温度勾配の分布データを鉄損の分布データに変換する。この変換(鉄損への換算処理)については、以下の2つが具体的処理として挙げられる。第1としては、測定領域の比較的に磁束密度変化が安定している場所の鉄損を探針センサーを用いて測定しておき、その大きさと温度勾配を比較することで鉄損値と変換することが可能である。第2としては、測定対象物と同一の鋼板の電気抵抗を測定し、コントロールされた直流電流を流すことによりジュール熱を熱源とした温度勾配を事前に測定しておき、温度勾配と損失の関係から、鉄損を計算することが可能である。そして、この変換結果について、表示部23は、変換された鉄損の分布データにより測定対象物における鉄損の各位置及び各大きさを表す鉄損の分布を測定結果として表示する。

【0024】
図2は、温度勾配測定方法を説明するための図である。図2において、横軸は時間、縦軸は赤外線のカウント値を示し、図中において励磁時間10sが示されている。図2を用いて励磁方法を説明する。温度勾配を求めるため、60s/stepとし、インターバルに50s、励磁時間10sをとった。そして、温度勾配の平均化を行うために、500ステップを測定するものとする。その後、平均化処理部19がステップ毎に励磁時間中の勾配を求め、平均化を行う。平均化を行うインターバル時間は以下に説明する2次元熱伝導解析により励磁後の熱量が測定領域で十分に平均化する時間を算出して10sに決定している。

【0025】
2次元熱伝動解析によるインターバル時間の同定を説明する。温度分布は、以下のxy軸の2次元熱伝導の支配方程式を用いて解析結果から計算される。パラメータについては、Tは温度(℃)、λは熱伝導率(W/(m・K))、Qは熱源(W/m)(なお、熱源のQは、別途シミュレーションから得られた鉄損分布として計算している。)、ρは密度(kg/m)、cは比熱(J/(kg・K))、tは時間(s)としている。

【0026】
【数1】
JP0005048139B2_000002t.gif

【0027】
ここで、比熱と熱伝導率は温度に依存する。しかし、鉄損によって発生してしまう熱は、極小なため、温度への影響も小さいと言える。したがって、温度依存は無視できると考えることができる。また、外気温度は0℃とし、真空中としているため、完全断熱と仮定している。上記したように発熱源分布として鉄損分布を用いているが、鉄損分布はベクトル磁気特性を考慮した積分E&Sモデルと有機要素法を用いた解析結果を使用している。計算で用いたパラメータは、以下の表1の通りである。

【0028】
【表1】
JP0005048139B2_000003t.gif

【0029】
温度勾配による鉄損の分布を求める場合、初期状態が同一でなければ、損失による熱量以外の影響が生じてしまう。鉄損の発熱量は小さいため、影響が完全に無くなるインターバルを設定する必要が有る。下記式で求めた温度分布の時間に対する標準偏差を図3に示す。図3において、横軸は時間、縦軸は温度分布の標準偏差を示す。図3の結果より、最初の10sを励磁し、その後熱伝導により時間と平滑化を確認できるため、インターバル時間を初期状態が十分一定であるといえる50sとしている。

【0030】
【数2】
JP0005048139B2_000004t.gif

【0031】
図4は解析モデルとしてのベクトル磁気特性装置を示す図である。図5は鉄損分布の解析結果を示す図である。図6は1秒後と10秒後の温度勾配から求めた推定される鉄損分布結果を示す図である。以下、測定時間と鉄損分布の関係について説明する。

【0032】
長時間励磁をすると温度が上昇し、測定が容易になるが、熱伝導により、鉄損分布と、温度勾配分布に差ができる。そのため、分布の精度を向上させるためには短時間での測定が必要不可欠である。本報告では、励磁時間を10秒としている。そこで、励磁時間と分布の精度について検討する。解析条件は上記と同じとし、解析モデルを図4に示すベクトル磁気特性装置とした。評価領域は80mm×80mmの試料とした。その結果は、図5に示される鉄損分布の解析結果として得られた。励磁条件は交番磁束、中心部最大磁束密度1T、磁化容易方向に励磁した。この分布を熱源に数1の式を用いて熱伝導解析を行うと、図6に示すように、1秒後(図6(A))と10秒後(図6(B))の温度勾配から求めた鉄損分布結果が得られた。1秒後と10秒後では、熱伝導により分布が広がっていることがわかる。1秒後の方が鉄損分布に近いが、発熱量が大きいところで0.0025K程度であり、測定が困難で有ることがわかる。10秒後では1秒後の10倍の温度が得られるため、測定が可能である。また、鉄損の分布傾向は十分得られることがわかる。

【0033】
図7は、測定モデルを示した図である。このモデルコアは3相変圧器形状を模擬しているが、1枚の方向性電磁鋼板に窓穴を開けた形状となっている。そのため、通常の3相変圧器と異なり、磁路中に圧延直角方向を有するモデルである。積層枚数は27枚、Bコイルを施し、最大磁束密度が目標値になるように制御している。励磁波形は正弦波とし、波形形状の制御は行っていない。一般的に金属の赤外線放射率は0.6程度であり、表面がなめらかな場合さらに悪くなる。そのため、赤外線放射率を上げるため測定領域には黒色に塗装している。測定条件は、以下の表2の測定パラメータに示す通りである。励磁コイルを中心に施し、励磁周波数を50Hz、探りコイルの最大磁束密度を0.5T、画像取得スピード30fps、平均化回数1000回とし、画像フィルタとして、Median filterを使用した。

【0034】
【表2】
JP0005048139B2_000005t.gif

【0035】
図8~図10は、図7の測定エリアAと測定エリアBの各種測定結果を示す図である。図8(A)は測定エリアAのサーモグラフィカメラによる測定結果を示し、図8(B)は測定エリアBのサーモグラフィカメラによる測定結果を示す。図9及び図10は、サーモグラフィカメラでの測定では磁気特性については測定ができないため、探針センサーでの磁気特性測定も行い、その結果を示す。図9(A)は測定エリアAの最大磁束密度分布(T)を示し、図9(B)は測定エリアBの最大磁束密度分布(T)を示す。図10(A)は測定エリアAの最大磁界強度分布(A/m)を示し、図10(B)は測定エリアBの最大磁界強度分布(A/m)を示す。下記表3に探針センサーの仕様を示す。測定ピッチは2mmとしている。

【0036】
【表3】
JP0005048139B2_000006t.gif

【0037】
エリアAにおいて、圧延直角方向では大きな鉄損値が観測できる。また、圧延方向では鉄損値が圧延直角方向に比べて小さくなっていることがわかる。一方、図9(A)の磁束密度分布においては、圧延方向で値が大きいことがわかる。図10(A)に示す、磁界強度分布より、圧延直角方向で磁界強度が大きくなっていることがわかる。このモデルの材料である方向性電磁鋼板は、磁気異方性が大きく、圧延方向の磁気特性が優れ、損失が小さい特徴を有する。そのため、磁束密度は大きいが、鉄損が小さい傾向であることは、妥当であることがわかる。

【0038】
エリアBでは、エリアAと同様に圧延直角方向で損失が大きく、圧延方向で損失が少ないことがわかる。また、コーナー部に鉄損が集中していることがわかる。図9(B)に示す磁束密度分布、図10(B)に示す磁界強度分布においても、エリアAと同様の傾向を示す。

【0039】
以上をまとめると、ポイントは以下のようになる。

【0040】
第1に、サーモグラフィカメラを用いた電気機器(電磁鋼板)の鉄損分布の直接測定が可能になった。これにより、1回の一括した非接触で測定対象物の温度分布のデータが得られ、鉄損の分布を測定するための基礎となるデータとして温度分布のデータが広範囲で非接触で直接得られる。このように非接触での測定とすることにより測定対象物の形状の自由度は高いものであってもよいという利点が得られる。

【0041】
第2に、従来の測定法であるサーミスタや熱電対に比べ温度感度が劣る点を、繰り返し測定による平均化処理を行うことにより極小の熱量の変化を分布でとらえることに成功した。すなわち、時間経過に応じて複数回測定した複数の温度分布データに基づいて励磁中の温度勾配の分布を求めるとともに求められた複数の温度勾配の分布データを用いて温度勾配の平均化処理を行い、この平均化処理により温度分解能が向上して得られた温度勾配の分布データを鉄損の分布データに変換することで、簡便で精度良く鉄損の分布を広範囲で非接触で直接的に得ることができた。一般的にサーモグラフィカメラの温度感度が最小で0.02度程度と言われているが、このままの感度で短時間測定による鉄損測定ではなく、時間経過に応じた複数回の繰り返し測定を行うことにより、温度勾配の平均化処理を施して温度分解能を向上させることにより、従来では克服できなかった簡便さと高精度という鉄損では相反する課題を克服できた。

【0042】
第3に、大気中の熱伝導を避けるため、真空チャンバーを用い、極小の温度測定が可能になった。すなわち、測定対象物を真空中におくことにより、大気による熱伝達の影響を排除することにより、大気中で測定する場合よりも長い時間での測定を可能にする環境を整えることができた。

【0043】
第4に、ベクトル磁気特性解析により求めた鉄損分布を熱源にした熱伝導解析により10sの励磁に対し、50sのインターバルを設けることで、初期状態を同じにすることができることが明らかになった。すなわち、励磁停止後の適切な時間間隔とすることにより、初期状態を一定(同一)にみなして損失による熱量以外の影響を排除することができ、鉄損の発熱量は小さいものの、高精度の測定を実現できることを明らかにした。

【0044】
第5に、モデルコアを実測し、妥当な測定結果が得られた。第6に、同モデルを探針法で測定した結果とサーモグラフィカメラで測定した鉄損分布を比較し、方向性電磁鋼板の特性を勘案すると、妥当な分布であることまで分かった。

【0045】
なお、近年、省エネルギー化への関心から、エネルギー変換効率の良いモータを用いた、電気自動車等の関心が高まっている。電気自動車のような移動体の場合、モータ自身の重量も自動車全体の効率に寄与するため、小型・軽量なモータが望まれている。また、化石燃料に比べ電池のエネルギー積が小さいため、効率の良いモータが望まれている。内燃機関に比べ、格段に効率が良いモータではあるが、さらなる効率向上のため、様々な研究が行われている。一般的に、モータの損失は、「鉄損」「銅損」「機械損」が挙げられる。それぞれの損失は、モータの構成素材である、電磁鋼板、銅線、ベアリングなどで発生する固有の損失である。したがって、モータは鉄損測定の測定対象物として重要である。
【符号の説明】
【0046】
1・・・鉄損分布測定装置、3・・・測定対象物、5・・・真空チャンバー、6・・・励磁部、9・・・サーモグラフィカメラ、17・・・制御部、19・・・平均化処理部、21・・・変換部
図面
【図1】
0
【図2】
1
【図3】
2
【図7】
3
【図4】
4
【図5】
5
【図6】
6
【図8】
7
【図9】
8
【図10】
9