TOP > 国内特許検索 > コロニー数計数装置、コロニー数計数方法、及びコロニー数計数プログラム > 明細書

明細書 :コロニー数計数装置、コロニー数計数方法、及びコロニー数計数プログラム

発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2015-154718 (P2015-154718A)
公開日 平成27年8月27日(2015.8.27)
発明の名称または考案の名称 コロニー数計数装置、コロニー数計数方法、及びコロニー数計数プログラム
国際特許分類 C12M   1/34        (2006.01)
C12Q   1/06        (2006.01)
FI C12M 1/34 D
C12Q 1/06
請求項の数または発明の数 15
出願形態 OL
全頁数 20
出願番号 特願2014-030106 (P2014-030106)
出願日 平成26年2月19日(2014.2.19)
発明者または考案者 【氏名】石川 雅浩
【氏名】川邉 学
【氏名】駒形 英樹
【氏名】加納 隆
【氏名】小林 直樹
出願人 【識別番号】504013775
【氏名又は名称】学校法人 埼玉医科大学
個別代理人の代理人 【識別番号】100100549、【弁理士】、【氏名又は名称】川口 嘉之
【識別番号】100126505、【弁理士】、【氏名又は名称】佐貫 伸一
審査請求 未請求
テーマコード 4B029
4B063
Fターム 4B029AA07
4B029AA08
4B029BB01
4B029BB02
4B029CC02
4B029CC07
4B029FA10
4B029GB06
4B063QA01
4B063QQ05
4B063QQ06
4B063QQ07
4B063QR69
4B063QS39
4B063QX01
要約 【課題】精度よくコロニー数を計数する。
【解決手段】培養されたコロニーを含む培地領域及びフィルタに記載される格子を含む画像から培地領域の画像を抽出する領域抽出部と、培地領域の画像を所定の大きさに調整する補正部と、培地領域内の格子を検出する格子検出部と、格子検出部で検出された格子を除く培地領域の画像の色を所定の基準の色に調整する色調整部と、色調整部で調整された培地領域の画像の各画素の色について、赤色成分と青色成分との差分値を求め、差分値が周囲の画素の差分値よりも大きい領域を抽出する色検出部と、色調整部で調整された培地領域の画像について、円形の領域を抽出する円形抽出部と、色検出部による抽出結果と円形抽出部による抽出結果とを統合する統合部と、統合部によって統合された抽出結果に基づいて、抽出結果に含まれる領域の数をコロニーとして計数する計数部と、を備えるコロニー数計数装置とする。
【選択図】図1
特許請求の範囲 【請求項1】
培養されたコロニーを含む培地領域を含む画像から前記培地領域の画像を抽出する領域抽出部と、
前記培地領域の画像の色を所定の基準の色に調整する色調整部と、
前記色調整部で調整された前記培地領域の画像の各画素の色について、赤色成分と青色成分との差分値を求め、前記差分値が周囲の画素の前記差分値よりも大きい領域を抽出する色検出部と、
前記色検出部によって検出された抽出結果に基づいて、当該抽出結果に含まれる領域の数をコロニーとして計数する計数部と、
を備えるコロニー数計数装置。
【請求項2】
前記画像は、前記培地領域内に格子を含み、
前記培地領域内の前記格子を検出する格子検出部と、を備え、
前記色調整部は、前記格子検出部で検出された前記格子を除く前記培地領域の画像の色を所定の基準の色に調整する
請求項1に記載のコロニー数計数装置。
【請求項3】
前記色調整部で調整された前記培地領域の画像について、円形の領域を抽出する円形抽出部と、
前記色検出部による抽出結果と前記円形抽出部による抽出結果とを統合する統合部とを備え、
前記計数部は、前記統合部によって統合された抽出結果に基づいて、当該抽出結果に含まれる領域の数をコロニーとして計数する
請求項1または2に記載のコロニー数計数装置。
【請求項4】
前記統合部によって統合された抽出結果から、前記格子の格子点である領域を除去した結果を抽出結果とする除去部を備え、
前記計数部は、前記除去部による抽出結果に基づいて、当該抽出結果に含まれる領域の数をコロニーとして計数する
請求項3に記載のコロニー数計数装置。
【請求項5】
前記培地領域の画像を所定の大きさに調整する補正部を備える
請求項1から4のいずれか1項に記載のコロニー数計数装置。
【請求項6】
コンピュータが、
培養されたコロニーを含む培地領域を含む画像から前記培地領域の画像を抽出し、
前記培地領域の画像の色を所定の基準の色に調整し、
調整された前記培地領域の画像の各画素の色について、赤色成分と青色成分との差分値を求め、前記差分値が周囲の画素の前記差分値よりも大きい領域を抽出し、
検出された抽出結果に基づいて、当該抽出結果に含まれる領域の数をコロニーとして計数する、
ことを実行するコロニー数計数方法。
【請求項7】
前記画像は、前記培地領域内に格子を含み、
前記コンピュータが、
前記培地領域内の前記格子を検出し、
検出された前記格子を除く前記培地領域の画像の色を所定の基準の色に調整する、
ことを実行する請求項6に記載のコロニー数計数方法。
【請求項8】
前記コンピュータが、
調整された前記培地領域の画像について、円形の領域を抽出し、
前記差分値が周囲の画素の前記差分値よりも大きい領域を抽出した抽出結果と前記円形の領域を抽出した抽出結果とを統合し、
統合された抽出結果に基づいて、当該抽出結果に含まれる領域の数をコロニーとして計数する
ことを実行する請求項6または7に記載のコロニー数計数方法。
【請求項9】
前記コンピュータが、
統合された抽出結果から、前記格子の格子点である領域を除去した結果を抽出結果とし、
当該抽出結果に基づいて、当該抽出結果に含まれる領域の数をコロニーとして計数する請求項8に記載のコロニー数計数方法。
【請求項10】
前記コンピュータが、
前記培地領域の画像を所定の大きさに調整する
請求項6から9のいずれか1項に記載のコロニー数計数方法。
【請求項11】
コンピュータに、
培養されたコロニーを含む培地領域を含む画像から前記培地領域の画像を抽出し、
前記培地領域の画像の色を所定の基準の色に調整し、
調整された前記培地領域の画像の各画素の色について、赤色成分と青色成分との差分値を求め、前記差分値が周囲の画素の前記差分値よりも大きい領域を抽出し、
検出された抽出結果に基づいて、当該抽出結果に含まれる領域の数をコロニーとして計数する、
ことを実行させるコロニー数計数プログラム。
【請求項12】
前記画像は、前記培地領域内に格子を含み、
前記コンピュータに、
前記培地領域内の前記格子を検出し、
検出された前記格子を除く前記培地領域の画像の色を所定の基準の色に調整する、
ことを実行させる請求項11に記載のコロニー数計数プログラム。
【請求項13】
前記コンピュータに、
調整された前記培地領域の画像について、円形の領域を抽出し、
前記差分値が周囲の画素の前記差分値よりも大きい領域を抽出した抽出結果と前記円形の領域を抽出した抽出結果とを統合し、
統合された抽出結果に基づいて、当該抽出結果に含まれる領域の数をコロニーとして計数する
ことを実行させる請求項11または12に記載のコロニー数計数プログラム。
【請求項14】
前記コンピュータに、
統合された抽出結果から、前記格子の格子点である領域を除去した結果を抽出結果とし、
当該抽出結果に基づいて、当該抽出結果に含まれる領域の数をコロニーとして計数することを実行させる請求項13に記載のコロニー数計数プログラム。
【請求項15】
前記コンピュータに、
前記培地領域の画像を所定の大きさに調整する
ことを実行させる請求項11から14のいずれか1項に記載のコロニー数計数プログラム
発明の詳細な説明 【技術分野】
【0001】
本発明は、コロニー数計数装置、コロニー数計数方法、及びコロニー数計数プログラムに関する。
【背景技術】
【0002】
水溶液の清浄度の確認が必要な分野としては、医療分野(製薬会社、透析用水など)、精密機械分野(半導体の洗浄用水など)、飲料水(水道局、飲料製造会社など)などがあり、水の清浄度管理を行われている。透析液や水道水などの清浄度を検査する手段として、生菌数試験が通常行われている。例えば透析液においては、2010年の診療報酬改正において透析液水質基準確保加算が算定されるなど、その清浄度を定期測定し、定量的に示すことが求められており、生菌数試験は重要な役割を果たしている。
【0003】
透析液などの水溶液の生菌数試験としては、平板培養法やメンブレンフィルタ法(MF法:Membrane法)がある。透析医療施設で適用可能な透析液の生菌数試験としては、平板培養法やメンブレンフィルタ法(MF法)がある。MF法は各透析装置や透析液供給装置、水処理装置において水溶液をメンブレンフィルタに通過させて生菌を採取する。採取したメンブレンフィルタは培養液につけて生菌を培養する。また平板法では寒天培地に水溶液を付けて生菌を培養する。これらの方法で4日から7日の培養後、形成されたコロニー数のカウントすることで、生菌数はカウントされる。また、水溶液以外の生菌検査においても、平板法と同様に寒天培地に菌を付着させ、培養してコロニー数をカウントする。以上のように、水溶液検査などにおいて、生菌検査は多数の施設においてこれらの事項が行われている。
【先行技術文献】
【0004】

【特許文献1】特開2013-223463号公報
【特許文献2】特開2012-075409号公報
【特許文献3】特開2011-212013号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
透析医療施設等で適用可能な水溶液の生菌数試験としては、平板培養法やメンブレンフィルタ法(MF法)がある。各種水処理装置から採取したサンプルは、これらの方法で4日から7日の培養後、形成されたコロニー数をカウントする。現在、透析液のコロニーカウントは、肉眼で行われることで清浄度を判定し、さらには形成されたコロニーの形状や色調も記録する。このような生菌数試験が定期的に行われ、こちらに費やす労力は非常に大きい。
【0006】
生菌数のカウントでは、R2A寒天培地が広く用いられている。R2A 寒天培地は1
mL中の水生菌を培養している。一方、メンブレンフィルタは100mL中の水生菌を培養するため100倍感度が高い検査方法といえる。R2A寒天培地は、培地として寒天が用いられている。基本的には、寒天は透明であるため、寒天培地の背面に暗い色の物体を置いて撮影した画像を使用することで、適切な閾値による2値化により、基本的な菌を検出可能である。これに対して、メンブレンフィルタでは、培地の色が基本的には白色であり、場合によってさらに肉眼でのカウントのために格子が入っていることもある。
【0007】
本発明は、精度よくコロニー数を計数するコロニー数計数装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
開示の技術は、上記課題を解決するために、以下の手段を採用する。
【0009】
即ち、第1の態様は、
培養されたコロニーを含む培地領域及びフィルタに記載される格子を含む画像から前記培地領域の画像を抽出する領域抽出部と、
前記培地領域の画像を所定の大きさに調整する補正部と、
前記培地領域内の前記格子を検出する格子検出部と、
前記格子検出部で検出された前記格子を除く前記培地領域の画像の色を所定の基準の色に調整する色調整部と、
前記色調整部で調整された前記培地領域の画像の各画素の色について、赤色成分と青色成分との差分値をもとめ、差分値が周囲の画素の差分値よりも大きい領域を抽出する色検出部と、
前記色調整部で調整された前記培地領域内の画像について、円形の領域を抽出する円形抽出部と、
前記色検出部による抽出結果と前記円形抽出部による抽出結果とを統合する統合部と、
前記統合部によって統合された抽出結果に基づいて、抽出結果に含まれる領域の数をコロニーとして計数する計数部と、
を備えるコロニー数計数装置である。
【0010】
開示の態様は、プログラムが情報処理装置によって実行されることによって実現されてもよい。即ち、開示の構成は、上記した態様における各手段が実行する処理を、情報処理装置に対して実行させるためのプログラム、或いは当該プログラムを記録したコンピュータ読み取り可能な記録媒体として特定することができる。また、開示の構成は、上記した各手段が実行する処理を情報処理装置が実行する方法をもって特定されてもよい。開示の構成は、上記した各手段が実行する処理を行う情報処理装置を含むシステムとして特定されてもよい。
【発明の効果】
【0011】
開示の技術によれば、精度よくコロニー数を計数するコロニー数計数装置を提供することができる。
【図面の簡単な説明】
【0012】
【図1】図1は、実施形態のコロニー計数装置の機能構成例を示す図である
【図2】図2は、コロニー数計数装置を実現するコンピュータの例を示す図である。
【図3】図3は、コロニー数計数装置の動作フローの例を示す図である。
【図4】図4は、取得したコロニー数のカウント対象の画像の例を示す図である
【図5】図5は、2値化後の画像の例を示す図である。
【図6】図6は、培地検出部による処理後の画像の例を示す図である。
【図7】図7は、カボールフィルタの例を示す図である。
【図8】図8は、画像における線状カボールフィルタの適用結果の例を示す図である。
【図9】図9は、図8において、閾値3以上として2値化した結果を示す図である。
【図10】図10は、差分画像及び2値化画像の例を示す図である。
【図11】図11は、適応的閾値処理を説明する図である。
【図12】図12は、テンプレートマッチングにおけるテンプレートの例を示す図である。
【図13】図13は、誤検出除去部が検出した格子点の例を示す図である。
【図14】図14は、目視によるカウント数と実施形態の装置による自動カウント数との関係を示す図である。
【発明を実施するための形態】
【0013】
以下、図面を参照して実施形態について説明する。実施形態の構成は例示であり、開示の構成は、開示の実施形態の具体的構成に限定されない。開示の構成の実施にあたって、実施形態に応じた具体的構成が適宜採用されてもよい。

【0014】
〔実施形態〕
(構成例)
本実施形態のコロニー数計数装置は、菌が培養されたメンブレンフィルタが撮影された画像を取得し、画像内のメンブレンフィルタに存在する生菌数(コロニー数)をカウントする。メンブレンフィルタが培養液に浸されることによって、メンブレンフィルタ上で菌が培養される。ここでは、菌が培養されたメンブレンフィルタを、培地領域ともいう。

【0015】
図1は、本実施形態のコロニー計数装置の機能構成例を示す図である。コロニー計数装置100は、画像取得部102、培地検出部104、変形補正部106、格子検出部108、ホワイトバランス調整部110、コロニー検出部112、格子除去部114、コロニー数カウント部116を備える。

【0016】
画像取得部102は、コロニー数のカウント対象の画像を取得する。コロニー数のカウント対象の画像は、臨床現場でデジタルスチルカメラやスマートフォンのカメラ等によって、菌が培養されたメンブレンフィルタを含む領域を撮影した画像である。

【0017】
培地検出部104は、画像取得部102によって取得された画像から、培地領域を検出する。

【0018】
変形補正部106は、培地検出部104で検出された培地領域の大きさを所定の大きさに調整する。

【0019】
格子検出部108は、画像の培地領域に含まれる格子を検出する。

【0020】
ホワイトバランス調整部110は、培地領域の画像のホワイトバランスを調整する。

【0021】
コロニー検出部112は、ホワイトバランス調整部110で処理された画像について、暖色系のコロニーや白色系のコロニーを検出し、検出結果を統合して、出力する。

【0022】
誤検出除去部114は、コロニー検出部112によって検出されたコロニーから、格子点、格子線、縁等によるコロニーの誤検出を除去する。

【0023】
コロニー数カウント部116は、誤検出除去部114によって処理された画像について、コロニー数をカウントする。

【0024】
画像DB120は、画像取得部102で取得されるコロニー数のカウント対象の画像などを格納する。画像DB120には、培地検出部104などで処理された画像が格納され得る。画像DB120には、格子検出部108などで使用されるフィルタなどが格納され得る。画像DB120には、コロニー数計数装置100で使用される各種データが格納され得る。

【0025】
コロニー数計数装置100は、パーソナルコンピュータ(PC、Personal Computer)
のような汎用のコンピュータまたはサーバマシンのような専用のコンピュータを使用して実現可能である。また、コロニー数計数装置100は、ワークステーション(WS、Work
Station)、PDA(Personal Digital Assistant)のような専用または汎用のコンピュータ、あるいは、コンピュータを搭載した電子機器を使用して実現可能である。また、コロニー数計数装置100は、スマートフォン、携帯電話、カーナビゲーション装置のような専用または汎用のコンピュータ、あるいは、コンピュータを搭載した電子機器を使用して実現可能である。

【0026】
図2は、コロニー数計数装置を実現するコンピュータの例を示す図である。図2のコンピュータ1000は、プロセッサ1002、主記憶装置1004、及び、二次記憶装置1006や、通信インタフェース装置のような周辺装置2000とのインタフェース装置1008を含む。主記憶装置1004及び二次記憶装置1006は、コンピュータ読み取り可能な記録媒体である。

【0027】
コンピュータ1000は、プロセッサが記録媒体に記憶されたプログラムを主記憶装置1004の作業領域にロードして実行し、プログラムの実行を通じて周辺機器が制御されることによって、所定の目的に合致した機能を実現することができる。

【0028】
プロセッサ1002は、例えば、CPU(Central Processing Unit)やDSP(Digital Signal Processor)である。主記憶装置1004は、例えば、RAM(Random Access
Memory)やROM(Read Only Memory)を含む。

【0029】
二次記憶装置1006は、例えば、EPROM(Erasable Programmable ROM)、ハー
ドディスクドライブ(HDD、Hard Disk Drive)である。また、二次記憶装置1006
は、リムーバブルメディア、即ち可搬記録媒体を含むことができる。リムーバブルメディアは、例えば、USB(Universal Serial Bus)メモリ、あるいは、CD(Compact Disc)やDVD(Digital Versatile Disc)のようなディスク記録媒体である。

【0030】
インタフェース装置1008は、例えば、LAN(Local Area Network)インタフェースボードや、無線通信のための無線通信回路である。

【0031】
周辺装置2000は、上記の二次記憶装置や通信インタフェース装置の他、キーボードやポインティングデバイスのような入力装置や、ディスプレイ装置やプリンタのような出力装置を含む。また、入力装置は、カメラのような映像や画像の入力装置や、マイクロフォンのような音声の入力装置を含むことができる。また、出力装置は、スピーカのような音声の出力装置を含むことができる。

【0032】
コロニー数計数装置100を実現するコンピュータは、プロセッサが二次記憶装置に記憶されているプログラムを主記憶装置にロードして実行することによって、画像取得部102、培地検出部104、変形補正部106、格子検出部108、ホワイトバランス調整部110、コロニー検出部112、誤検出除去部114、コロニー数カウント部116としての機能を実現する。一方、画像DB120は、主記憶装置または二次記憶装置の記憶領域により実現される。

【0033】
コロニー数計数装置100の各ユニットは、ハードウェアの構成要素、ソフトウェアの構成要素、又は、これらの組み合わせとして、それぞれ実現され得る。

【0034】
ハードウェアの構成要素は、ハードウェア回路であり、例えば、FPGA(Field Programmable Gate Array)、特定用途向け集積回路(ASIC)、ゲートアレイ、論理ゲー
トの組み合わせ、アナログ回路等がある。

【0035】
ソフトウェアの構成要素は、ソフトウェアとして所定の処理を実現する部品である。ソフトウェアの構成要素は、ソフトウェアを実現する言語、開発環境等を限定する概念ではない。

【0036】
一連の処理は、ハードウェアにより実行させることもできるが、ソフトウェアにより実行させることもできる。

【0037】
プログラムを記述するステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくても、並列的または個別に実行される処理を含む。

【0038】
(動作例)
コロニー数計数装置100の動作例について、説明する。図3は、コロニー数計数装置100の動作フローの例を示す図である。

【0039】
ステップS101では、画像取得部102は、コロニー数のカウント対象の画像を取得する。画像取得部102は、デジタルスチルカメラやスマートフォンのカメラ等や、記憶装置等から、コロニー数のカウント対象の画像を取得する。

【0040】
図4は、取得したコロニー数のカウント対象の画像の例を示す図である。図4の画像の中央には、円形のメンブレンフィルタが撮影されている。メンブレンフィルタは、格子を含む。

【0041】
ステップS102では、培地検出部104は、画像取得部102が取得した画像(処理対象の画像)から、培地領域(メンブレンフィルタの領域)を検出する。市販されている多くのメンブレンフィルタは、紙状の円形の白色フィルタである。ここでは、最初に大津の2値化法を用いて培地領域を検出する。大津の2値化法では、培地検出部104は、画像をグレースケール画像に変換し、区間[0,255]のグレースケール画像のヒストグラムh(g)|g=0,・・・,255を算出する。h(g)は、濃淡値gである画素の頻度を表す。ここで、h(g)を正規化したものをp(g)=h(g)/ωとする。ωは、正規化の係数である。p(g)が双峰性を有する場合、2つの峰の中間を選択すれば良好な閾値を得られる。このとき、クラス内分散は、次式で表される。

【0042】
【数1】
JP2015154718A_000003t.gif

【0043】
また、クラス間分散は、次式で表される。

【0044】
【数2】
JP2015154718A_000004t.gif

【0045】
ここで、mはp(g)の平均、σはp(g)の分散である。mはある閾値でヒスト
グラムを分割した際の値の小さい方の平均値、mは値の大きい方の平均値、σは値の小さい方の分散、σは大きいほうの分散を表す。このとき、次式で表される分離度Bなる閾値を用いて、グレースケール画像が2値化される。

【0046】
【数3】
JP2015154718A_000005t.gif

【0047】
図5は、2値化後の画像の例を示す図である。図5において、白色の領域が培地領域の候補とされる領域である。実際の培地領域は、円形であるが、図5のように、撮影時の環境などによって培地領域以外も培地領域の候補として検出される。そこで、培地検出部104は、2値化後の画像中で最も領域が大きく、円形度の高い領域を培地領域として検出する。さらに、培地検出部104は、元の処理対象の画像において、処理の簡便性を考慮して、培地領域として検出された領域以外を、白色に塗りつぶした画像を生成する。

【0048】
図6は、培地検出部による処理後の画像の例を示す図である。図6の例では、培地領域として検出された領域は、画像取得部102が取得した画像と同一の画像であり、培地領域として検出された領域以外の領域は、白色となっている。

【0049】
2値化の方法として、大津の2値化法に限らず、K-means法などの他の方法が使用され
てもよい。

【0050】
白色フィルタの代わりに黒色フィルタが使用されることがある。黒色フィルタが使用される場合は、上記の白色と黒色とを入れ替えることで、同様に処理することができる。

【0051】
ステップS103では、変形補正部106は、培地検出部104で処理された画像に対して、培地領域の大きさを補正する。

【0052】
画像における培地領域は、カメラを培地に平行にして撮影しないと、歪む可能性がある。通常、臨床現場では培地領域がカメラに平行になるようして撮影される。よって、ここでは、培地領域は、カメラに平行に撮影されていることを前提とする。これに対して、培地領域(メンブレンフィルタ)からカメラまでの距離は、コントロールすることが難しく、同じ大きさの培地領域であっても撮影毎に画像における培地領域の大きさが変化しうる。そこで、変形補正部106は、検出された培地領域の画像における直径を、所定の大きさになるように、拡大処理または縮小処理を行う。ここでは、例えば、培地領域の直径が500pixelになるようにする。変形補正部106は、例えば、培地検出部104で処理された画像における培地領域の直径が300pixelである場合、当該画像を縦横方向に1.67倍して、培地領域の直径が500pixelになるようにする。培地領域の直径のサイズは、500pixelに限定されるものではなく、装置の負荷等に応じて自由に選択される。

【0053】
培地領域の直径は、例えば、培地領域の座標のX軸方向(横軸方向)の最小値と最大値との差(即ち、X軸方向の両端の座標の差)によって求められる。培地の直径は、2次のモーメントのような主軸を求める方法によって、算出され得る。

【0054】
また、培地領域の直径は、モーメント特徴を用いて、主軸方向tanθを求め、主軸の長さを求めることで求められる。主軸方向は、次式の(p+q)次のモーメントM(p,q)を用いて計算される。

【0055】
【数4】
JP2015154718A_000006t.gif

【0056】
このとき、fijは図形内で1、図形外で0をとる2値画像である。ここでは、培地領域を1、培地領域以外を0とする。主軸方向tanθは次式で求められる。

【0057】
【数5】
JP2015154718A_000007t.gif

【0058】
このとき、図形の重心が円の中心(培地領域の中心)である。

【0059】
ステップS104では、格子検出部108は、変形補正部106で処理された画像(格子検出部108における処理対象の画像)から、メンブレンフィルタの格子を検出する。メンブレンフィルタでは、格子が入ったフィルタが使用されることがある。格子は、色補正やコロニー検出に影響するため事前に下記のように複数のガボールフィルタ(ここでは、49画素×49画素)等を適用し、このうち最大強度となるものを用いて格子検出を行う。

【0060】
図7は、カボールフィルタの例を示す図である。図7に示すように、格子検出部108は、水平方向からほぼ30度の6方向の線状ガボールフィルタg(i,j)(p=1,2,…6)を用意し、処理対象の画像の各画素において、次式のように値を求める。図7のカボールフィルタにおいて、色が暗い部分の値が小さく、色が明るい部分の値が大きい。ここで使用する線状ガボールフィルタは、回転不変性を得るためMaximum Response8(Varma, M. and Zisserman, A. (2004). “Unifying statistical texture classification frameworks”, Image Vision Computer,22(14):1175-1183)の線状フィルタを用いる。フィルタスケールはσ=4,σ=12である。

【0061】
【数6】
JP2015154718A_000008t.gif

【0062】
ここでI(x,y)は処理対象の画像の座標(x,y)の画素値(グレースケール)、gは6方向のガボールフィルタである(0,30,60,90,120,150度)。この6方向のカボールフィルタを使用すれば、ほぼどの方向の線状構造であっても検出しうる。この式における値が大きい場合、当該画素がいずれかの方向の線状構造に含まれることを意味する。即ち、値が大きい画素は、格子を形成する画素であることを意味する。また、この式における値が小さい場合、当該画素が、線状構造に含まれないことを意味する。即ち、値が小さい画素は、格子を形成する画素でないことを意味する。ここでは、格子が暗い線状であることを前提として、暗い線状構造が抽出される。

【0063】
図8は、画像における線状カボールフィルタの適用結果の例を示す図である。図8では
、白い画素が値が大きい画素である。図8のように、線状カボールフィルタの適用結果、線状構造の強い画素の値が大きくなる。

【0064】
図9は、図8において、閾値3以上として2値化した結果を示す図である。2値化の式を次式に示す。

【0065】
【数7】
JP2015154718A_000009t.gif

【0066】
GR’(x,y)は、2値化後の座標(x,y)の画素値である。ここで、GR’(x,y)=255とされる座標(x,y)の画素が、格子検出部108で格子として検出される画素である。GR’(x,y)による画像は、格子であるか否かを示す画像である。格子
であるか否かを示す画像において、格子を示す画素の画素値は255であり、格子を示さないがその画素値は0である。画素値255を白、画素値0を黒とすると、格子であるか否かを示す画像は、白黒の2値化画像となる。

【0067】
格子検出部108は、カボールフィルタの代わりに、グレースケールブラックハット処理などの他の処理によって、格子を検出してもよい。

【0068】
ステップS105では、ホワイトバランス調整部110は、変形補正部106で処理された画像の培地領域に対し、ホワイトバランスの調整を行う。血液透析の透析液の培養で検出対象となるのは水系桿菌である。水系桿菌の色調は、主に、白色、乳白色、淡黄色、レモン色、淡茶色、赤色、ピンク色の7色である。このため、白色系(白色、乳白色)以外の菌は暖色系の菌であり、暖色系では色情報を用いた検出が有効である。画像において、色情報を扱う際には、画像のホワイトバランスの調整を行うことが好ましい。撮影された環境(光や機材など)が異なると、元の色が同一の色でも画像上では異なる色となることがあるからである。メンブレンフィルタでは、培地の色が白である。ホワイトバランス調整部110は、培地の白を基準にして、ホワイトバランスの調整を行う。メンブレンフィルタの色は、一定であるとみなされるからである。具体的には、ホワイトバランス調整部110は、変形補正部106で処理された画像の培地領域から、格子検出部108で検出された格子の画素を除いて、培地領域とする。ここでは、ホワイトバランス調整部110は、培地領域の平均輝度値を求め、平均輝度値が基準値(R=186,G=183,B=163)となるよう補正する。基準値はこれに限定されるものではない。基準値として、例えば、所定の光源のもとで撮影されたフィルタの画像における、フィルタ部分(培地領域)のRGB値(画素値)が採用されてもよい。ホワイトバランス調整部110は、培地領域のすべての画素について、次式に基づいて、ホワイトバランスの調整を行う。

【0069】
【数8】
JP2015154718A_000010t.gif

【0070】
ここで、omg’は、処理対象の画像の画素の処理後の赤色成分を表す。同様に、omg’は緑色成分、omg’は青色成分を表す。また、ORは各色成分の重みを表し、次式で求められる。

【0071】
【数9】
JP2015154718A_000011t.gif

【0072】
ここで、WMは、各色成分における格子を除いた培地の平均輝度である。また、右辺の分子の値は、各色成分の基準値を示す。

【0073】
ホワイトバランスを調整することで、様々な環境で撮影されたメンブレンフィルタにおいて、色情報に基づいて、より正確にコロニーを検出することができる。ホワイトバランスを調整された培地領域の画像は、例えば、画像DB120に格納される。

【0074】
ステップS106では、コロニー検出部112は、ホワイトバランス調整部110で、ホワイトバランスが調整された培地領域の画像(コロニー検出部112での処理対象の画像)を用いて、暖色系のコロニー及び白色系のコロニーの検出を行う。

【0075】
ここで、使用される培地領域の画像では、格子検出部108で検出された格子の位置に相当する座標の画素値は、当該座標の周辺の画素に基づいて変更されてもよい。例えば、格子の位置に相当する座標の画素値は、当該座標の周辺の画素(例えば、5画素×5画素)の中央値(例えば、5画素×5画素では画素値が小さい方から13番目)の画素値に置き換えられてもよい。ここで、周辺の画素から格子の画素は除かれてもよい。

【0076】
〈暖色系〉
水系桿菌の色調は、白色系、黄色系、赤系、ピンク系に限定される。白色系以外は暖色系に属する。暖色系のコロニーでは、赤色成分が青色成分よりも大きいという特徴がある。そこで、コロニー検出部112は、暖色系のコロニーを、処理対象の画像の画素の赤色成分と青色成分の差分(色差)を取ることで検出する。処理対象の画像の各画素の赤色成分と青色成分の差分画像(差分による画像)は、次式で定義される。差分画像の各画素は、1次元の情報を有する。

【0077】
【数10】
JP2015154718A_000012t.gif

【0078】
このとき、コロニー検出部112は、培地領域のノイズの影響を軽減するため平滑化処理を行ってもよい。平滑化処理は、例えば、処理対象の画素とその画素の周囲の画素の値の平均値を、処理対象の画素の値とする処理である。

【0079】
この式において、右辺の絶対値をとることで、暖色系および寒色系のコロニーを検出することができる。寒色系のコロニーでは、青色成分が赤色成分よりも大きい。

【0080】
図10(1)は、差分画像の例を示す図である。図10(1)の例では、差分画像の一
部分を示している。また、図10(1)の例では、明るい部分では差分値が大きく、暗い部分では差分値が小さい。図10(1)の例では、数箇所の差分値が大きい領域が見られる。

【0081】
次に、コロニー検出部112は、差分画像を2値化することで、コロニーを検出する。ここで、例えば、2値化後の値1の領域がコロニーの領域で、値0の領域がコロニー以外の領域とする。2値化の際、固定の閾値により2値化すると、うまく検出できないことがある。そこで、ここでは、コロニー検出部112は、適応的閾値処理を用いて、多値閾値により、差分画像を2値化する。また、適応的閾値処理の代わりに、リング状フィルタ等のピークを検出する処理が使用されてもよい。

【0082】
図11は、適応的閾値処理の説明をする図である。図11のグラフでは、横軸にX座標、縦軸に差分画像の色差をとる。ここでは、簡単のために、1次元の領域を用いて説明するが、差分画像のような2次元の領域に対しても同様である。図11の曲線は、座標毎の色差を示している。ここでは、色差が周囲より大きい領域がコロニーとされる。図11のグラフでは、3つの山が見られる。図11のグラフの3つの山は、3つのコロニー(領域)と考えられる。ここで、固定の閾値を使用すると、閾値aでは、領域の数は1つであり、閾値bとすると、領域の数は2つになり、閾値cとすると領域の数は3つとなり、閾値dとすると、領域の数は1つとなる。従って、固定の閾値では、どの閾値を採用しても領域の数は3つにならない。

【0083】
そこで、適応的閾値処理を用いる。ある閾値以上の1つの領域において、このある閾値の一段階上の閾値以上の領域が、複数の領域になった場合、当該1つの領域において閾値を一段階上の閾値とする。これを閾値の範囲で繰り返す。

【0084】
図11を用いて、より具体的に説明する。ここでは、閾値をa、b、c、d(a<b<c<dとする)の順に変化させるとする。最初に領域全体で、閾値を閾値aとする。このとき、閾値a以上の領域は、領域α1の1つである。閾値aから閾値bにしたとき、領域α1において、閾値b以上の領域は、領域β1と領域β2の2つになる。このとき、領域α1において、閾値をbとする。さらに、領域β1において、閾値bから閾値cに変化したとき、閾値c以上の領域は、領域γ1と領域γ2の2つになる。ここで、領域β1の閾値をcにする。このようにして、閾値の下限から上限まで閾値を変化させ、領域ごとに閾値を決めていく。このように閾値を決めると、領域α1を除く全領域の閾値は閾値a、領域β1を除く領域α1の閾値は閾値b、領域β1の閾値は閾値cとなる。従って、閾値以上の領域は、領域γ1、領域γ2、領域β2の3つの領域となる。

【0085】
コロニー検出部112は、適応的閾値処理を用いて、このように閾値を決定して、差分画像を2値化する。

【0086】
図10(2)は、図10(1)において、閾値を20としたときの2値化画像である。図10(3)は、図10(1)において、閾値を5としたときの2値化画像である。図10(2)、図10(3)では見られる領域の数が異なる。即ち、固定の閾値を用いると、複数の領域が1つの領域に見えたり、周囲より値が大きいが絶対的な値が小さい領域が見えなくなったりすることで、領域数を正確にカウントできない恐れがある。図10(4)は、図10(1)において、適応的閾値処理を用いて、閾値を決定したときに2値化画像である。図10(4)では、大きな領域から、小さな領域まで、見えている。ここでは、閾値を、5から40まで1ずつ変化させた。閾値の範囲は、目視によるカウント結果などに基づいて、暖色系コロニーと培地とを分けるように、決定される。

【0087】
このようにして、コロニー検出部112は、暖色系コロニーを示す画像(2値化画像)
を生成する。暖色系コロニーを示す画像は、例えば、暖色系コロニーを示す画素の画素値が255で、暖色系コロニーを示さない画素の画素値が0である画像である。

【0088】
〈白色系〉
次に白色系のコロニーの検出について説明する。白色系のコロニーは、赤色成分と青色成分との差分が小さいため、暖色系のコロニーと同様に検出することは難しい。そこで、コロニー検出部112は、処理対象の画像の画素値のうち緑色成分を用いて、テンプレートマッチング等により、円形で小さなコロニーの強調検出を行うことで、白色系のコロニーを検出する。円形領域の強調についてはマッチトフィルタなどの円形構造を強調する空間フィルタリング処理でも可能である。緑色成分の代わりに、赤色、緑色、青色の各成分から算出されるグレースケールの成分が使用されてもよい。

【0089】
テンプレートマッチングは、テンプレートと呼ばれる画像領域と同じパターンが画像全体の中に存在するか否かを調べる処理である。テンプレートマッチングでは、テンプレートの画像を画像の中で移動させながら、テンプレートとテンプレートに重なる部分との画像の相関係数を算出する。相関係数は、画像の画素毎に算出され得る。テンプレートとテンプレートに重なる部分との画像の相関係数は、テンプレートと重なる部分の中心の画素の座標における値となる。相関係数が大きいほど、テンプレートとテンプレートに重なる部分の画像が類似している。相関係数が1のとき、テンプレートとテンプレートに重なる部分の画像が一致している。

【0090】
図12は、テンプレートマッチングにおけるテンプレートの例を示す図である。図12のテンプレートは、円形のテンプレートである。

【0091】
コロニー検出部112は、図12のテンプレートと処理対象の画像の緑成分を用いて、テンプレートマッチングを行う。コロニー検出部112は、テンプレートマッチングにおいて、正規化相互相関を用いる。テンプレートマッチングにおける相関係数の算出式は、次式である。

【0092】
【数11】
JP2015154718A_000013t.gif

【0093】
ここで、fは処理対象の画像の画素値(緑色成分)、tはテンプレートの画素値、tのバーはテンプレートの平均値、fu,vのバーはf(u,v)の平均値である。

【0094】
これにより、コロニー検出部112によって、各画素のテンプレートとの相関係数を示す画像が生成される。相関係数を示す画像の各画素は、1次元の情報(類似度)を有する。ここで、コロニー検出部112は、各画素の相関係数を示す画像に対して、適応的閾値処理を適用し、コロニーの検出を行う。閾値は、相関係数0.05から0.2までで、0.01間隔とする。閾値の範囲は、目視によるカウント結果などに基づいて、白色系コロニーと培地とを分けるように、決定され得る。適応的閾値処理を利用することで、周囲より相関係数が高い領域を検出することができる。

【0095】
これにより、コロニー検出部112は、白色系コロニーを示す画像(2値化画像)を生成する。白色系コロニーを示す画像は、例えば、白色系コロニーを示す画素の画素値が255で、白色系コロニーを示さない画素の画素値が0である画像である。

【0096】
〈統合〉
コロニー検出部112は、差分画像を用いて抽出したコロニー(暖色系コロニー)と、テンプレートマッチングを用いて抽出したコロニー(白色系コロニー)との、抽出結果を統合する。コロニー検出部112は、暖色系コロニーを示す画像及び白色系コロニーを示す画像の両方においてコロニーとされない領域をコロニーでない領域(画素)とし、少なくともいずれか一方の画像でコロニーとされた領域(画素)をコロニーである領域(画素)とする。コロニー検出部112は、暖色系コロニーの画像と白色系コロニーの画像とから、コロニーの検出結果として、コロニーを示す画像(2値化画像)を生成する。

【0097】
テンプレートマッチングを使用したコロニーの抽出は、感度が高いため、仮にコロニーのない画像に適用しても、コロニーの誤検出が発生する。そこで、コロニー検出部112は、差分画像を用いて抽出したコロニーの数が5個以上である場合に、白色系コロニーの抽出結果と統合してもよい。

【0098】
コロニー検出部112は、暖色系コロニーを検出する部分について色検出部として、白色系コロニーを検出する部分について円形抽出部として、統合する部分について統合部として動作してもよい。

【0099】
ステップS107では、誤検出除去部114は、コロニー検出部112で検出されたコロニーから、格子や縁によるコロニーの誤検出を除去する。

【0100】
白色系のコロニーを検出する際、円形領域が強調されるため、格子の格子点も強調される傾向がある。コロニーが存在しない格子の格子点は、コロニーではないため、コロニーとして検出されると誤検出となる。

【0101】
そこで、誤検出除去部114は、格子検出部108が検出した格子の画像を細線化する。細線化は、画像を幅1ピクセルの線画像に変換する処理である。誤検出除去部114は、細線化した画像からすべての分岐点を、格子点として検出する。検出した格子点は、格子点の画像として画像DB120などに格納されてもよいし、格子点の座標として画像DB120などに格納されてもよい。誤検出除去部114は、コロニー検出部112が抽出した画像において、コロニーとして抽出した領域の内、格子点と抽出した位置から5画素以内の距離にあり、面積50画素以下の領域を除去する。面積50画素以下の領域は、コロニーとしては小さい。このような条件に合う領域は、格子の格子点である可能性が高い。

【0102】
図13は、誤検出除去部114が検出した格子点の例を示す図である。図13の例では、白い点が格子点に相当する。図13の例では、メンブレンフィルタにおける複数の格子点が検出されている。

【0103】
さらに、誤検出除去部114は、コロニーとして抽出した領域の内、細線化した格子線から3画素以内で、面積が30画素以下の領域を除去してもよい。

【0104】
臨床では、一度に、複数のメンブレンフィルタが培養される。そのため、メンブレンフィルタの外周にペンなどで識別の記号を記述することがある。また、メンブレンフィルタを撮影する際の光源は、一定ではないためメンブレンフィルタフィルタの外周に影が入り込み、メンブレンフィルタの輝度分布にばらつきが生じることがある。よって、誤検出除去部114は、培地領域の外周から30画素以内の領域を除去する。培地領域の外周付近の領域は、ノイズが多いからである。

【0105】
ステップS108では、コロニー数カウント部116は、誤検出除去部114が誤検出を除去した画像(処理対象の画像)に対して、コロニー数をカウントする。コロニー数カウント部116は、処理対象の画像に対して、8近傍ラベリング処理を施す。

【0106】
ラベリング処理は、白黒に2値化された画像において、白の部分が連続した画素に同一番号(同一ラベル)を割り当てる処理である。8近傍ラベリング処理は、ラベリング処理において、白の部分が縦、横、斜めのいずれかに連続している場合に、同一ラベルを割り当てる処理である。同一のラベルを割り当てられた領域が1つの領域となる。従って、処理対象の画像に対するラベリング処理後のラベルの種類の数が、コロニー数を表す。これによって、コロニー数カウント部116は、コロニー数をカウントすることができる。

【0107】
(その他)
以上の処理で得られた結果で理想的な場合、良好なコロニー数のカウント結果が得られる。しかし、培地が濡れたことによる歪みや影の影響などで細かなノイズが含まれるケースが存在する。このため、誤検出除去部114は、面積が1000画素以上、面積が4画素以下、離心率が0.9以上の小領域を除去してもよい。ここで、面積は各小領域の画素数である。離心率eは次式で求められる。

【0108】
【数12】
JP2015154718A_000014t.gif

【0109】
ここで、2aは小領域の長径、2bは小領域の短径である。eは真円に近いほど値が0に近づく。

【0110】
(実施形態の作用、効果)
コロニー数計数装置100は、水性桿菌が培養されたメンブレンフィルタを撮影した画像から培地領域(メンブレンフィルタの領域)を抽出する。コロニー数計数装置100は、抽出された培地領域の大きさを所定の大きさになるように補正する。コロニー数計数装置100は、培地領域に含まれる格子を検出する。コロニー数計数装置100は、培地領域の色が所定の色になるように、ホワイトバランスを調整する。コロニー数計数装置100は、赤色成分と青色成分との差分値が周囲より大きい領域を抽出することで、暖色系のコロニーを抽出する。コロニー数計数装置100は、円形の領域を抽出することで、白色系のコロニーを抽出する。コロニー数計数装置100は、抽出された暖色系コロニーと白色系コロニーとを統合して、コロニーの数を計数することで、メンブレンフィルタ内のコロニー数を計数する。これにより、コロニー数計数装置100は、水性桿菌が培養され格子が含まれるメンブレンフィルタの画像から、暖色系コロニー及び白色系コロニーの数を計数することができる。

【0111】
コロニー数計数装置100は、暖色系のコロニーを検出する際に色情報を使用し、白色系のコロニーを検出する際に、コロニーの形状の情報を使用する。形状の情報を用いてコロニーを検出することで、画像内の培地領域の明るさの違いに影響されなくなる。また、コロニー数計数装置100は、格子を検出する際、形状の情報を使用しているので、画像の撮影時の環境に影響されずに格子を検出できる。

【0112】
ここでは、メンブレンフィルタを撮影した画像について説明したが、寒天培地を撮影した画像についても同様に適用することができる。例えば、寒天培地を撮影する際には、背景に白色の用紙などを置くことにより同様に処理されうる。

【0113】
図14は、目視によるカウント数と本実施形態の装置による自動カウント数との関係を示す図である。図14のグラフは、複数の水性桿菌が培養されたメンブレンフィルタにおいて、目視によるカウントと、コロニー数計数装置100による自動カウントの関係を示すグラフである。ここでは、94枚のメンブレンフィルタについて、計数を行った。目視によるカウント数と自動カウント数との間の相関係数は、0.96(P<0.001)である。これは、強い正の相関があることを意味する。また、ここで使用した94枚のメンブレンフィルタの画像中で、カウント数の平均誤差は0.65個であった。
【符号の説明】
【0114】
100 コロニー数計数装置
102 画像取得部
104 培地検出部
106 変形補正部
108 格子検出部
110 ホワイトバランス調整部
112 コロニー検出部
114 誤検出除去部
116 コロニー数カウント部
120 画像DB
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11
【図13】
12
【図14】
13