TOP > 国内特許検索 > 脳機能評価システム及び脳機能評価方法 > 明細書

明細書 :脳機能評価システム及び脳機能評価方法

発行国 日本国特許庁(JP)
公報種別 再公表特許(A1)
発行日 平成28年8月8日(2016.8.8)
発明の名称または考案の名称 脳機能評価システム及び脳機能評価方法
国際特許分類 A61B  10/00        (2006.01)
A61B   5/11        (2006.01)
FI A61B 10/00 V
A61B 5/10 310G
国際予備審査の請求 未請求
全頁数 19
出願番号 特願2014-533111 (P2014-533111)
新規性喪失の例外の表示 特許法第30条第2項適用申請有り 平成24年8月31日、日本神経科学学会のウェブサイト http://neuroscience2012.jp/japanese/search/index.html に掲載。
国際出願番号 PCT/JP2013/073344
国際公開番号 WO2014/034856
国際出願日 平成25年8月30日(2013.8.30)
国際公開日 平成26年3月6日(2014.3.6)
優先権出願番号 2012192339
2012193894
優先日 平成24年8月31日(2012.8.31)
平成24年9月4日(2012.9.4)
優先権主張国 日本国(JP)
日本国(JP)
指定国 AP(BW , GH , GM , KE , LR , LS , MW , MZ , NA , RW , SD , SL , SZ , TZ , UG , ZM , ZW) , EA(AM , AZ , BY , KG , KZ , RU , TJ , TM) , EP(AL , AT , BE , BG , CH , CY , CZ , DE , DK , EE , ES , FI , FR , GB , GR , HR , HU , IE , IS , IT , LT , LU , LV , MC , MK , MT , NL , NO , PL , PT , RO , RS , SE , SI , SK , SM , TR) , OA(BF , BJ , CF , CG , CI , CM , GA , GN , GQ , GW , KM , ML , MR , NE , SN , TD , TG) , AE , AG , AL , AM , AO , AT , AU , AZ , BA , BB , BG , BH , BN , BR , BW , BY , BZ , CA , CH , CL , CN , CO , CR , CU , CZ , DE , DK , DM , DO , DZ , EC , EE , EG , ES , FI , GB , GD , GE , GH , GM , GT , HN , HR , HU , ID , IL , IN , IS , JP , KE , KG , KN , KP , KR , KZ , LA , LC , LK , LR , LS , LT , LU , LY , MA , MD , ME , MG , MK , MN , MW , MX , MY , MZ , NA , NG , NI , NO , NZ , OM , PA , PE , PG , PH , PL , PT , QA , RO , RS , RU , RW , SA , SC , SD , SE , SG , SK , SL , SM , ST , SV , SY , TH , TJ , TM , TN , TR , TT , TZ , UA , UG , US , UZ
発明者または考案者 【氏名】石川 欽也
【氏名】水澤 英洋
【氏名】永雄 総一
【氏名】本多 武尊
【氏名】橋本 祐二
出願人 【識別番号】504179255
【氏名又は名称】国立大学法人 東京医科歯科大学
【識別番号】503359821
【氏名又は名称】国立研究開発法人理化学研究所
個別代理人の代理人 【識別番号】100106002、【弁理士】、【氏名又は名称】正林 真之
審査請求 未請求
テーマコード 4C038
Fターム 4C038VA04
4C038VA20
4C038VB12
4C038VB13
4C038VC16
要約 従来にない新たな方法で脳疾患に伴う運動機能障害を評価すること。
脳機能評価システム1は、被験者Xによって指示される指標を表示する表示装置11と、表示装置11上の被験者Xによって指示された指示位置を特定する指示位置特定部14と、指標の表示位置と被験者Xの指示位置との乖離量を算出する乖離量算出部16と、を備える。
特許請求の範囲 【請求項1】
被験者によって指示される指標を表示する表示装置と、
前記表示装置上の前記被験者によって指示された指示位置を特定する指示位置特定部と、
前記指標の表示位置と前記被験者の前記指示位置との乖離量を算出する乖離量算出部と、
を備える脳機能評価システム。
【請求項2】
前記被験者の視線がずれるように矯正する視線矯正部、を更に備え、
前記指示位置特定部は、前記視線矯正部により視線が矯正された状態における前記被験者の指示位置を特定し、
前記乖離量算出部は、算出された複数回の前記乖離量の変化を記憶する、
請求項1に記載の脳機能評価システム。
【請求項3】
前記指標を指示する指示部が基準位置にあることを検知する基準位置検知部と、
前記指標の視認性を制御する視認制御部と、
を備え、
前記視認制御部は、前記基準位置検知部により前記指示部が基準位置にあると検知されることを条件に、又は前記指示部が前記表示装置上を指示することを条件に、前記指標を前記被験者に視認可能とし、前記指示部が前記基準位置から離れ前記表示装置上を指示するまでの間は前記指標を前記被験者に視認不可能とする、
請求項1又は2に記載の脳機能評価システム。
【請求項4】
被験者によって指示される指標を表示装置に表示するステップと、
前記表示装置に表示した前記指標を前記被験者に指示させるステップと、
前記表示装置上の前記被験者によって指示された指示位置を特定するステップと、
前記指標の表示位置と前記被験者の前記指示位置との乖離量を算出するステップと、
を含む脳機能評価方法。
【請求項5】
前記指標を前記被験者に指示させるステップは、前記被験者の視線がずれるように矯正する視線矯正部を装着させた状態で行う、
請求項4に記載の脳機能評価方法。
【請求項6】
前記指標を指示する指示部が基準位置にあることを検知するステップと、
前記指示部が基準位置にあると検知されることを条件に、前記指標を前記被験者に視認可能とするステップと、
前記指示部が基準位置から離れることを条件に前記指標を前記被験者に視認不可能とするステップと、
前記指示部が前記表示装置上を指示することを条件に、前記指標を前記被験者に視認可能とするステップと、
を含む請求項4又は5に記載の脳機能評価方法。
【請求項7】
被験者によって指示される指標を表示する表示装置と、
前記指標を指示する前記被験者の指先が自身の耳上の基準位置にあることを検知する基準位置検知部と、
前記表示装置上の前記被験者によって指示された指示位置を特定する指示位置特定部と、
前記指標の表示位置と前記被験者の指示位置との乖離量を算出する乖離量算出部と、
前記被験者の視線がずれるように矯正する視線矯正部と、
前記指標の視認性を制御する視認制御部と、
を備え、
前記視認制御部は、前記基準位置検知部により前記被験者の指先が基準位置にあると検知されることを条件に前記指標を前記被験者に視認可能とし、前記被験者の指先が基準位置から離れることを条件に前記指標を前記被験者に視認不可能とし、
前記指示位置特定部は、前記視線矯正部により視線が矯正された状態における前記被験者の指示位置を特定し、
前記乖離量算出部は、算出された複数回の前記乖離量の変化を記憶する脳機能評価システム。
【請求項8】
前記視認制御部は、前記被験者の指先が前記基準位置から離れ前記表示装置上を指示するまでの間は前記指標を前記被験者に視認不可能とし、前記被験者の指先が前記表示装置上を指示することを条件に前記指標を前記被験者に視認可能とする、請求項7に記載の脳機能評価システム。
【請求項9】
被験者によって指示される指標を表示装置に表示するステップと、
前記指標を指示する前記被験者の指先が自身の耳上の基準位置にあることを検知するステップと、
前記表示装置に表示した前記指標を前記被験者に指示させるステップと、
前記被験者の指先が基準位置にあると検知されることを条件に前記指標を前記被験者に視認可能とするステップと、
前記被験者の指先が基準位置から離れることを条件に前記指標を前記被験者に視認不可能とするステップと、
前記表示装置上の前記被験者によって指示された指示位置を特定するステップと、
前記指標の表示位置と前記被験者の指示位置との乖離量を算出するステップと、
を含み、
前記指標を前記被験者に指示させるステップは、前記被験者の視線がずれるように矯正する視線矯正部を装着させた状態で行う、脳機能評価方法。
【請求項10】
前記被験者の指先が前記表示装置上を指示することを条件に前記指標を前記被験者に視認可能とするステップ、
を含む請求項9に記載の脳機能評価方法。

発明の詳細な説明 【技術分野】
【0001】
本発明は、脳の機能を客観的に評価する脳機能評価システム及び脳機能評価方法に関する。
【背景技術】
【0002】
従来、脳を侵す神経変性疾患のような運動機能障害を伴う脳疾患では、口頭指示に対する被験者の運動を観察すること等により進行状況の把握を定性的に行うことが一般的であった。また、被験者にプリズムメガネ(レンズにプリズムを組み込み、光を屈折させることによって視線がずれるようにしたメガネ)を掛けさせ、複数回ダーツを投げた際の的への命中精度の変化(プリズムに対する適応)を定量的に検査する試みもなされていた。しかしながら、このような検査では、医師等の経験及び力量や、被験者の元々の運動機能の差に大きく左右され定量性に欠けるため、近年では、脳疾患のより定量的な評価を可能にするための試みがなされている。
【0003】
例えば、特許文献1には、被験者に表示画面上の指標を指示させた後に、指示部分を目標部分まで移動させ、この移動に要した時間を健常者の試験結果と対比することで運動機能を評価する運動機能評価方法が記載されている。
【先行技術文献】
【0004】

【特許文献1】特開2004-57357号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、特許文献1のような運動機能評価方法では、被験者には多くの動作が必要とされるため、より簡易かつ正確に運動機能を定量的に評価する工夫が求められていた。
【0006】
また、運動機能障害は、大脳の疾患を原因として発生することもあれば、小脳の疾患を原因として発生することもある。この点、特許文献1のように近年試みられている運動機能評価方法では、被験者の意思(特許文献1では目標部分にまで指示部分を移動させるという意思)を介在させるものであり、運動機能障害が大脳に起因するものであるか小脳に起因するものであるか特定することができなかった。
特に小脳の評価方法としては、体のバランスや四肢の巧緻運動、発語の際の構音障害の有無等に基づく定性的な評価方法が用いられているのが現状であり、ダーツ投げのプリズム適応では定量性と正確性のいずれもが欠け、リアルタイムにも計測できないことから、小脳(特に運動学習)についての定量的かつ高精度な評価方法の構築が求められている。
【0007】
本発明は、このような要求に鑑みてなされたものであり、従来にない新たな方法で脳疾患に伴う運動機能障害を評価する脳機能評価システム及び脳機能評価方法を提供することを第1の目的とし、更には、小脳(特に運動学習機能)の定量的、リアルタイムかつ高精度な評価を実現することで、小脳を原因とする運動機能障害を正確に鑑別することのできる脳機能評価システム及び脳機能評価方法を提供することを第2の目的とする。
【課題を解決するための手段】
【0008】
(1) 被験者によって指示される指標を表示する表示装置と、前記表示装置上の前記被験者によって指示された指示位置を特定する指示位置特定部と、前記指標の表示位置と前記被験者の前記指示位置との乖離量を算出する乖離量算出部と、を備える脳機能評価システム。
【0009】
(1)の脳機能評価システムによれば、被験者に対して表示装置上の指標を指示させ、その指示位置と指標との乖離量から被験者の脳機能を評価することができる。例えば、手が震える等のように運動機能に障害がある場合には、健常者に比べて乖離量が大きくなるため、被験者の脳機能を客観的かつ定量的に評価することができる。これにより、従来にない新たな方法で、脳疾患に伴う運動機能障害を評価することができる。
【0010】
(2) 前記被験者の視線がずれるように矯正する視線矯正部、を更に備え、前記指示位置特定部は、前記視線矯正部により視線が矯正された状態における前記被験者の指示位置を特定し、前記乖離量算出部は、算出された複数回の前記乖離量の変化を記憶する、(1)に記載の脳機能評価システム。
【0011】
(2)の脳機能評価システムによれば、被験者は視線が矯正された状態で表示装置上の指標を指示するため、試験開始直後は、指標から乖離した位置を指示してしまうことになる。健常者であれば、小脳の運動学習により次第に指標を指示できるようになるものの、小脳に障害がある被験者は、運動学習能力が低下しているため、繰り返し試験を行っても指標を正確に指示することができない。また、正確な指示に至るまでの繰り返し回数が増えてしまう。そのため、小脳(特に運動学習)の障害についての定量的、リアルタイムかつ高精度な評価が可能となり、小脳を原因とする運動機能障害と大脳を原因とする運動機能障害とを鑑別することができる。
【0012】
(3) 前記指標を指示する指示部が基準位置にあることを検知する基準位置検知部と、前記指標の視認性を制御する視認制御部と、を備え、前記視認制御部は、前記基準位置検知部により前記指示部が基準位置にあると検知されることを条件に、又は前記指示部が前記表示装置上を指示することを条件に、前記指標を前記被験者に視認可能とし、前記指示部が前記基準位置から離れ前記表示装置上を指示するまでの間は前記指標を前記被験者に視認不可能とする、(1)又は(2)に記載の脳機能評価システム。
【0013】
(3)の脳機能評価システムによれば、被験者が指標を指示しようと指示部を基準位置から離すと、表示装置上の指標が視認できなくなる。そのため、被験者が指示部を指標に近づける際に(即ち、指示動作の途中で)、被験者は、指示部の途中位置と指標との位置関係を特定することができず、指示動作の途中で位置ずれの修正を行うことができない。これにより、被験者の意思による指示位置の修正を防止することができ、大脳の働きをカットした上で、運動機能を定量的かつ高精度に評価することができる。その結果、小脳(特に運動学習)の障害の有無について正確な評価が可能となり、小脳を原因とする運動機能障害と大脳を原因とする運動機能障害とを鑑別することができる。
【0014】
(4) 被験者によって指示される指標を表示装置に表示するステップと、前記表示装置に表示した前記指標を前記被験者に指示させるステップと、前記表示装置上の前記被験者によって指示された指示位置を特定するステップと、前記指標の表示位置と前記被験者の前記指示位置との乖離量を算出するステップと、を含む脳機能評価方法。
【0015】
(5) 前記指標を前記被験者に指示させるステップは、前記被験者の視線がずれるように矯正する視線矯正部を装着させた状態で行う、(4)に記載の脳機能評価方法。
【0016】
(6) 前記指標を指示する指示部が基準位置にあることを検知するステップと、前記指示部が基準位置にあると検知されることを条件に、前記指標を前記被験者に視認可能とするステップと、前記指示部が基準位置から離れることを条件に前記指標を前記被験者に視認不可能とするステップと、前記指示部が前記表示装置上を指示することを条件に、前記指標を前記被験者に視認可能とするステップと、を含む(4)又は(5)に記載の脳機能評価方法。
【0017】
(4)から(6)の脳機能評価方法によれば、(1)から(3)の脳機能評価システムと同様の効果を奏する。
【発明の効果】
【0018】
本発明によれば、従来にない新たな方法で脳疾患に伴う運動機能障害を評価することができるとともに、小脳を原因とする運動機能障害を正確に鑑別することができる。
【図面の簡単な説明】
【0019】
【図1】本発明の脳機能評価システムの機能的構成を示すブロック図である。
【図2】図1の機能的構成を実現するためのハードウェア構成を示す図である。
【図3】脳機能評価システムを用いた試験の手順を示す図である。
【図4】脳機能評価システムを用いた試験の実施例を示す図である。
【図5】脳機能評価システムを用いた試験の実施例を示す図である。
【図6】脳機能評価システムを用いた試験の実施例を示す図である。
【図7】脳機能評価システムを用いた試験の実施例を示す図である。
【発明を実施するための形態】
【0020】
以下、本発明の実施形態について図面を参照して説明する。

【0021】
[脳機能評価システム1の機能的構成]
初めに、図1を参照して、本発明の一つの実施形態としての脳機能評価システム1の機能的構成について説明する。
脳機能評価システム1は、表示装置11と、視線矯正部12と、基準位置検知部13と、指示位置特定部14と、視認制御部15と、乖離量算出部16と、評価部17と、を含んで構成される。

【0022】
表示装置11は、被験者に対して指示対象としての指標を表示する。視線矯正部12は、被験者の視線がずれるように矯正する。例えば、視線矯正部12は、被験者の視線を7度以上60度以下の範囲、好ましくは15度以上40度以下の範囲で右又は左に矯正する。
脳機能評価システム1では、被験者は、視線が矯正されていない(視線にずれのない)状態で表示装置11に表示された指標を指示部(例えば、自分の指)で指示することを所定回数繰り返し、また、視線が矯正された(視線がずらされた)状態で表示装置11に表示された指標を指示部(例えば、自分の指)で指示することを所定回数繰り返すことで、脳機能を評価するための試験を行う。

【0023】
基準位置検知部13は、指示部が基準位置にあるか否かを検知し、その結果を視認制御部15に通知する。
指示位置特定部14は、被験者によって表示装置上の任意の位置が指示されたことを検知し、その結果を視認制御部15に通知する。また、指示位置特定部14は、表示装置上の被験者によって指示された位置(以下「指示位置」と呼ぶ)を特定し、特定した指示位置を乖離量算出部16に通知する。なお、指示位置としては、例えば、表示装置11上の座標を採用することができる。

【0024】
視認制御部15は、表示装置11に表示される指標を被験者に視認できるようにするか否かを制御し、表示装置11は、任意の位置(以下「表示位置」と呼ぶ)に指標を表示する。例えば、表示装置11は、表示位置を所定回数分ランダムに決定し、決定した表示位置に指標を表示する。
また、視認制御部15は、指示部が基準位置にある場合に表示装置11に表示された指標を被験者に視認可能とし、指示部が基準位置から離れた場合に表示装置11に表示している指標を視認不可能とする。そして、視認制御部15は、その後指示部が表示装置11上を指示すると、視認不可能としていた指標を被験者に再び視認可能とする。
また、表示装置11は、指標の表示位置を乖離量算出部16に通知する。なお、表示位置としては、例えば、表示装置11上の座標を採用することができる。

【0025】
乖離量算出部16は、指標の表示位置と被験者による指示位置との乖離量、即ち表示位置を示す座標と指示位置を示す座標との乖離量(両座標間の距離)を算出し、算出結果を評価部17に通知する。

【0026】
評価部17は、乖離量算出部16により算出された乖離量に基づいて(例えば、健常者の乖離量の統計値と比較することで)、乖離の程度を評価する。評価の詳細については後述するが、評価部17は、被験者の乖離量が大きい場合(絶対値が大きい場合、又は健常者の乖離量の統計値と比較した相対値が大きい場合等)には、健常者との間に有意差があると評価できるように乖離量を表示(印刷、画面出力等)する。このとき、評価部17は、試験を繰り返し行った場合の乖離量の変化の傾向をも表示する。

【0027】
[脳機能評価システム1の具体的構成]
続いて、図1に示す機能的構成を具体的に実現するためのハードウェア構成を図2を参照して説明する。なお、図2に示す構成は一例に過ぎず、図1に示す機能を発揮可能であればその他の構成により実現することとしてもよい。
図2に示すように、脳機能評価システム1は、管理端末2と、クライアント端末3と、メガネ4と、タッチセンサー5と、を含んで構成される。

【0028】
管理端末2は、脳機能評価システム1による試験を管理する管理者Z(例えば、医師又は試験技師等)により用いられる端末装置であり、クライアント端末3と通信可能に接続される。管理端末2には、試験を行うための管理プログラムがインストールされており、管理者Zによって実行される管理プログラムに従い動作することで表示位置の決定、乖離量の算出及び健常者の統計値との比較等の各種機能を実現する。
クライアント端末3は、試験が行われる被験者Xに対面するように設置された端末装置であり、ディスプレイ31を含んで構成される。ディスプレイ31は、液晶ディスプレイであり、クライアント端末3の制御に伴い被験者Xに向けて指標を表示する。また、ディスプレイ31の前面にはタッチパネル311が配置され、被験者Xにより指示された指示位置を特定可能に構成される。

【0029】
メガネ4は、前面側にプリズムレンズ41を設置可能に構成され、被験者Xに装着される。プリズムレンズ41は、メガネ4の左側面から抜き差しすることで着脱可能な板状プリズムレンズであり、被験者Xの視線がずれるように矯正する。また、メガネ4の最前面には、電圧の印加の有無で透明又は不透明となる電磁シャッターが組み込まれており、ディスプレイ31に表示された指標を被験者Xに視認可能とし、又は視認不可能とすることができる。
タッチセンサー5は、被験者Xによりタッチされているか否かを検知し、USB(Universal Serial Bus)や無線LAN等を介して接続されたクライアント端末3及びメガネ4に対してその検知結果を通知する。本実施形態では、イヤークリップ型のタッチセンサー5を用いることとしている。即ち、本実施形態における基準位置とは、耳に装着されたタッチセンサー5の位置をいう。

【0030】
このような構成の脳機能評価システム1では、クライアント端末3(ディスプレイ31)が表示装置11として機能し、プリズムレンズ41が挿入されたメガネ4が視線矯正部12として機能する。即ち、メガネ4を装着した被験者Xの視線は、メガネ4の前面側に差し込まれたプリズムレンズ41により矯正され、被験者Xには、ディスプレイ31に表示された指標が実際の位置からずれた位置に視えることになる。ここで、プリズムレンズ41は、被験者Xの視線を7度以上60度以下の範囲、好ましくは15度以上40度以下の範囲で右又は左に矯正する。矯正量が15度(特に7度)未満になると視線のずれが小さくなって実質的には矯正にならず、40度(特に60度)より大きくなると運動機能の学習限度を超えるようになってきて小脳の機能評価が難しくなる。

【0031】
また、脳機能評価システム1では、タッチセンサー5が基準位置検知部13として機能し、タッチパネル311が指示位置特定部14として機能する。即ち、耳に装着したタッチセンサー5を被験者Xが指で触ることで、指示部(被験者Xの指)が基準位置にあることが検知され、タッチセンサー5から指が離れることで、指示部(被験者Xの指)が基準位置にないことが検知される。また、指標を表示するディスプレイ31の前面に配置されたタッチパネル311に対して被験者Xの指が触れた位置が、被験者Xによって指示された指示位置として特定される。

【0032】
また、脳機能評価システム1では、メガネ4の電磁シャッターが視認制御部15として機能する。即ち、管理端末2が指標を表示する表示位置をランダムに決定しクライアント端末3に対して通知すると、クライアント端末3がこの通知に従いディスプレイ31の表示位置に指標を表示する。
そして、タッチセンサー5及びタッチパネル311と通信可能に接続されたメガネ4の電磁シャッターは、タッチセンサー5が指の接触を検知している状態では、被験者Xに対して指標を視認できるようにし、タッチセンサー5が指の接触を検知していない状態では、その後タッチパネル311が指の接触を検知するまで被験者Xに指標を視認できないようにする。

【0033】
また、脳機能評価システム1では、管理端末2が乖離量算出部16及び評価部17として機能する。即ち、管理端末2は、タッチパネル311が特定した指示位置をクライアント端末3から受信し、指標の表示位置と比較することで、被験者Xの指示した指示位置が指標の表示位置からどれだけ乖離しているか算出する。また、クライアント端末3は、試験の結果得られた所定回数分の乖離量の傾向について、健常者との間に有意差があると評価できるように画面表示又は印刷出力し、管理者Zが被験者Xの脳機能を判断できるようにする。

【0034】
[脳機能評価システム1の試験方法]
以上、本実施形態の脳機能評価システム1の構成について説明した。続いて、脳機能評価システム1を用いた試験の手順について、図3を参照して説明する。

【0035】
被験者Xは、タッチパネル311に対して自分の指が適度な圧力で接触可能な位置(例えば、ディスプレイ31の前方50cm程度であり、被験者Xの腕の長さによって適宜調整した位置)に待機し、メガネ4及びタッチセンサー5を装着する。また、被験者Xは、台(図示は省略)の上に顎を置いた状態で座って待機する。ここで、本実施形態では、視線を矯正していない状態での試験と、視線を矯正した状態での試験とを、夫々所定回数ずつ繰り返し行うこととしている。そのため、メガネ4には必要に応じて視線を矯正しないダミーの透明アクリル板又は視線を矯正するプリズムレンズ41を挿入する。なお、図3では、被験者Xは、プリズムレンズ41を挿入したメガネ4を装着、即ち被験者Xの視線は矯正されて右方向に25度ずらされているものとする。

【0036】
図3(A)に示すように、被験者Xがタッチセンサー5を自分の指で触れると、ディスプレイ31の管理端末2から指示された表示位置P1に指標が表示される。このとき、図3では、被験者Xの視線は矯正されているため、被験者Xには、実際の表示位置P1から右方向に25度ずれた矯正位置P2に指標が表示されているように視える。なお、図3(A)では、ディスプレイ31a及び矯正位置P2をディスプレイ31及び表示位置P1の右上方向に表示しているが、これは、暗所内で試験を受ける被験者Xの首が傾く場合があることを考慮して記載したものである。

【0037】
その後、被験者Xがタッチセンサー5から指を離し、タッチパネル311上の指標を指で指示することにより試験が行われる。このとき、指示動作の途中で被験者Xが指の位置を指標に向けて意識的に調整することを防止するため、被験者Xは、指示動作を一定の速度でリズミカルに行うこととする。
また、図3(B)に示すように、被験者Xがタッチセンサー5から指を離すと、メガネ4の電磁シャッターの働きにより、被験者Xは、ディスプレイ31の指標が視認できなくなる。これにより、指示動作の途中で被験者Xが指の位置を指標に向けて意識的に調整することが困難になり、被験者Xの意思による調整を防止することができる。即ち、大脳の働きをカットする。

【0038】
その後、被験者Xがタッチパネル311を指で指示する(タッチパネル311に被験者Xの指が接触する)と、図3(C)に示すようにディスプレイ31の指標が再び被験者Xに視認できるようになる。このとき、図3では、被験者Xの視線が矯正されているため、被験者Xは、表示位置P1ではなく矯正位置P2の近傍の指示位置P3を指示することになる。この指示位置P3と表示位置P1とは、管理端末2に送信され、指示位置P3と表示位置P1との乖離量(距離)が算出される。

【0039】
その後、被験者Xがタッチパネル311から指を離し、タッチセンサー5を指で触れると、ディスプレイ31には次の試験用の指標が前回とは異なる表示位置に表示されるとともに、被験者Xは、その指標を視認できる状態となる。脳機能評価システム1を用いた試験では、このような指標に対する指示動作を繰り返し行い、被験者Xの指示位置P3と表示位置P1との乖離量、より詳細には乖離量の変化の傾向から被験者Xの脳機能を判断する。

【0040】
[実施例]
続いて、図4及び図5を参照して、脳機能評価システム1を用いた試験の実施例について説明する。本発明者らは、健常者(図4(A))、脊髄小脳失調症31型の患者(図4(B))、晩発性小脳皮質萎縮症の患者(図5(C))、及びパーキンソン病の患者(図5(D))を被験者として脳機能評価システム1を用いた試験を行った。これら被験者のうち、健常者は大脳・小脳に関わらず脳に障害がみられない被験者であり、脊髄小脳失調症31型の患者及び晩発性小脳皮質萎縮症の患者は小脳に障害がみられる被験者であり、パーキンソン病の患者は小脳には障害がみられず大脳に障害がみられる被験者である。
実施例では、被験者がプリズムレンズ41の代わりにダミーの透明アクリル板を挿入したメガネ4を装着した状態で50回の試験を繰り返した後に、右方向に25度視線がずれるプリズムレンズ41を挿入したメガネ4を装着した状態で100回の試験を繰り返し、その後再びダミーの透明アクリル板を挿入したメガネ4を装着した状態で50回の試験を繰り返すことで行った。なお、ダミーの透明アクリル板を用いるのは、視線の矯正の有無を被験者に知られないようにするためである。

【0041】
初めに、図4(A)を参照して健常者の実施例について説明する。
最初の50回の試験では、プリズムレンズ41が挿入されておらず、ダミーの透明アクリル板であることから視線が矯正されていないため、健常者は、指標の近傍を指示する傾向がみられた。
続く100回の試験では、健常者は、初めのうちは指標からずれた位置を指示していたものの、繰り返し試験を行うことで徐々に指標の近傍を指示する傾向がみられた。これは、プリズムレンズ41により視線が矯正されているため、当初矯正分だけずれが生じていたのに対し、その後の繰り返しにより小脳の運動学習機能が働き指標を正確に指示できるようになったと考えられる。
その後の50回の試験では、挿入していたプリズムレンズ41を外し、ダミーの透明アクリル板に戻すことによって視線の矯正を解除したため、初めのうちは小脳が学習していた分だけ指標からずれた位置を指示していたものの、繰り返し試験を行うことで再び学習機能が働き徐々に指標の近傍を指示する傾向がみられた。

【0042】
続いて、図4(B)を参照して脊髄小脳失調症31型の患者の実施例について説明する。
最初の50回の試験では、視線が矯正されていないにも関わらず指標からずれた位置をばらばらに指示する傾向がみられた。これは、被験者に運動機能障害があるためと考えられる。
続く100回の試験では、視線の矯正に伴い指標からのずれが矯正分だけシフトする傾向もみられなくはないものの、相変わらずばらばらな指示で、繰り返し行っても指標の近傍に近づくことがなかった。これは、小脳の障害により運動学習機能が働かないためと考えられる。
続く50回の試験では、視線の矯正を解除したことに伴い、矯正分のシフトが解除されているが、最初の50回の試験と同じく指標からずれた位置をばらばらに指示する傾向がみられた。なお、健常者のように当初矯正分とは逆方向にずれる傾向はみられなかった。これは、100回の試験において運動学習機能が働かなかったため、健常者のように学習した分のずれが生じなかったためと考えられる。

【0043】
なお、図5(C)に示すように、小脳に障害のある晩発性小脳皮質萎縮症の患者では、脊髄小脳失調症31型の患者と類似の傾向がみられた。即ち、視線を矯正していない状態であっても指標からずれた位置をばらばらに指示する傾向がみられるとともに、視線を矯正した状態では指標からのずれが矯正分だけシフトするものの繰り返し行っても指標の近傍に近づかない傾向がみられた。

【0044】
続いて、図5(D)を参照して大脳に障害がみられるパーキンソン病の患者の実施例について説明する。
最初の50回の試験では、視線が矯正されていないにも関わらず指標からずれた位置を指示する傾向がみられたが、脊髄小脳失調症31型や晩発性小脳皮質萎縮症の患者に比べてばらつきの程度は小さい。これは、被験者に、小脳に起因しない運動機能障害があるためと考えられる。
一方、続く100回の試験では、健常者と同様に、当初矯正分だけずれが生じていたものの、その後の繰り返しにより指標を概ね指示できるようになる傾向がみられた。これは、繰り返しにより小脳の運動学習機能が働き指標を指示できるようになったためと考えられる。
続く50回の試験でも、健常者と同様に、初めのうちは小脳が学習していた分だけ指標からずれた位置を指示していたものの、繰り返し試験を行うことで再び学習機能が働き徐々に指標の近傍を指示するようになる傾向がみられた。

【0045】
以上のような実施例により、ディスプレイ31に表示した指標を被験者に指示させ、その乖離量の傾向を観察することで、被験者に大脳又は小脳の障害に伴う運動機能障害が生じているか否かを判断できることが分かった。即ち、最初の50回の試験に示すように、運動機能障害が生じている被験者は、健常者のように正確に指標を指示できない傾向にあるため、乖離量の観察から運動機能障害が生じているか否かを定量的に評価し、判断することができる。

【0046】
また、視線を矯正した被験者に指標を指示させた場合の乖離量の傾向を観察することで、被験者に小脳の障害に伴う運動機能障害が生じているか否かを判断できることが分かった。即ち、続く100回の試験に示すように、小脳に障害がなく運動学習機能が働く被験者は、視線が矯正された状態でも繰り返し試験を行うことで徐々に指標を正確に指示できるようになる一方で、小脳の障害により運動学習機能が働かない被験者は、繰り返し試験を行っても乖離量の改善がみられない。また、続く50回の試験に示すように、視線の矯正を解除すると、小脳に障害がない被験者には当初学習していた分だけ指標からずれた位置を指示しその後徐々に正確な位置を指示する傾向にあるものの、小脳に障害がある被験者には視線を矯正していた状態の学習に伴う矯正分とは逆方向にずれる傾向がみられず、また、その後の繰り返しによる乖離量の変化もみられない。そのため、視線を矯正して指標を指示させることで小脳を原因とする運動機能障害を鑑別することができる。

【0047】
[追加実施例]
続いて、図6及び図7を参照して、脳機能評価システム1を用いた追加試験の実施例について説明する。なお、追加試験の方法は、図4及び図5で行った試験の方法と同一である。また、図6及び図7では、各被験者における適応指数を図示している。この適応指数は、任意の健常者(一例としては図4(A)の健常者)の試験結果との比較を示し、適応指数が1に近いほど健常であることを示す。

【0048】
追加試験において、本発明者らは、アルツハイマー病の患者(図6(E))、高齢の健常者(図6(F))、パーキンソン病の患者(図7)を被験者として脳機能評価システム1を用いた試験を行った。これら被験者のうち、アルツハイマー病の患者は、記憶力の低下は見られるものの一般的な小脳障害は無い被験者であり、高齢の健常者は、このアルツハイマー病の患者よりも高齢の被験者(配偶者)である。
図6では、アルツハイマー病の患者(図6(E))と当該患者よりも高齢の健常者(図6(F))との比較を行った。また、図7では、パーキンソン病の患者について治療前(図7(G))と治療後(図7(H))との比較を行った。即ち、図7(G)(H)では同一の患者について試験を行っている。具体的には、図7(G)は、薬物治療をしていない初診段階での試験結果を示し、図7(H)は、パーキンソン病に対する薬を数ヶ月間服用し、生活が楽になった時点での試験結果を示す。

【0049】
図6を参照して、アルツハイマー病の患者と、当該患者より高齢の被験者とを比較すると、アルツハイマー病の患者の方が適応指数が低い。これは、アルツハイマー病の患者は、ディスプレイ31に表示された指標を記憶する力が弱いためと考えられる。
このことから、脳機能評価システム1によれば、作業記憶と呼ばれる人間の記憶機能の善し悪しを判定することができる。即ち、追加試験によって、アルツハイマー病の患者では結果が低下することが判明したため、脳機能評価システム1は、アルツハイマー病等の認知症の試験に応用することができる。

【0050】
図7を参照して、パーキンソン病の患者に対して治療前後において行った試験では、治療前において低かった適応指数が、治療後において著しく改善した。即ち、全体的なばらつきが減少し、動作が改善されている。図7を参照すると、治療により改善したパーキンソン病の症状が試験結果として現れていることが分かる。
このことから、脳機能評価システム1によれば、パーキンソン症状の評価や薬効評価に好適に利用することができる。また、被験者の手の震え等も定量的に評価することができる。

【0051】
以上説明した脳機能評価システム1によれば、被験者の指示位置と指標との乖離量に基づいて被験者の脳機能を評価する。例えば、手が震える等のように運動機能に障害がある場合には、乖離量が大きくなるため、健常者の結果と比較することで、被験者の脳機能を客観的かつ定量的に評価することができる。これにより、従来にない新たな方法で、脳疾患に伴う運動機能障害の有無を判断することができる。

【0052】
また、脳機能評価システム1では、視線を矯正した状態での指示位置と指標との乖離量の変化傾向を健常者の乖離量の変化傾向と比較することで被験者の脳機能を評価する。小脳に障害のない健常者であれば、視線が矯正されていたとしても小脳の運動学習により次第に指標を指示できるようになるものの、小脳に障害がある被験者は、運動学習能力が低下しているため、繰り返し試験を行っても指標を正確に指示することができない。そのため、小脳の定量的な評価を行うことができ、脳疾患が小脳を原因とするものであるのか大脳を原因とするものであるのかを鑑別することができる。
一例として、脊髄小脳失調症31型や脊髄小脳変性症のように小脳疾患の診断に利用することができるとともに、小脳を障害しないパーキンソン病や本態性振戦等の錐体外路系疾患と、パーキンソン症状を伴いかつ小脳も障害し得る多系統萎縮症等の錐体外路系疾患とを鑑別することができる。日常の臨床では、病早期や複雑な合併症がある場合等で、この両者の鑑別が難しい場面があるため、脳機能評価システム1の有用性が発揮できる。更に、診察やMRIでは区別しにくい小脳障害類似症状、例えば、脳血管障害や多発性硬化症で起きる運動失調性不全片麻痺でも小脳障害の除外に有用である。即ち、小脳を侵す疾患以外にも多数の疾患や脳発達・老化の鑑別にまで広く応用可能である。

【0053】
このとき、脳機能評価システム1では、被験者が指標を指示する途中の段階でディスプレイ31上の指標を視認できなくするため、指を指標に近づける際に、被験者は、指の途中位置と指標との位置関係を特定することができず、指示動作の途中で位置ずれの修正を行うことができない。これにより、被験者の意思による指示位置の修正を防止することができ、大脳の働きをカットした上で、小脳の運動機能を定量的に評価することができる。

【0054】
また、脳機能評価システム1は、脳の中の機能連関や小児の脳成熟の評価といった脳機能の解明のために広く利用することができる。更には、脳機能評価システム1は、小脳が関わることが確実視されている自閉症スペクトラムでの機能評価にも利用することができる。

【0055】
以上、本発明の実施形態について説明したが、本発明は前述した実施形態に限るものではない。また、本実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本実施形態に記載されたものに限定されるものではない。

【0056】
例えば、上記実施形態では、指標の視認の可否を視認制御部15の制御により実現することとしているが、これに限られるものではない。例えば、表示装置11(ディスプレイ31)の前面に物理的なシャッターを設け、被験者から指標を物理的に視認できないように構成することとしてもよい。また、電圧がかかっていない状態で白い画面となる所謂ノーマリーホワイトの液晶ディスプレイを使用し、管理端末2やクライアント端末3からの指示に応じて液晶ディスプレイに指標を表示又は非表示とすることで実現することもできる。

【0057】
更に、上記実施形態では、ダミーの透明アクリル板、右方向に25度視線がずれるプリズムレンズ41、ダミーの透明アクリル板の順にメガネ4に挿入して試験を行っているが、これに限られるものではない。例えば、ダミーの透明アクリル板、右方向に25度視線がずれるプリズムレンズ41、左方向に25度視線がずれるプリズムレンズ41、ダミーの透明アクリル板の順となるように、途中で逆方向に視線がずれるプリズムレンズ41を挿入することとしてもよい。この場合、逆方向に視線がずれるプリズムレンズ41によって、ダミーの透明アクリル板よりも顕著な傾向を出すことができる。また、視線のずれ角度は25度に限らず、15度、40度でも同様の試験結果が得られ、7度以上60度以下の範囲であれば実用的な試験が可能である。
【符号の説明】
【0058】
1 脳機能評価システム
11 表示装置
12 視線矯正部
13 基準位置検知部
14 指示位置特定部
15 視認制御部
16 乖離量算出部
17 評価部
2 管理端末
3 クライアント端末
31 ディスプレイ
311 タッチパネル
4 メガネ
41 プリズムレンズ
5 タッチセンサー
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6