TOP > 国内特許検索 > 酸化亜鉛系透明導電膜、マグネトロンスパッタリング用焼結体ターゲット、液晶ディスプレイ及びタッチパネル、ならびに酸化亜鉛系透明導電膜を含んでなる機器 > 明細書

明細書 :酸化亜鉛系透明導電膜、マグネトロンスパッタリング用焼結体ターゲット、液晶ディスプレイ及びタッチパネル、ならびに酸化亜鉛系透明導電膜を含んでなる機器

発行国 日本国特許庁(JP)
公報種別 特許公報(B2)
特許番号 特許第5613805号 (P5613805)
公開番号 特開2014-037631 (P2014-037631A)
登録日 平成26年9月12日(2014.9.12)
発行日 平成26年10月29日(2014.10.29)
公開日 平成26年2月27日(2014.2.27)
発明の名称または考案の名称 酸化亜鉛系透明導電膜、マグネトロンスパッタリング用焼結体ターゲット、液晶ディスプレイ及びタッチパネル、ならびに酸化亜鉛系透明導電膜を含んでなる機器
国際特許分類 C23C  14/08        (2006.01)
C23C  14/34        (2006.01)
H01B   5/14        (2006.01)
G02F   1/1343      (2006.01)
G06F   3/041       (2006.01)
FI C23C 14/08 C
C23C 14/34 A
H01B 5/14 A
G02F 1/1343
G06F 3/041 430
請求項の数または発明の数 5
全頁数 7
出願番号 特願2013-181145 (P2013-181145)
分割の表示 特願2011-274353 (P2011-274353)の分割、【原出願日】平成19年12月29日(2007.12.29)
出願日 平成25年9月2日(2013.9.2)
審査請求日 平成25年9月18日(2013.9.18)
特許権者または実用新案権者 【識別番号】593165487
【氏名又は名称】学校法人金沢工業大学
発明者または考案者 【氏名】南 内嗣
【氏名】宮田 俊弘
個別代理人の代理人 【識別番号】100105924、【弁理士】、【氏名又は名称】森下 賢樹
審査官 【審査官】萩原 周治
参考文献・文献 特開2005-306684(JP,A)
特開平03-249171(JP,A)
国際公開第2007/058232(WO,A1)
特開平08-111123(JP,A)
米国特許第06146765(US,A)
特開2007-327079(JP,A)
特開平11-236219(JP,A)
特開平11-256321(JP,A)
特開平11-171539(JP,A)
米国特許出願公開第2003/0136662(US,A1)
特開2002-201024(JP,A)
特開2001-058821(JP,A)
米国特許第06660380(US,B1)
特開平07-026371(JP,A)
調査した分野 C23C 14/00-14/58
G02F 1/1343-1/1345
G02F 1/135
G06F 3/041-3/047
H01B 5/00-5/16
特許請求の範囲 【請求項1】
実質的に亜鉛、珪素、スズおよび酸素からなり、珪素がSi/(Zn+Si+Sn)の原子比で1%を超え8%未満の割合で含有され、且つスズがSn/(Zn+Si+Sn)の原子比で0.1%を超え1%未満の割合で含有されることにより、珪素がドナーとして作用し、スズが抵抗率特性の膜厚依存性の抑制に対して作用することを特徴とする酸化亜鉛系透明導電膜。
【請求項2】
透明導電膜の厚さが200nm未満であることを特徴とする請求項1に記載の酸化亜鉛系透明導電膜。
【請求項3】
請求項1または2に記載の化学的組成からなるマグネトロンスパッタリング用焼結体ターゲット。
【請求項4】
請求項3に記載の焼結体ターゲットを用いるマグネトロンスパッタリング法により作製した酸化亜鉛系透明導電膜を含んでなる液晶ディスプレイ及びタッチパネル。
【請求項5】
請求項3に記載の焼結体ターゲットを用いるマグネトロンスパッタリング法により作製した酸化亜鉛系透明導電膜を含んでなる機器。
発明の詳細な説明 【技術分野】
【0001】
本発明は、フラットパネルディスプレイやタッチパネルなどに使用される透明導電膜及びその成膜に使用するマグネトロンスパッタリング用酸化物焼結体ターゲットに関する。
【背景技術】
【0002】
ITO(Indium Tin Oxide)薄膜は、低抵抗率で可視光に対して高い透過率を示すことから、液晶ディスプレイを中心としたフラットパネルディスプレイやタッチパネル、太陽電池などの透明電極として幅広く用いられている。しかし、近年、ITOの原材料であるインジウム価格の高騰、資源問題等による安定供給不安からインジウムを使用しない透明導電膜(ITO代替材料)への関心が高まっている。ITO代替材料としては、酸化亜鉛、酸化スズを母材とした材料が知られているが、特に、酸化亜鉛にアルミニウムを添加した膜(以下AZOと略記する)では、1.9×10-4ΩcmというITOに匹敵する値が報告されている(例えば非特許文献1参照)。
【0003】
酸化亜鉛を母材とする膜の形成方法としては、高周波(rf)マグネトロンスパッタリング法、直流(dc)マグネトロンスパッタリング法、パルスレーザー蒸着法、真空アークプラズマ蒸着法、イオンプレーティング法などをあげることができる。上記、1.9×10-4Ωcmという値は、rfマグネトロンスパッタリング法により得られている。しかし、フラットパネルディスプレイの製造工程では、大面積均一成膜および高速成膜が必要とされ、液晶ディスプレイ(LCD)を始め多くのフラットパネルディスプレイ用の透明電極製造にはdcマグネトロンスパッタリング法が採用されている。そのため既存の製造工程への対応を考えた場合には、このdcマグネトロンスパッタリング法で実用的特性を示す膜を形成する必要がある。
【先行技術文献】
【0004】

【非特許文献1】T.Minami、H.Nanto and S.Takata、JpnJ.Appl.Phys.、23,280-282(1984).
【非特許文献2】T.Minami、H.Sato、H.Nanto and S.Takata、Jpn J.Appl.Phys.、24,L781-L784(1985).
【非特許文献3】T.Minami、H.Sato、H.Nanto and S.Takata、Jpn J.Appl.Phys.、25,L776-L779(1986).
【非特許文献4】H.Sato、T.Minami and S.Takata、J.Vac.Sci.Technol.,A11,2975-2979(1993).
【非特許文献5】T.Minami, S.Takata, H.Sato and H.Sonohara,J.Vac. Sci. Technol., A13, 1095 (J1995).
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、現状のLCD製造プロセスにおけるITO透明電極形成技術をZnO系に適用した場合、ZnO系透明導電膜が解決しなければならない以下のような技術的課題(問題点)が存在する。問題点(1):dcマグネトロンスパッタリング装置を用いて作製したZnO系透明導電膜では、膜厚が200nm程度より薄くなるに伴って、電気的特性が膜厚に大きく依存する(膜厚の減少に伴って抵抗率が大幅に増加する)。問題点(2):dcマグネトロンスパッタリング装置を用いてZnO系透明導電膜を作製すると基板上に生じる抵抗率分布(ターゲットのエロージョン領域に対向する基板上の位置で抵抗率が増加する)が膜厚が200nm程度より薄くなるに伴って増大する。換言すると、アクティブマトリックス型LCDに使用する透明電極の材料を全面的にITOからZnO系に置き換えるためには、上記の問題点(1)及び(2)を解決しなければならない。このような事情に鑑み、抵抗率特性の膜厚依存性を改善する新規な酸化亜鉛系透明導電膜、並びに成膜に使用する焼結体を提供することにより、膜厚が200nm未満のITO透明電極をZnO系透明電極に置き換えることを課題とする。
【課題を解決するための手段】
【0006】
本発明のある態様は、酸化亜鉛系透明導電である。当該酸化亜鉛系透明導電膜は、実質的に亜鉛、珪素、スズおよび酸素からなり、珪素がSi/(Zn+Si+Sn)の原子比で1%を超え8%未満の割合で含有され、且つスズがSn/(Zn+Si+Sn)の原子比で0.1%を超え1%未満の割合で含有されることにより、珪素がドナーとして作用し、スズが抵抗率特性の膜厚依存性の抑制に対して作用することを特徴とする。
【発明の効果】
【0007】
本発明により、特にLCDに好適な、約200nm未満の極めて薄い領域において、低抵抗率で且つ膜厚依存性の少ない良好な酸化亜鉛を母材とする透明導電膜及びその製造用焼結体が提供可能となる。
【図面の簡単な説明】
【0008】
【図1】スズ共添加AZO薄膜の抵抗率の膜厚依存性
【図2】スズを含有しないAZO薄膜の抵抗率の膜厚依存性
【発明を実施するための形態】
【0009】
以下に本発明を実施例により更に詳細に説明するが、本発明はこれに限定されるものではない。

【0010】
(参考例1)
平均粒径が1μmの酸化亜鉛粉末と、平均粒径が0.2μmの酸化アルミニウム粉末と、平均粒径が0.5μmの酸化スズ粉末とを所定量ポットに入れ、乾式ボールミルにより48時間混合し、混合粉末を作製した。この混合粉末を金型に入れ、300kg/cmの圧力でプレスを行い成形体とした。この成形体を3ton/cmの圧力でCIPによる緻密化処理を行った。次に該成形体を以下の条件で焼結した。

【0011】
(焼結条件)
焼結温度:1250℃
昇温速度:50℃/hr
保持時間:5時間
焼結雰囲気:Ar雰囲気中
得られた焼結体を6インチφ×5mmtに加工し、インジウム半田を用いて無酸素銅製のバッキングプレートにボンディングした。

【0012】
このターゲットを用いて、dcマグネトロンスパッタリング法により以下に示す条件で、AlおよびSn含有量の異なる透明導電膜を作製した。

【0013】
(スパッタリング成膜条件)
装置:dcマグネトロンスパッタ装置
磁界強度:1000Gauss(ターゲット直上、水平成分)
基板温度:200℃
到達真空度:5×10-5Pa
スパッタリングガス:Ar
スパッタリングガス圧:0.5Pa
DCパワー:300W
膜厚:100nm
使用基板:無アルカリガラス(日本電気ガラス製OA-10ガラス)
得られた薄膜の抵抗率をホール効果測定装置を用いて測定した。アルミニウムが1原子%を超え8原子%未満かつスズが(Sn/(Zn+Al+Sn))0.1原子%を超え1原子%未満の範囲で10-4Ωcm台の低抵抗率の膜を得ることができた。

【0014】
また、アルミニウムが3.3原子%、かつスズが0.25原子%の焼結体ターゲットを用いて作製したスズ共添加AZO薄膜の抵抗率の膜厚依存性について検討した。図1に作製したスズ共添加AZO薄膜の抵抗率の膜厚依存性を示す。また、図2に比較のために、スズを含有しないAZO焼結体ペレットを用い同様の成膜条件下で作製したAZO薄膜の抵抗率の膜厚依存性を示す。図1及び2から明らかなように、AZO薄膜においては、膜厚約30nm極薄膜では膜の抵抗率が1.9×10-3Ωcmに上昇しているのに対して、スズを共添加したAZO薄膜においては、膜厚約30nm極薄膜においても、9.0×10-4Ωcmを実現しており、結果として抵抗率の膜厚依存性を大幅に改善できた。

【0015】
(参考例2)
平均粒径が1μmの酸化亜鉛粉末と、平均粒径が0.2μmの酸化ガリウム粉末と、平均粒径が0.5μmの酸化スズ粉末とを所定量ポットに入れ、乾式ボールミルにより48時間混合し、混合粉末を作製した。この混合粉末を金型に入れ、300kg/cmの圧力でプレスを行い成形体とした。この成形体を3ton/cmの圧力でCIPによる緻密化処理を行った。実施例1と同様の条件下で焼結して作製したターゲットを用いたdcマグネトロンスパッタリング法により実施例1と同様の成膜条件下で透明導電膜を作製した。

【0016】
ガリウムが3.0原子%かつスズが(Sn/(Zn+Ga+Sn))0.25原子%で膜厚30nmに作製した極めて薄い酸化亜鉛系透明導電膜において9.1×10-4Ωcmの低抵抗率の膜を得ることができた。結果として抵抗率の膜厚依存性を大幅に改善できた。また、作製した膜の基板上での抵抗率分布は膜全体で±15%未満であり、抵抗率分布の少ない膜を実現できた。

【0017】
(実施例1)
平均粒径が1μmの酸化亜鉛粉末と、平均粒径が0.2μmの酸化珪素粉末と、平均粒径が0.5μmの酸化スズ粉末とを所定量ポットに入れ、乾式ボールミルにより48時間混合し、混合粉末を作製した。この混合粉末を金型に入れ、300kg/cmの圧力でプレスを行い成形体とした。この成形体を3ton/cmの圧力でCIPによる緻密化処理を行った。実施例1と同様の条件下で焼結して作製したターゲットを用いたdcマグネトロンスパッタリング法により実施例1と同様の成膜条件下で透明導電膜を作製した。

【0018】
珪素が3.0原子%かつスズが(Sn/(Zn+Si+Sn))0.25原子%で膜厚30nmに作製した極めて薄い酸化亜鉛系透明導電膜において9.2×10-4Ωcmの低抵抗率の膜を得ることができた。結果として抵抗率の膜厚依存性を大幅に改善できた。また、作製した膜の基板上での抵抗率分布は膜全体で±15%未満であり、抵抗率分布の少ない膜を実現できた。

【0019】
(参考例3)
平均粒径が1μmの酸化亜鉛粉末と、平均粒径が0.2μmの酸化アルミニウム粉末及び酸化ガリウム粉末と、平均粒径が0.5μmの酸化スズ粉末とを所定量ポットに入れ、乾式ボールミルにより48時間混合し、混合粉末を作製した。この混合粉末を金型に入れ、300kg/cmの圧力でプレスを行い成形体とした。この成形体を3ton/cmの圧力でCIPによる緻密化処理を行った。実施例1と同様の条件下で焼結して作製したターゲットを用いたdcマグネトロンスパッタリング法により実施例1と同様の成膜条件下で透明導電膜を作製した。

【0020】
アルミニウムが3.0原子%、ガリウムが0.3原子%かつスズがSn/(Zn+Al+Ga+Sn)の原子比で0.25%で膜厚30nmに作製した極めて薄い酸化亜鉛系透明導電膜において9.1×10-4Ωcmの低抵抗率の膜を得ることができた。結果として抵抗率の膜厚依存性を大幅に改善できた。また、作製した膜の基板上での抵抗率分布は膜全体で±15%未満であり、抵抗率分布の少ない膜を実現できた。

【0021】
(参考例4)
平均粒径が1μmの酸化亜鉛粉末と、平均粒径が0.2μmの酸化アルミニウム粉末及び酸化インジウム粉末と、平均粒径が0.5μmの酸化スズ粉末とを所定量ポットに入れ、乾式ボールミルにより48時間混合し、混合粉末を作製した。この混合粉末を金型に入れ、300kg/cmの圧力でプレスを行い成形体とした。この成形体を3ton/cmの圧力でCIPによる緻密化処理を行った。実施例1と同様の条件下で焼結して作製したターゲットを用いたdcマグネトロンスパッタリング法により実施例1と同様の成膜条件下で透明導電膜を作製した。

【0022】
アルミニウムが3.0原子%、インジウムが0.3原子%かつスズがSn/(Zn+Al+In+Sn)の原子比で0.25%で膜厚30nmに作製した極めて薄い酸化亜鉛系透明導電膜において9.0×10-4Ωcmの低抵抗率の膜を得ることができた。結果として抵抗率の膜厚依存性を大幅に改善できた。また、作製した膜の基板上での抵抗率分布は膜全体で±15%未満であり、抵抗率分布の少ない膜を実現できた。

【0023】
(参考例5)
平均粒径が1μmの酸化亜鉛粉末と、平均粒径が0.2μmの酸化アルミニウム粉末及び酸化珪素粉末と、平均粒径が0.5μmの酸化スズ粉末とを所定量ポットに入れ、乾式ボールミルにより48時間混合し、混合粉末を作製した。この混合粉末を金型に入れ、300kg/cmの圧力でプレスを行い成形体とした。この成形体を3ton/cmの圧力でCIPによる緻密化処理を行った。実施例1と同様の条件下で焼結して作製したターゲットを用いたdcマグネトロンスパッタリング法により実施例1と同様の成膜条件下で透明導電膜を作製した。

【0024】
アルミニウムが3.0原子%、珪素が0.3原子%かつスズがSn/(Zn+Al+Si+Sn)の原子比で0.25%で膜厚30nmに作製した極めて薄い酸化亜鉛系透明導電膜において9.0×10-4Ωcmの低抵抗率の膜を得ることができた。結果として抵抗率の膜厚依存性を大幅に改善できた。また、作製した膜の基板上での抵抗率分布は膜全体で±15%未満であり、抵抗率分布の少ない膜を実現できた。

【0025】
(参考例6)
平均粒径が1μmの酸化亜鉛粉末と、平均粒径が0.2μmの酸化ガリウム粉末及び酸化インジウム粉末と、平均粒径が0.5μmの酸化スズ粉末とを所定量ポットに入れ、乾式ボールミルにより48時間混合し、混合粉末を作製した。この混合粉末を金型に入れ、300kg/cmの圧力でプレスを行い成形体とした。この成形体を3ton/cmの圧力でCIPによる緻密化処理を行った。実施例1と同様の条件下で焼結して作製したターゲットを用いたdcマグネトロンスパッタリング法により実施例1と同様の成膜条件下で透明導電膜を作製した。

【0026】
ガリウムが3.0原子%、インジウムが0.3原子%かつスズがSn/(Zn+Ga+In+Sn)の原子比で0.25%で膜厚30nmに作製した極めて薄い酸化亜鉛系透明導電膜において9.0×10-4Ωcmの低抵抗率の膜を得ることができた。結果として抵抗率の膜厚依存性を大幅に改善できた。また、作製した膜の基板上での抵抗率分布は膜全体で±15%未満であり、抵抗率分布の少ない膜を実現できた。

【0027】
(参考例7)
平均粒径が1μmの酸化亜鉛粉末と、平均粒径が0.2μmの酸化ガリウム粉末及び酸化珪素粉末と、平均粒径が0.5μmの酸化スズ粉末とを所定量ポットに入れ、乾式ボールミルにより48時間混合し、混合粉末を作製した。この混合粉末を金型に入れ、300kg/cmの圧力でプレスを行い成形体とした。この成形体を3ton/cmの圧力でCIPによる緻密化処理を行った。実施例1と同様の条件下で焼結して作製したターゲットを用いたdcマグネトロンスパッタリング法により実施例1と同様の成膜条件下で透明導電膜を作製した。

【0028】
ガリウムが3.0原子%、珪素が0.3原子%かつスズがSn/(Zn+Ga+Si+Sn)の原子比で0.25%で膜厚30nmに作製した極めて薄い酸化亜鉛系透明導電膜において9.0×10-4Ωcmの低抵抗率の膜を得ることができた。結果として抵抗率の膜厚依存性を大幅に改善できた。また、作製した膜の基板上での抵抗率分布は膜全体で±15%未満であり、抵抗率分布の少ない膜を実現できた。
図面
【図1】
0
【図2】
1