TOP > 国内特許検索 > 白金触媒、その製造方法及び当該白金触媒を用いた燃料電池 > 明細書

明細書 :白金触媒、その製造方法及び当該白金触媒を用いた燃料電池

発行国 日本国特許庁(JP)
公報種別 公開特許公報(A)
公開番号 特開2017-168385 (P2017-168385A)
公開日 平成29年9月21日(2017.9.21)
発明の名称または考案の名称 白金触媒、その製造方法及び当該白金触媒を用いた燃料電池
国際特許分類 H01M   4/86        (2006.01)
H01M   4/92        (2006.01)
B01J  35/08        (2006.01)
B01J  37/04        (2006.01)
B01J  23/44        (2006.01)
B01J  37/08        (2006.01)
H01M   8/10        (2016.01)
FI H01M 4/86 M
H01M 4/92
H01M 4/86 B
B01J 35/08 B
B01J 37/04 102
B01J 23/44 M
B01J 37/08
H01M 8/10
請求項の数または発明の数 10
出願形態 OL
全頁数 17
出願番号 特願2016-054844 (P2016-054844)
出願日 平成28年3月18日(2016.3.18)
発明者または考案者 【氏名】稲葉 稔
【氏名】大門 英夫
【氏名】川崎 久志
【氏名】青木 直也
【氏名】井上 秀男
出願人 【識別番号】503027931
【氏名又は名称】学校法人同志社
【識別番号】000198709
【氏名又は名称】石福金属興業株式会社
個別代理人の代理人 【識別番号】110000475、【氏名又は名称】特許業務法人みのり特許事務所
審査請求 未請求
テーマコード 4G169
5H018
5H026
5H126
Fターム 4G169AA03
4G169AA08
4G169BA01A
4G169BA02A
4G169BA04A
4G169BA08A
4G169BA08B
4G169BA21A
4G169BC16A
4G169BC31A
4G169BC50A
4G169BC66A
4G169BC67A
4G169BC68A
4G169BC72A
4G169BC72B
4G169BC75A
4G169BC75B
4G169BE01C
4G169BE06C
4G169BE21C
4G169BE32A
4G169CC32
4G169DA05
4G169EC25
4G169EC27
4G169EC28
4G169EE01
4G169EE06
4G169FA02
4G169FB06
4G169FB14
4G169FB57
4G169FC04
4G169FC09
5H018AA06
5H018BB01
5H018BB06
5H018BB12
5H018BB16
5H018DD10
5H018EE03
5H018EE05
5H018EE10
5H018EE12
5H018EE16
5H026AA06
5H126BB06
要約 【課題】加速耐久性試験(ADT)による電気化学的表面積(ECSA)の低下が少なく、優れた耐久性を有した白金触媒及び、かかる白金触媒の製造方法を提供する。
【解決手段】白金と白金以外の金属とを含む触媒粒子がカーボン担体の表面に担持された燃料電池用の白金触媒で、前記触媒粒子の表面には、一端側にチオール基の硫黄原子を有し、他端側に水酸基の酸素原子を有する連結構造部が存在し、チオール基の硫黄原子の孤立電子対が触媒粒子に配位しており、水酸基の酸素原子と共有結合した、二酸化ケイ素、二酸化チタン又は酸化アルミニウムの被膜によって触媒粒子の表面が被覆されており、触媒粒子が存在していないカーボン担体の表面には、当該被膜が存在せずにカーボン担体が露出している。上記の連結構造部を形成するのに適した化合物は、3-メルカプトプロピルトリエトキシシランである。
【選択図】図7
特許請求の範囲 【請求項1】
白金と白金以外の金属とを含む触媒粒子がカーボン担体の表面に担持されてなる燃料電池用の白金触媒であって、前記触媒粒子の表面には、一端側にチオール基の硫黄原子を有し、他端側に水酸基の酸素原子を有する連結構造部が、当該連結構造部における前記チオール基の硫黄原子の孤立電子対が前記触媒粒子に配位して結合しており、前記水酸基の酸素原子側には、当該酸素原子と結合した、二酸化ケイ素、二酸化チタン又は酸化アルミニウムの被膜が存在し、当該被膜によって前記触媒粒子の表面が被覆されており、前記触媒粒子が担持されていない前記カーボン担体の表面部分は前記被膜により被覆されずにカーボン担体が露出していることを特徴とする白金触媒。
【請求項2】
前記連結構造部を形成している化合物が、3-メルカプトプロピルトリエトキシシランであることを特徴とする請求項1に記載の白金触媒。
【請求項3】
前記触媒粒子が、パラジウムを含有するコア粒子と、当該コア粒子の表面に形成された白金シェルとを有する白金コアシェル触媒であることを特徴とする請求項1又は2に記載の白金触媒。
【請求項4】
前記触媒粒子が、白金と、パラジウム、コバルト、ニッケル、鉄又は銅との白金合金触媒であることを特徴とする請求項1又は2に記載の白金触媒。
【請求項5】
白金と白金以外の金属とを含む触媒粒子がカーボン担体の表面に担持されてなる燃料電池用の白金触媒の製造方法であって、
白金と白金以外の金属とを含む触媒粒子がカーボン担体に担持された触媒を準備し、当該触媒を水溶液中にて分散させる工程と
不活性気体存在下にて、上記工程で得られた分散溶液にアルカリ剤を添加して当該分散溶液をアルカリ性になるようにし、その後、一端側にチオール基を有し、他端側にトリアルコキシシリル基を有する連結化合物を添加して第1の加水分解を行う工程と、
上記加水分解後の分散溶液に、テトラアルコキシシラン化合物、テトラアルコキシチタン化合物又はトリアルコキシアルミニウム化合物を添加して第2の加水分解を行う工程と、
上記加水分解後の触媒を濾別して乾燥させ、非酸化性雰囲気で熱処理する工程
を含むことを特徴とする白金触媒の製造方法。
【請求項6】
前記連結化合物が、3-メルカプトプロピルトリエトキシシランであることを特徴とする請求項5に記載の白金触媒の製造方法。
【請求項7】
前記第2の加水分解を行う工程にて添加される化合物が、テトラエトキシシランであることを特徴とする請求項5又は6に記載の白金触媒の製造方法。
【請求項8】
前記触媒粒子が、パラジウムを含有するコア粒子と、当該コア粒子の表面に形成された白金シェルとを有する白金コアシェル触媒であることを特徴とする請求項5~7のいずれか1項に記載の白金触媒の製造方法。
【請求項9】
前記触媒粒子が、白金と、パラジウム、コバルト、ニッケル、鉄又は銅との白金合金触媒であることを特徴とする請求項5~7のいずれか1項に記載の白金触媒の製造方法。
【請求項10】
請求項1~4のいずれか1項に記載の白金触媒を酸素還元反応の触媒として利用する燃料電池。
発明の詳細な説明 【技術分野】
【0001】
本発明は、燃料電池において酸素還元反応の触媒として用いるのに適した白金触媒、その製造方法、及び当該触媒を用いた燃料電池に関する。
【背景技術】
【0002】
固体高分子形燃料電池(PEFC)は、アノード側で水素の酸化反応を、カソード側で酸素の還元反応を起こすことにより、水のみを生成するクリーンエネルギーデバイスであって、カソード側の触媒として、白金(Pt)を使用するものが知られている。貴金属である白金を用いる触媒は、触媒活性や電気伝導性が高く、また、周辺環境の状態や周辺環境に存在する物質による腐食や被毒を受けにくいという利点を有する。
【0003】
一方で、白金は資源量が少なく価格が高いという問題があり、その利用効率や耐久性を向上させて使用量を低減するために種々の検討が進められている。検討の一つとして、異種金属上に白金を被覆してなる白金コアシェル触媒が注目されている。白金コアシェル触媒は、触媒活性を発揮する白金原子は触媒粒子の最外層に露出した白金原子のみであることに着目して考案されたもので、白金原子層(シェル)で被覆された異種金属微粒子(コア)が、カーボン等の担体に高分散担持された構成を有する。
【0004】
白金コアシェル触媒のコア金属の一つとして、パラジウム(Pd)が知られている。非特許文献1及び非特許文献2には、コア金属としてPdを使用した場合、PEFCでの酸素還元反応(Oxygen Reduction Reaction: ORR)活性が高まることが開示されている。Pdの格子定数(0.38898 nm)はPt(0.39231 nm)よりも小さいため、Pdコア上に設けたPtシェルには僅かな圧縮応力が発生する。この圧縮応力によって、Ptシェル表面で酸素還元反応が進行しやすい状況が実現され、ORR活性が高まったものと考えられている。
【0005】
白金をシェル、パラジウムをコアとしたコアシェル触媒では、上述のようにORR活性が向上する一方で、Pdの標準酸化還元電位(0.92 V vs. NHE)がPt(1.19 V vs. NHE)に比べて低いため、その耐久性に問題がある。非特許文献3では、カーボン担持Pdコア/Ptシェル触媒(以後、Pt/Pd/C触媒と記述することもある。)をカソードに使用したPEFCにおいて、発電によりPdコアの一部が酸化溶解し、固体高分子電解質膜中に金属Pdが再析出し、Pdバンドが現れることが報告されている。
【0006】
発明者らは既に、Pdコアの酸化溶出は触媒の耐久性の観点からは問題である一方で、Pdの酸化溶出によってPt/Pd/C触媒の粒径と形態に変化が生じ、ORR活性が高まることを見出している。特許文献1には、従来、触媒の電位サイクル耐久性試験(Accelerated Durability Test, ADT)として行われてきた電圧の印加が、Pt/Pd/C触媒の活性を向上させる結果をもたらすことが開示されている。また特許文献1には、Pt/Pd/C触媒に、Ptの酸化物還元開始電位よりも高い電位と、Ptの酸化物生成開始電位よりも低い電位とを繰り返し与えることによって、Pt/Pd/C触媒の活性が向上することも開示されている。
【0007】
特許文献1に開示された具体的な電位付与方法は、プロトンを含む酸性溶液中に白金コアシェル触媒を分散し、酸化還元電位が当該白金コアシェル触媒の酸化物生成開始電位よりも低い金属を共存させながら、酸素供給下に撹拌するという方法であった。当該方法は全く新規な手法であり、一定の効果を得るものであったが、ORR活性のさらなる向上が期待されていた。
【0008】
一方、特許文献2には白金合金の触媒とその製造方法が開示されている。特許文献2に開示された製造方法は、白金の有機金属錯体と金属塩化物を有機溶媒に分散してから、還元剤を加えて調製した混合溶液を加圧及び加熱して、2nm以下の径の白金合金ナノ粒子を合成する工程と、前記白金合金ナノ粒子を真空中300℃以上1000℃以下の温度で加熱(アニール)して、その直径を2nm以上100nm以下とする工程とを有する。特許文献2の発明では、白金合金ナノ粒子を合成した後に加熱(アニール)を行うことによって、合金粒子の粒子径を2nm以上100nm以下に調整し、特定の結晶形の白金合金粒子を得ることができると考えられている。
しかしながら、このような特定の結晶形の白金合金粒子の場合であっても、ADTを行うと、電気化学的表面積(ECSA)が大きく減少する結果、ORR活性が低下し、耐久性が不十分であるという問題点があった。
【0009】
更に、下記の特許文献3には、白金担持カーボン触媒を分散させた溶液に3-アミノプロピルエトキシシラン(APTES)を添加して撹拌した後、テトラエトキシシラン(TEOS)を添加して撹拌し、その後、水素還元することによって製造された、カーボンに担持された白金がシリカ(SiO2成分)で被覆されてなる触媒が開示されているが、この触媒の場合、白金の表面だけでなくカーボンの表面にも、厚い均一なシリカ被膜が被覆されているために、電池に組み込んだ際、カーボンを被覆しているシリカによって電気抵抗が大きくなり、電池特性が低下するという問題点があった。
【先行技術文献】
【0010】

【特許文献1】特開2015-398号公報
【特許文献2】特開2015-17317号公報
【特許文献3】特開2012-22960号公報
【0011】

【非特許文献1】J. Zhang et al., J. Phys. Chem. B, 108, 10955 (2004)
【非特許文献2】J. Zhang et al., Angew. Chem., Int. Ed., 44, 2132 (2005)
【非特許文献3】K. Sasaki et al., Angew. Chem. Int. Ed., 49, 8602 (2010)
【発明の概要】
【発明が解決しようとする課題】
【0012】
本発明は、白金と白金以外の金属とを組み合わせて用いた白金触媒において、ADTによる触媒粒子の凝集が起こり難く、耐久性に優れたカーボン担持白金触媒、及び、かかる触媒を得るための製造方法を提供することを目的とする。
【課題を解決するための手段】
【0013】
発明者らは、Pt質量当たりの活性を示すORR質量活性(ORR mass activity:MA)は、ORR面積比活性(ORR specific activity:SA)と電気化学的表面積(Electro-Chemical Surface Area:ECSA)との積で表されることに着目し、SA及びECSAの両方を高めることによって、ORR質量活性を一層向上させることが可能であると考えた。そして、電位サイクル耐久性試験(ADT)を経た白金コアシェル触媒の粒子の一部に凝集が生じていることから、当該凝集を抑制することによってECSAの低下を抑止し、もってORR質量活性の向上を図ることに着想し、カーボンに担持された触媒粒子(白金と白金以外の金属とを含む)を、一端側にチオール基を有し、他端側にトリアルコキシシリル基を有する化合物(種付け剤)と反応させると、チオール基の硫黄原子の孤立電子対が触媒粒子に配位結合し、選択的に触媒粒子が被覆され、他端側のトリアルコキシシリル基を加水分解してトリヒドロキシシリル基とした後、テトラアルコキシシラン化合物、テトラアルコキシチタン化合物又はトリアルコキシアルミニウム化合物と反応させて加水分解し、その後、非酸化性雰囲気で加熱を行うと、触媒粒子が担持されていないカーボン担体の表面部分が露出したままで、カーボン担体に担持された触媒粒子の表面だけが、シリカ(SiO2)被膜、チタニア(TiO2)被膜、アルミナ(Al2O3)被膜によって被覆されることを見出し、かかる構造のカーボン担持白金触媒が、ADTによる触媒粒子の凝集が起こり難く、優れた耐久性を有しており、酸素還元反応の触媒として有用であることを確認し、本発明に至った。
【0014】
本明細書では、触媒活性を有する物質として白金を利用する触媒をまとめて、白金触媒と称しており、白金触媒には、白金コアシェル触媒と白金合金触媒の両方が含まれる。
【0015】
すなわち本発明は、
[1]白金と白金以外の金属とを含む触媒粒子がカーボン担体の表面に担持されてなる燃料電池用の白金触媒であって、前記触媒粒子の表面には、一端側にチオール基の硫黄原子を有し、他端側に水酸基の酸素原子を有する連結構造部が、当該連結構造部における前記チオール基の硫黄原子の孤立電子対が前記触媒粒子に配位して結合しており、前記水酸基の酸素原子側には、当該酸素原子と結合した、二酸化ケイ素、二酸化チタン又は酸化アルミニウムの被膜が存在し、当該被膜によって前記触媒粒子の表面が被覆されており、前記触媒粒子が担持されていない前記カーボン担体の表面部分は前記被膜により被覆されずにカーボン担体が露出していることを特徴とする白金触媒に関する。
【0016】
また本発明は、
[2]前記連結構造部を形成している化合物が、3-メルカプトプロピルトリエトキシシラン(MPTS)であることを特徴とする、[1]に記載の白金触媒に関する。
【0017】
また本発明は、
[3]前記触媒粒子が、パラジウムを含有するコア粒子と、当該コア粒子の表面に形成された白金シェルとを有する白金コアシェル触媒であることを特徴とする、[1]又は[2]に記載の白金触媒に関する。
【0018】
また本発明は、
[4]前記触媒粒子が、白金と、パラジウム、コバルト、ニッケル、鉄又は銅との白金合金触媒であることを特徴とする、[1]又は[2]に記載の白金触媒に関する。
【0019】
さらに本発明は、
[5]白金と白金以外の金属とを含む触媒粒子がカーボン担体の表面に担持されてなる燃料電池用の白金触媒の製造方法であって、
白金と白金以外の金属とを含む触媒粒子がカーボン担体に担持された触媒を準備し、当該触媒を水溶液中にて分散させる工程と
不活性気体存在下にて、上記工程で得られた分散溶液にアルカリ剤を添加して当該分散溶液をアルカリ性に(当該分散溶液のpHが10.5以上と)なるようにし、その後、一端側にチオール基を有し、他端側にトリアルコキシシリル基を有する連結化合物を添加して第1の加水分解を行う工程と、
上記加水分解後の分散溶液に、テトラアルコキシシラン化合物、テトラアルコキシチタン化合物又はトリアルコキシアルミニウム化合物を添加して第2の加水分解を行う工程と、
上記加水分解後の触媒を濾別して乾燥させ、非酸化性雰囲気で熱処理する工程
を含むことを特徴とする白金触媒の製造方法に関する。
【0020】
また本発明は、
[6]前記連結化合物が、3-メルカプトプロピルトリエトキシシラン(MPTES)であることを特徴とする、[5]に記載の白金触媒の製造方法に関する。
【0021】
また本発明は、
[7]前記第2の加水分解を行う工程にて添加される化合物が、テトラエトキシシラン(TEOS)であることを特徴とする、[5]又は[6]に記載の白金触媒の製造方法に関する。
【0022】
また本発明は、
[8]前記触媒粒子が、パラジウムを含有するコア粒子と、当該コア粒子の表面に形成された白金シェルとを有する白金コアシェル触媒であることを特徴とする、[5]~[7]のいずれか1項に記載の白金触媒の製造方法に関する。
【0023】
また本発明は、
[9]前記触媒粒子が、白金と、パラジウム、コバルト、ニッケル、鉄又は銅との白金合金触媒であることを特徴とする、[5]~[7]のいずれか1項に記載の白金触媒の製造方法に関する。
【0024】
さらに本発明は、
[10][1]~[4]のいずれか1項に記載の白金触媒を酸素還元反応の触媒として利用する燃料電池に関する。
【発明の効果】
【0025】
本発明によれば、カーボン担体に担持された触媒粒子の表面だけがシリカ被膜等によって被覆されており、触媒粒子が担持されていないカーボン担体の表面部分には当該被膜が存在せずにカーボン担体が露出したままの構造を有した白金触媒が得られ、この白金触媒は、カーボン担体の表面には絶縁性の被膜が存在していないために電池特性が低下することなく、触媒粒子の表面を覆った被膜によって電位サイクル耐久性試験(ADT)による触媒粒子の凝集が起こり難く、電気化学的表面積(ECSA)の低下が抑制され、優れた耐久性を示すので、酸素還元反応の触媒として非常に有用である。
【図面の簡単な説明】
【0026】
【図1】本発明の白金触媒(SH-SiO2 Pt/Pd/C触媒)の製造方法の好ましい一例における合成スキームである。
【図2】表1に記載される4種類のPt/Pd/C触媒についてのADT後におけるTEM像である。
【図3】従来品(NH2-SiO2 Pt/Pd/C触媒)のTEM-EDX分析結果を示すチャートである。
【図4】本発明品(SH-SiO2 Pt/Pd/C触媒)のTEM-EDX分析結果を示すチャートである。
【図5】表1に記載される4種類のPt/Pd/C触媒についてのXRDパターンである。
【図6】表1に記載される4種類のPt/Pd/C触媒についてのADT後におけるECSAの変化を示すグラフである。
【図7】上側が、従来の3-アミノプロピルトリエトキシシラン(APTES)→テトラエトキシシラン(TEOS)加水分解によるPt系触媒のSiO2被覆状態を示す模式図であり、下側が、本発明による3-メルカプトプロピルトリエトキシシラン(MPTES)→テトラエトキシシラン(TEOS)加水分解によるPt系触媒のSiO2被覆状態を示す模式図である。
【発明を実施するための形態】
【0027】
本発明の白金触媒は、図7の下側の模式図に示されるように、白金と白金以外の金属とを含む触媒粒子が、当該触媒粒子の表面が酸化物被膜(SiO2、TiO2又はAl2O3被膜)によって被覆された状態でカーボン担体の表面に担持されており、触媒粒子が担持されていないカーボン担体の表面部分は、上記酸化物被膜により被覆されずにカーボン担体が露出した構造を有している。そして、この触媒粒子と酸化物被膜との間には、特定の化学構造を有した連結構造部(一端側にチオール基の硫黄原子を有し、他端側に水酸基の酸素原子を有する化学構造部)が存在しており、当該連結構造部におけるチオール基の硫黄原子の孤立電子対が、上記触媒粒子の表面に配位結合し、水酸基の酸素原子が、上記酸化物被膜を構成しているSi原子、Ti原子又はAl原子と結合している。
本発明では、触媒粒子の表面に選択的に結合し得る上記連結構造部として、3-メルカプトプロピルトリエトキシシラン(MPTES)由来の連結構造部が好ましいが、これに限定されるものではなく、分子の両末端にチオール基(-SH)と水酸基(-OH)を有する物質であれば使用することができる。上記の酸化物被膜としてはSiO2被膜が好ましいが、これに限定されるものではなく、TiO2あるいはAl2O3であってもよく、また、SiO2とこれらの混合酸化物であってもよい。

【0028】
本発明の白金触媒における触媒粒子は、白金と白金以外の金属とを含むものであれば良く、従来公知の白金触媒であって良く、例えば、パラジウムを含有するコア粒子と、当該コア粒子の表面に形成された白金シェルとを有する白金コアシェル触媒又は、白金と、パラジウム、コバルト、ニッケル、鉄又は銅との白金合金触媒であることが好ましい。
白金コアシェル触媒である場合、コア及び/又はシェルを生成させる方法は特に制限されず、白金シェルの形成には、外部電源を使用した精密な電位制御と対極や参照極を必要としない、改良型Cu-UPD法を用いることが好ましい。改良型Cu-UPD法とは、Pd/Cコアを、Cuからなる固体が浸漬されたCu2+イオンを含有する酸性水溶液中に投入し、アルゴンや窒素等の不活性ガス雰囲気中で撹拌することで、Pdコア表面にCuからなる単原子膜を形成させる方法である。そして、続いて、得られたPdコア粒子表面のCuをPtと置換するが、このステップは公知の置換めっき法で行うことができる。

【0029】
尚、パラジウムを含有するコア粒子と、当該コア粒子の表面に形成された白金シェルとを有する白金コアシェル触媒の場合、当該白金コアシェル触媒のPdコア粒子の粒径は3.0 nm~7.0 nmが適する。粒径3.0 nm未満のPdコア粒子を使用した場合、白金コアシェル触媒の粒径が小さくなり、電位変動による凝集が生じやすくなる問題がある。一方、粒径が7.0 nmを超えると白金コアシェル触媒の粒径が大きくなり、電位変動によって触媒粒子が多孔質化し、ORR活性が高まらない問題がある。なお、Pdコア粒子の粒径は、TEM像から求めた平均粒径、或いはPdの(220)面のX線回折ピークにシェラー式を適用して算出した値を意味している。
このような白金コアシェル触媒のPtシェルの平均的厚みは、単原子層(1 ML相当)~三原子層(3 ML相当)、すなわち0.3 nm~0.9 nm程度であることが好ましい。酸素還元触媒として活性を発揮するPt原子は、シェルの最外層(最表面)に位置するPt原子のみであるが、耐食性の観点からPt単原子層では不十分と考えられる。本発明により、Ptシェル原子が再配列して厚膜化することは耐食性の点から重要であり、二原子層~三原子層のPtシェル厚みが適している。三原子層を超えるPtシェルでは、酸素還元反応に関与しないPt原子が増加し、ORR質量活性の低下を招く。白金コアシェル触媒におけるPtシェルは、Ptのみからなってもよいし、PdとPtが混在していてもよいし、Pt-Pd合金シェルでも良い。またPd以外の異種金属との合金シェルであってもよい。異種金属としては、白金よりも酸化還元電位が低い金属が好ましく、例えば銀(Ag)、銅(Cu)、ニッケル(Ni)、コバルト(Co)が挙げられる。

【0030】
本発明の白金触媒においては、カーボン担体(炭素質材料からなる担体)の表面に上記の触媒粒子が、図7の下側の模式図に示されるようにして分散された状態で担持されていることが好ましく、担体である炭素質材料としては、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ等が挙げられる。上記の担体は、比表面積が10~1000 m2/g程度であることが好ましい。白金触媒は、主に静電的相互作用によって担体の表面に担持されていると考えられるが、より強固に担持させて担体表面からの触媒の脱落を低減するためには、白金触媒と担体との間に化学的結合を形成して担持することもできる。
カーボン担体に担持されたPdコア粒子は公知の合成法によって合成することができる。一例として、塩化パラジウム(PdCl2)、硝酸パラジウム(Pd(NO3)2)、酢酸パラジウム(Pd(CH3COO)2)、塩化パラジウム(II)ナトリウム・三水和物(Na2[PdCl4]・3H2O)、ジニトロジアンミンパラジウム(II)([Pd(NH3)2(NO2)2])等の水溶液、有機溶液、又はそれらの混合溶液中にカーボン担体を共存させ、パラジウムイオンを還元してカーボン担持Pdナノ粒子コアを得る方法がある。

【0031】
次に、前記の酸化物被膜によって表面が被覆された状態の触媒粒子がカーボン担体の表面に担持された、本発明の白金触媒を製造するための方法について説明する。
図1には、触媒粒子として、パラジウムを含有するコア粒子と、当該コア粒子の表面に形成された白金シェルとを有する白金コアシェル触媒を使用し、連結化合物として3-メルカプトプロピルトリエトキシシラン(MPTES)を使用し、シリカ被膜を形成させるための化合物としてテトラエトキシシラン(TEOS)を使用した際の、本発明の白金触媒(SH-SiO2 Pt/Pd/C触媒)の製造方法の好ましい一例における合成スキームが示されている。

【0032】
本発明の製造方法における第1の工程は、白金と白金以外の金属とを含む触媒粒子がカーボン担体に担持された触媒を準備し、当該触媒を水溶液中にて分散させる工程であり、一般的には、水‐アルコール混合溶液中に上記の触媒を入れ、超音波スターラーを用いて超音波撹拌分散を行うのが好ましいが、この分散方法は、上記の方法に限定されるものではない。

【0033】
本発明の製造方法における第2の工程は、不活性気体存在下にて、上記の工程で得られた分散液にアルカリ剤を添加して当該水溶液をアルカリ性にし(例えばpHを10.5以上となるようにし)、その後、一端側にチオール基を有し、他端側にトリアルコキシシリル基を有する連結化合物を種付け剤として添加して第1の加水分解(アルカリ加水分解)を行う工程であり、一般的には、第1の工程で得られた分散溶液に不活性気体(例えば窒素ガス)を送入しながら、加温(例えば50~70℃)し、トリエチルアミンやトリメチルアミン等の有機アミン化合物を添加して分散溶液をアルカリ性にした後(例えばpHを10.5以上に調整した後)、3-メルカプトプロピルトリエトキシシラン(MPTES)等の連結化合物を添加し、例えば50~70℃の温度にて撹拌する。
この工程では、カーボン担体上に担持された触媒粒子の表面に、上記の化学構造を有した連結化合物における一端側に位置するチオール基の硫黄原子の孤立電子対が配位する一方、他端側に位置した基(MPTESの場合にはトリエトキシシリル基)は加水分解を受けて水酸基が生成する(MPTESの場合にはトリヒドロキシシリル基が生成する)。本発明では、上記連結化合物の化学構造によって、当該連結化合物が触媒粒子に対して選択的に配位し、触媒粒子が存在していないカーボン担体の部分にはほとんど付着しない。

【0034】
本発明の製造方法における第3の工程は、上記の第1の加水分解後の分散溶液に、テトラアルコキシシラン化合物、テトラアルコキシチタン化合物又はトリアルコキシアルミニウム化合物を添加して加温し、第2の加水分解を行う工程であり、この工程によって、前記の工程で生成した水酸基と、上記化合物にある一つのアルコキシ基が反応し、前記連結化合物における酸素原子にSi、Ti又はAl原子が結合し、水酸基と反応しなかった残りのアルコキシ基については加水分解を受けて水酸基が生成する。

【0035】
本発明の製造方法における第4の工程は、上記の第2の加水分解後の触媒を濾別して乾燥させ、非酸化性雰囲気で加熱する工程であり、この工程では、分散溶液から取り出した触媒を、非酸化性雰囲気下、300~400℃の温度(好ましくは350℃)で加熱することによって、図7の下側の模式図に示されるような、カーボン担体に担持された触媒粒子の表面だけがSiO2成分(前記工程にてテトラアルコキシチタン化合物を添加した場合にはTiO2成分、前記工程にてトリアルコキシアルミニウム化合物を添加した場合にはAl2O3成分)にて被覆され、カーボン担体の、触媒粒子が存在していない部分においては、カーボン担体の表面がそのままの状態で露出した白金触媒が生成する。

【0036】
本発明では、上記の第4の工程の後に、上記の工程により得られた白金触媒を分散した酸性溶液を調製した後、当該酸性溶液に複数種類の化学種を交互に、一定の持続時間をもって繰り返し送入することによって、白金触媒に対して所定の電位を繰り返し与える工程を行っても良い。当該工程は、白金触媒の製造における後処理工程であり、触媒の活性を向上させるための触媒活性向上処理工程である。当該工程によって、白金よりも低い酸化還元電位を有する異種金属(パラジウム、コバルト、ニッケル、鉄、銅等)の一部が酸化溶出するとともに、触媒粒子の表面では白金原子の再配列が起こり、さらに触媒粒子同士の凝集が抑制される。その結果、触媒のORR面積比活性が高くなり、かつ、電気化学的表面積が維持され、ORR質量活性の高い触媒が得られると考えられている。

【0037】
上記の触媒活性向上処理工程は、プロトンを含む酸性溶液(例えば、硝酸、硫酸、塩酸、過塩素酸等)に白金触媒を分散し、この分散溶液中に、(I)前記白金触媒の白金の酸化物生成開始電位よりも高い電位を与える化学種を存在させる工程と、(II)前記白金触媒の白金の酸化物還元開始電位よりも低い電位を与える化学種を存在させる工程と、を含む。
上記の工程(I)は、典型的には、(A)前記白金触媒の白金の酸化物生成開始電位よりも高い電位を与える気体(例えば、酸素)を送入する工程である。上記の工程(II)は、典型的には、(B-1)前記白金触媒の白金の酸化物還元開始電位よりも低い電位を与える気体(例えば、水素)を送入する工程、或いは(B-2)前記白金触媒の白金の酸化物還元開始電位よりも低い電位を与える固体(例えば、金属銅)を前記分散溶液中に存在させながら不活性気体(例えば、窒素ガス、アルゴンガス)を送入する工程、である。

【0038】
前記工程(A)及び工程(B-1)又は(B-2)は、撹拌しながら行うことが好ましく、工程(A)及び工程(B-1)又は(B-2)は、工程(A)及び工程(B-1)又は(B-2)を交互に複数回(好ましくは20 回~500 回)繰り返して行うことが好ましい。又、工程(A)及び工程(B-1)の間に、(C)アルゴンガス、窒素ガス等の不活性ガスを送入する工程をさらに含んでいることが好ましく、工程(A)及び工程(B-2)を含む製造方法においても、工程(A)及び工程(B-2)の間に(C)不活性ガスを送入する工程をさらに含んでいることが好ましい。
なお工程(B-2)を採用する場合には、白金触媒を分散した酸性溶液にCu2+イオンを含むことが好ましいが、工程(B-2)実施時以外においては、固体銅を白金触媒分散溶液から除去する。特に、工程(A)実施時には、白金触媒分散溶液中に固体銅が存在してはならない。

【0039】
以下、実施例を用いて本発明を具体的に説明するが、本発明は実施例に限定されるものではない。
【実施例】
【0040】
[実施例1]本発明によるSiO2被覆Pt/Pd/C触媒の作製例
(I)Pd/Cコアの作製
1.4×10-3モルのPd(NO3)2を純水300 mlに溶解させ、この水溶液に0.35 gのカーボン担体(Ketjen Black EC 300J, 比表面積800 m2/g)を超音波分散させ、ホットスタラーで水分を蒸発させてカーボン担体にPd(NO3)2を担持させた。その後、固形物をH2雰囲気中、400℃で1時間還元し、Pd粒子内に吸蔵した水素を除去するためN2雰囲気中、300℃で1時間処理してカーボン担持Pdコア(Pd/C)を得た。
【実施例】
【0041】
(II)Pd/Cコアの分析
作製したPd/CコアをTEM(日本電子株式会社製、JEM2100F)で観察した結果、カーボン担体に担持されたPd微粒子が確認された。TEM像中の200個のPdコア粒子の直径を測定した結果、平均粒径は4.8 nmであった。また、金属Pdの担持率を熱重量分析(リガク製、Thermo Plus TG-8120)で調べた結果、34.2 wt.%であった。
【実施例】
【0042】
(III)Pd/Cコア上へのPtシェルの形成
(I)で得られたPd/Cコア800 mgを、濃度50 mMのH2SO4と濃度10 mMのCuSO4を含む800 mlの水溶液中に分散させた。Arを500 ml/min.の流量でバブンリングし、Cuシートを水溶液中に共存させた後、5℃で5時間撹拌してPdコア粒子表面にCuシェルを形成した。その後、Cuシートを水溶液から除去し、予めArバブリングして溶存酸素を除去した2モノレーヤー相当のK2PtCl4水溶液を直ちに加え、Cuシェル層をPtシェル層に置換してPt/Pd/C コアシェル触媒を得た。得られたPt/Pd/C コアシェル触媒を濾別し、純水300 ml中に再分散して30分間撹拌した後、濾別した。この操作を3回繰り返してPt/Pd/C コアシェル触媒を洗浄した。その後、大気中60℃のオーブンで6時間乾燥した。
【実施例】
【0043】
(IV)Pt/Pd/C触媒の分析
(III)で得られたPt/Pd/C触媒の組成をXRF(SII社製、SEA1200VX)で分析した結果、Pt:Pd = 30.9:69.1 (at.%)であり、金属担持率を熱重量分析(リガク製、Thermo Plus TG-8120)で調べた結果、42.4 wt.%であった。Pdコア粒子径とXRF組成分析値から算出したPtシェル層厚は1.2原子層相当であった。また、触媒粒径をX線回折の(220)面にシェラー式を適用して算出した結果、5.2 nmであった。
【実施例】
【0044】
(V)SiO2被覆Pt/Pd/C触媒(本発明品、前処理剤:MPTES)の作製
200 mlの水/エタノール混合溶液(50/50 vol.%)が入ったセパラブルフラスコに(III)で得られたPt/Pd/C触媒100 mgを10分間超音波分散させた。セパラブルフラスコにN2ガスを500 ml/min.の流量でバブリングさせながら水浴を用いて60℃に昇温し、トリエチルアミンを添加して混合液のpHを10.5に調整した。その後、前処理剤として3-メルカプトプロピルトリエトキシシラン(MPTES)を0.0113 mmol添加して1時間撹拌し、その後、シリカ源であるテトラエトキシシラン(TEOS)を1.440 mmol添加して3時間撹拌して加水分解させた。得られた試料を濾別洗浄し、大気中60℃で6時間乾燥した。その後、試料を10% H2/Ar雰囲気下、350℃で2時間熱処理を行って脱水縮合させ、SiO2被覆Pt/Pd/C触媒を得た。
【実施例】
【0045】
(VI)SiO2被覆Pt/Pd/C触媒(本発明品、前処理剤:MPTES)の分析
(V)で得られたSiO2被覆Pt/Pd/C触媒中のシリカ担持量を熱重量分析(リガク製、Thermo Plus TG-8120)で調べた結果、17.0 wt.%であった。また、触媒粒径をX線回折の(220)面にシェラー式を適用して算出した結果、5.6 nmであった。
【実施例】
【0046】
[比較例1]従来法によるSiO2被覆Pt/Pd/C触媒の作製例
(VII)SiO2被覆Pt/Pd/C触媒(従来品、前処理剤:APTES)の作製
200 mlの水/エタノール混合溶液(50/50 vol.%)が入ったセパラブルフラスコに(III)で得られたPt/Pd/C触媒100 mgを10分間超音波分散させた。セパラブルフラスコにN2ガスを500 ml/min.の流量でバブリングさせながら水浴を用いて60℃に昇温し、トリエチルアミンを添加して混合液のpHを10.5に調整した。前処理剤として3-アミノプロピルトリエトキシシラン(APTES)を0.0113 mmol添加して1時間撹拌し、その後、シリカ源であるテトラエトキシシラン(TEOS)を1.440 mmol添加して3時間撹拌して加水分解させた。得られた試料を濾別洗浄し、大気中60℃で6時間乾燥した。その後、試料を10% H2/Ar雰囲気下、350℃で2時間熱処理を行って脱水縮合させ、SiO2被覆Pt/Pd/C触媒を得た。
【実施例】
【0047】
(VIII)SiO2被覆Pt/Pd/C触媒(従来品、前処理剤:APTES)の分析
(VII)で得られたSiO2被覆Pt/Pd/C触媒中のシリカ担持量を熱重量分析(リガク製、Thermo Plus TG-8120)で調べた結果、33.0 wt.%であった。また、触媒粒径をX線回折の(220)面にシェラー式を適用して算出した結果、6.1 nmであった。
【実施例】
【0048】
[比較例2]熱処理Pt/Pd/C触媒(比較品1)の作製例
(IX)熱処理Pt/Pd/C触媒の作製
(III)で得られたPt/Pd/C触媒をH2/Ar雰囲気下、350℃で2時間熱処理した。
(X)熱処理Pt/Pd/C触媒の分析
(IX)で得られた熱処理したPt/Pd/C触媒の粒径をX線回折の(220)面にシェラー式を適用して算出した結果、6.3 nmであった。
【実施例】
【0049】
更に比較品2として、未処理Pt/Pd/C触媒(上記(III)で得られたもの)を準備した。
【実施例】
【0050】
上記の4種類のPt/Pd/C触媒:
(1)未処理のPt/Pd/C触媒(比較品2)、
(2)未処理のPt/Pd/C触媒をH2/Ar雰囲気下で熱処理したもの(比較品1)、
(3)APTESをPt/Pd/C触媒に添加して加水分解を行った後、TEOSを添加して加水分解を行い、さらに加熱下で水素還元したもの(従来品、NH2-SiO2 Pt/Pd/C触媒)、
(4)MPTESをPt/Pd/C触媒に添加して加水分解を行った後、TEOSを添加して加水分解を行い、さらに非酸化性雰囲気で熱処理したもの(本発明品、SH-SiO2 Pt/Pd/C触媒)]
について、電位サイクル耐久性試験(ADT)を実施し、それぞれの触媒の耐久性を評価した。
尚、ADTにおいては、アルゴンガス飽和した、80 ℃、濃度0.1 MのHClO4水溶液に各Pt/Pd/C触媒を浸漬し、可逆水素電極(RHE)に対して0.6 V (3 s)/1.0 V (3 s)の矩形波を、3,000サイクル及び10,000サイクルで電位を付与した。
以下の表1には、上記4種類のPt/Pd/C触媒の製造条件が要約されており、NH2-SiO2 Pt/Pd/C触媒(従来品)と、SH-SiO2 Pt/Pd/C触媒(本発明品)についてはSiO2量が重量%で表されている。
この表1から、SH-SiO2 Pt/Pd/C触媒(本発明品)のSiO2量は、NH2-SiO2 Pt/Pd/C触媒(従来品)のSiO2量の約1/2であることがわかる。
【実施例】
【0051】
【表1】
JP2017168385A_000003t.gif
【実施例】
【0052】
図2には、ADT(10,000サイクル)後における上記4種類のPt/Pd/C触媒の形態を観察した際のTEM像が示されており、それぞれのPt/Pd/C触媒についての電気化学的表面積(ECSA)も記載されている。各触媒のECSAは、回転リングディスク電極のGC電極(直径6 mm)上に、Ptが14.1μg/cm2になるよう各触媒を塗布して作用電極を作製し、この作用電極をアルゴンガス飽和した、25 ℃、濃度0.1 MのHClO4水溶液に浸漬し、標準電極に可逆水素電極(RHE)、対極にPt線を使用し、電位幅0.05 V~1.2 V、電位掃引速度50 mV/sでサイクリックボルタモグラム(CV)を測定し、得られたCVの水素脱着波から算出した。
図2の上側の2つのTEM像は、比較品2(未処理のPt/Pd/C触媒)と、比較品1(H2/Ar雰囲気下で熱処理したPt/Pd/C触媒)についてのADT後のTEM像であり、これら触媒の場合には、形状が丸く単独で存在する触媒粒子に加えて、凝集した触媒粒子も存在していることが確認され、ADTにより触媒粒子が凝集することがわかった。このように触媒粒子同士が凝集するとその電気化学的表面積(ECSA)は減少し、ORR質量活性の低下を招く。
これに対し、図2の下側の2つのTEM像は、従来品(NH2-SiO2 Pt/Pd/C触媒)と、本発明品(SH-SiO2 Pt/Pd/C触媒)についてのADT後のTEM像であり、これら触媒の場合には、ADTによる触媒粒子の凝集が抑制され、ECSA減少も抑制されることが確認された。
【実施例】
【0053】
次に、従来品(NH2-SiO2 Pt/Pd/C触媒)と、本発明品(SH-SiO2 Pt/Pd/C触媒)について、触媒粒子が存在している場所と、触媒粒子が存在していない場所におけるTEM-EDX分析を行った。図3が、従来品のTEM-EDX分析結果を示すチャートであり、図4が、本発明品のTEM-EDX分析結果を示すチャートであり、上側にあるTEM像中の横線で示された位置におけるSi,S,Pd,Ptの強度が、下側のチャートに示されている。
図3のNH2-SiO2 Pt/Pd/C触媒のTEM-EDX分析結果は、Siが、触媒粒子が存在していない場所(カーボン担体)にも存在していることを示しており、カーボン担体の表面もSiO2被膜によって覆われていることが確認された。
これに対し、図4の本発明のSH-SiO2 Pt/Pd/C触媒のTEM-EDX分析結果は、SとSiが、触媒粒子が存在していない場所(カーボン担体)には存在せず、触媒粒子が存在している場所に存在していることを示しており、触媒粒子が存在していないカーボン担体の表面は、SiO2被膜によって被覆されることなく露出していることが確認された。
【実施例】
【0054】
図5は、表1に記載される4種類のPt/Pd/C触媒についてのXRDパターンであり、下から順に、未処理のPt/Pd/C触媒(比較品2)、H2/Ar雰囲気下で熱処理したPt/Pd/C触媒(比較品1)、NH2-SiO2 Pt/Pd/C触媒(従来品)、SH-SiO2 Pt/Pd/C触媒(本発明品)である。
図5の結果から、Pt/Pd/C触媒粒子だけがSiO2被膜によって被覆された本発明品の場合には、シラノール基(Si-OH)の脱水縮合反応を進めるための最終工程におけるH2/Ar雰囲気中350℃で2時間の熱処理を行った後の触媒粒径の増加が抑止されるが(粒径5.2 nm→5.6 nm)、従来品の場合には、上記の熱処理によって触媒粒子同士が凝集し、粒径が増加する(粒径5.2 nm→6.1 nm)ことが確認された。
【実施例】
【0055】
図6は、表1に記載される4種類のPt/Pd/C触媒についてのADTによるECSAの変化を示すグラフであり、グラフの右側には、ADT 10,000サイクル後の各触媒のECSAと、ADT前のECSA値からの低下率が併記されている。
この図6の結果は、第1の加水分解工程にて使用される成分をAPTESからMPTESに変更することにより、約1/2のSiO2量でAPTESと同等以上の優れた耐久性が実現できることを示している。
【実施例】
【0056】
図7には、従来のAPTES→TEOS加水分解によるPt系触媒のSiO2被覆状態を示す模式図(上側の図)と、本発明によるMPTES→TEOS加水分解によるPt系触媒のSiO2被覆状態を示す模式図(下側の図)が示されている。
従来の製法により得られたPt系触媒の場合には、触媒粒子の外周面がSiO2被膜によって覆われているために耐久性が向上するが、カーボン担体の表面にも絶縁性のSiO2被膜が存在しているため、電池を組んだ際に抵抗損失が大きく、電池特性を低下させるという欠点がある。一方、本発明の製法を用いて得られたPt系触媒の場合には、SiO2被膜が触媒粒子の外周面を選択的に被覆して耐久性が向上すると同時に、カーボン担体の表面がSiO2被膜によって覆われていないため、電池を組んだ際の抵抗損失が抑制され、電池特性の低下が少ない点でも優れている。
【産業上の利用可能性】
【0057】
本発明の製造方法を用いることによって、優れた耐久性を有するPt/Pd/C触媒を製造することができ、このようなPt/Pd/C触媒は、特に燃料電池における酸素還元反応の触媒として利用することができる。
図面
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6