TOP > 国内特許検索 > 量子ドットの製造方法

量子ドットの製造方法 コモンズ

国内特許コード P08P005946
整理番号 NU-0174
掲載日 2009年2月27日
出願番号 特願2007-209362
公開番号 特開2009-044052
登録番号 特許第5187884号
出願日 平成19年8月10日(2007.8.10)
公開日 平成21年2月26日(2009.2.26)
登録日 平成25年2月1日(2013.2.1)
発明者
  • 渕 真悟
  • 竹田 美和
  • 宇治原 徹
  • 三宅 信輔
  • 河村 真一
出願人
  • 国立大学法人名古屋大学
発明の名称 量子ドットの製造方法 コモンズ
発明の概要

【課題】有機金属気相成長法を用いた液滴エピタキシー法によるガスフローシーケンスの変更により、量子ドット中に所望の元素成分を確実に固溶させる。
【解決手段】基材1上に下地層2を形成した後、反応室をP成分雰囲気にした状態で、基材1の温度を下地層形成温度からドット形成温度まで降温する。そして、基材1の温度をドット形成温度に維持したまま、反応室をAs成分及びP成分を含む雰囲気にして所定時間保持する。これにより、下地層2上にAs成分及びP成分5を存在させる。その後、反応室を、In成分を含む雰囲気にして、In成分よりなりAs成分及びP成分が固溶した液滴を形成するとともに、この液滴を結晶化して、InAsPよりなる量子ドットを形成する。
【選択図】図1

従来技術、競合技術の概要


近年、ガリウム・ヒ素(GaAs)やインジウム・ガリウム・ヒ素(InGaAs)等のIII-V族化合物半導体や、セレン化カドミウム(CdSe)、テルル化亜鉛(ZnTe)、セレン化亜鉛(ZnSe)やテルル化カドミウム(CdTe)等のII-VI族化合物半導体よりなる量子ドットを発光素子やレーザーに適用するための研究が盛んになされている。



量子ドットからの発光はそのサイズや組成に依存し、その発光スペクトルは、量子ドットを構成する材料系、サイズ分布や組成分布で制御可能である。すなわち、量子ドットを構成する材料により、大まかな発光波長範囲が決まる。そして、量子ドットのサイズ分布や組成分布を調整することで、より細かな中心発光波長と半値幅の制御が可能となる。



このような量子ドットの作製方法の一つとして、S-K(Stranski-Krastanov)成長法が知られている。このS-K成長法では、基板上に結晶成長させた結晶層の歪み緩和を利用して結晶層の表面にドットを形成する。例えばインジウム・砒素(InAs)のIII-V族化合物半導体よりなる量子ドットをGaAs基板上に作製する場合、結晶成長温度に加熱したGaAs基板上に、分子線エピタキシー法等を利用してInとAsとを同時に供給して薄膜状に結晶成長させる。このGaAs基板とInAs結晶層とは格子不整合系であるため、結晶層の基板との界面に歪みエネルギが蓄えられる。そして、この結晶層が所定の膜厚を超えると、歪み緩和により転位が発生し、結晶層の表面が凸凹状となってドットが形成される。



一方、液滴エピタキシー法による量子ドットの作製方法も知られている。液滴エピタキシー法による量子ドットの作製は、例えば特許文献1や非特許文献1に記載されているように、元々、分子線エピタキシー法によって行われていた。その後、特許文献2~3や非特許文献2~3に記載されているように、分子線エピタキシー法だけでなく、有機金属気相成長法を用いた液滴エピタキシー法によっても量子ドットが作製されるようになってきている。



この液滴エピタキシー法によって、例えばアルミニウム・砒素(AlAs)のIII-V族化合物半導体よりなる量子ドットをGaAs基板上に作製する場合、300℃程度以下に加熱したGaAs基板上に、分子線エピタキシー法や有機金属気相成長法を利用してAlを供給して、GaAs基板上にAl液滴を形成する。その後、分子線エピタキシー法や有機金属気相成長法を利用してAsを供給して、Al液滴にAsを固溶させて結晶化し、AlAs量子ドットを形成する。



このような液滴エピタキシー法は、例えばGaAs基板上にアルミニウム・ガリウム・ヒ素(AlGaAs)量子ドットやAlAs量子ドットを作製する場合のように、格子定数の一致する組み合わせ、すなわち格子整合系にも適用できる。したがって、液滴エピタキシー法によれば、基板と量子ドットとにおいて材料選択の自由度が高まる。



ところで、近年、OCTと呼ばれる、近赤外光を用いた断層撮影技術が注目を浴びている。OCTは、分解能が10μm程度と、X線CTの1mm程度よりも高分解能であり、また、近赤外光を用いるので、X線CTよりも安全である。



このOCTは、マイケルソン干渉計を利用した技術であり、観察対象の各層構造で反射された信号光と、可動ミラーで反射された参照光とが干渉することによって、撮影を行っている。この信号光と参照光との干渉は、信号光の経路長と参照光の経路長とのズレがコヒーレンス長よりも短いときに起こる。このため、OCTでは、このコヒーレンス長が深さ方向の分解能となる。したがって、OCTの分解能を高めるには、コヒーレンス長が短い、すなわち、半値幅の広い広帯域光源が必要となる。



そこで、本発明者らは、OCTの光源として有望な、近赤外線領域の広帯域発光を目指して、有機金属気相成長法を用いた液滴エピタキシー法により、例えばInAsP量子ドットを形成することを行っている。実際、非特許文献2で発表しているように、GaInP上に作製したInP量子ドットにより750nm帯での広帯域発光や、GaInP上に作製したInAsP量子ドットにより850nm帯での広帯域発光を実現している。



本発明者らが従来行ってきた、有機金属気相成長法を用いた液滴エピタキシー法によるInAsP量子ドット作製のためのガスフローシーケンスの一例は図16に示すとおりである。



このガスフローシーケンスでは、まず、TBP(ターシャリブチルホスフィン)、TEGa(トリエチルガリウム)及びTMIn(トリメチルインジウム)の3種の原料ガスを反応室内に供給して、反応室内をTBP、TEGa及びTMInよりなる雰囲気にする。そして、この雰囲気において、反応室内に配置された基板温度をGaInPの結晶成長温度以上である600℃に所定時間だけ保持する。これにより、下地層たるGaInP層を基板上に形成する。その後、基板温度を410℃に下げる。この基板温度の下降は、基板上に形成したGaInP層からV族元素たるPが離脱しないように、反応室をTBP雰囲気としながら行う。そして、基板温度を410℃に維持しつつ、反応室内へのTBPの供給を停止してから反応室内にTMInを供給して反応室をTMIn雰囲気に所定時間だけ保持する。これにより、GaInP層上にIn液滴を形成する。その後、基板温度を410℃に維持しつつ、反応室内にTBP及びTBAs(ターシャリブチルアルシン)の二種の原料ガスを反応室内に供給して、反応室をTBP及びTBAsよりなる雰囲気に所定時間だけ保持する。これにより、PとAsをIn液滴に固溶させて結晶化し、InAsP量子ドットを形成する。その後、反応室内にTBPを供給して反応室をTBP雰囲気にした状態で、基板温度を600℃まで上げる。そして基板温度を600℃に維持しつつ、TBP、TEGa及びTMInの3種の原料ガスを反応室内に供給して反応室をTBP、TEGa及びTMInよりなる雰囲気に所定時間だけ保持する。これにより、キャップ層たるGaInP層を形成して、InAsP量子ドットを埋め込む。



ここに、次世代OCTでは、850nm帯の光源よりも1000~1050nm帯の光源が注目されている。そこで、本発明者らは、InAsP量子ドットにおけるAsとPの組成制御を行うことによって、近赤外線領域の広帯域発光の波長チューニングを目指し、まずInAsP量子ドット中のAs組成を増加させることで、中心発光波長を長波長側にずらすことを試みた。



しかしながら、従来用いてきたガスフローシーケンスを用いると、In液滴の形成後に、TBP及びTBAsの二種の原料ガスの供給比を変更することで気相As比を増加させても、図17に示されるように、それに応じてInAsP量子ドットの発光波長を長波長側に比例的にずらすことができなかった。例えば、液滴形成後の気相As比を0.17から0.43に増加させたときは、中心発光波長の長波長側へのズレが認められたが、それからさらに気相As比を0.75に増加させても、中心発光波長が長波長側にずれることはなかった。理論的には、InAsP量子ドット中のAs比が大きくなるほど、中心発光波長は長波長側にずれるはずである。このため、In液滴の形成後の気相As比を増加させても、実際にはそれに応じてInAsP量子ドットにおけるAs比を増加させることができなかったことになる。



したがって、従来のガスフローシーケンスによっては、In液滴の形成後の気相As比を調整しても、量子ドットの発光の波長チューニングを適切に行うことが困難であった。

【特許文献1】特開平3-116822号公報

【非特許文献1】Journal of Crystal Growth、111 (1991)688-692、「New MBE growth method for InSb quantum well boxes」

【特許文献2】国際公開WO 2004/055900号公報

【特許文献3】特開平5-175118号公報

【非特許文献2】日本結晶成長学会誌vol.33、No.2、26-30頁、 2006、「分散量子ドット構造を利用した広帯域発光素子」

【非特許文献3】Journal of Crystal Growth、291 (2006)363-369、「High-density nanometer-scale InSb dots formation usingu droplets heteoepitaxial groth by MOVPE」

産業上の利用分野


本発明は量子ドット及びその製造方法に関し、詳しくは有機金属気相成長法を用いた液滴エピタキシー法による量子ドットの製造方法に及びそれによって得られた量子ドットに関する。

特許請求の範囲 【請求項1】
有機金属気相成長法を用いた液滴エピタキシー法により、液滴形成元素群としてのA族元素群から選ばれた少なくとも一種よりなる第一A族元素群と液滴固溶元素群としてのB族元素群から選ばれた少なくとも一種よりなる第一B族元素群とを含む第一A-B族化合物半導体よりなる量子ドットを、該A族元素群から選ばれた少なくとも一種よりなる第二A族元素群と該B族元素群から選ばれた少なくとも一種よりなる第二B族元素群とを含む第二A-B族化合物半導体よりなる基材単一体の上又は基材上に形成された該第二A-B族化合物半導体よりなる下地層の上に形成する量子ドットの製造方法であって、
前記第一B族元素群は、前記第二B族元素群を構成する各B族元素とは異なる異種B族元素を含み、
前記基材単一体又は前記下地層が形成された前記基材が配置された反応室を、前記第一B族元素群を構成する各B族元素の各B族元素成分を含む雰囲気にして所定時間保持する前処理工程と、
前記基材単一体又は前記基材の温度を、量子ドットを形成する際のドット形成温度に維持した状態で、前記反応室を、前記第一A族元素群を構成する各A族元素の各A族元素成分を含む雰囲気にして、該基材単一体上又は該下地層上に、各該A族元素成分よりなり前記第一B族元素群の各前記B族元素成分が固溶した液滴を形成するとともに該液滴を結晶化して、前記第一A-B族化合物半導体よりなる量子ドットを形成するドット形成工程と、を備え、
前記前処理工程は、該前処理工程実施後の前記基材単一体又は前記下地層の上に、前記第一B族元素群の各前記B族元素成分が存在し、かつ該第一B族元素群の各該B族元素成分以外のB族元素成分が存在することのない条件で実施することを特徴とする量子ドットの製造方法。

【請求項2】
前記前処理工程で、前記雰囲気において前記異種B族元素の異種B族元素成分の気相組成を調整することにより、前記量子ドットにおける該異種B族元素成分の組成を制御することを特徴とする請求項1に記載の量子ドットの製造方法。

【請求項3】
前記ドット形成工程の後に、前記基材単一体又は前記基材の温度を前記量子ドットが表面マイグレーションにより移動しうる温度以上に維持しつつ、前記反応室を、前記第一B族元素群の各前記B族元素成分を含む雰囲気にする後処理工程を実施することを特徴とする請求項1又は2に記載の量子ドットの製造方法。

【請求項4】
前記後処理工程で、処理時間を調整することにより、前記量子ドットのサイズを制御することを特徴とする請求項3に記載の量子ドットの製造方法。

【請求項5】
有機金属気相成長法により前記下地層を前記基材上に形成した後に、該下地層の上に前記量子ドットを形成する量子ドットの製造方法であって、
前記前処理工程の前に、前記基材が配置された反応室を、前記第二A族元素群を構成する各A族元素の各A族元素成分と前記第二B族元素群を構成する各B族元素の各B族元素成分とを含む雰囲気にするとともに、該基材の温度を前記第二A-B族化合物半導体が結晶成長する下地層形成温度にして、該基材上に該第二A-B族化合物半導体を結晶成長させて前記下地層を形成する下地層形成工程を実施し、
前記前処理工程では、(A)前記下地層形成温度と前記ドット形成温度とが異なる場合は前記基材の温度を該下地層形成温度から該ドット形成温度まで(a)昇・降温する過程で、(b)昇・降温した後に又は(c)昇・降温する過程から昇・降温した後まで連続して、(B)前記下地層形成温度と前記ドット形成温度とが同じである場合は前記基材の温度をその温度に維持した状態で、前記下地層が形成された前記基材が配置された反応室を、前記第一B族元素群を構成する各B族元素の各B族元素成分を含む雰囲気にして所定時間保持することを特徴とする請求項1乃至4のうちのいずれか一つに記載の量子ドットの製造方法。

【請求項6】
前記前処理工程では、前記基材の温度を前記下地層形成温度から前記ドット形成温度まで昇・降温した後に、前記下地層が形成された前記基材が配置された反応室を、前記第一B族元素群を構成する各B族元素の各B族元素成分を含む雰囲気にして所定時間保持することを特徴とする請求項5に記載の量子ドットの製造方法。

【請求項7】
前記基材単一体の上に前記量子ドットを形成する量子ドットの製造方法であって、
前記前処理工程では、前記基材単一体の温度を室温から前記ドット形成温度まで(a)昇温する過程で、(b)昇温した後に又は(c)昇温する過程から昇温した後まで連続して、前記基材単一体が配置された反応室を、前記第一B族元素群を構成する各B族元素の各B族元素成分を含む雰囲気にして所定時間保持することを特徴とする請求項1乃至4のうちのいずれか一つに記載の量子ドットの製造方法。

【請求項8】
前記前処理工程では、前記基材単一体の温度を室温から前記ドット形成温度まで昇温した後に、前記基材単一体が配置された反応室を、前記第一B族元素群を構成する各B族元素の各B族元素成分を含む雰囲気にして所定時間保持することを特徴とする請求項7に記載の量子ドットの製造方法。

【請求項9】
有機金属気相成長法により、前記A族元素群から選ばれる少なくとも一種よりなる第三A族元素群と前記B族元素群から選ばれる少なくとも一種よりなる第三B族元素群とを含む第三A-B族化合物半導体よりなるキャップ層を前記量子ドットの上に形成して該量子ドットを埋め込む量子ドットの製造方法であって、
前記ドット形成工程の後に、又は該ドット形成工程の後に前記後処理工程を実施する場合は該後処理工程の後に、前記反応室を、前記第三A族元素群を構成する各A族元素の各A族元素成分と前記第三B族元素群を構成する各B族元素の各B族元素成分とを含む雰囲気にするとともに、前記基材単一体又は前記基材の温度を前記第三A-B族化合物半導体の成長温度にして、前記量子ドットの上に該第三A-B族化合物半導体を結晶成長させて前記キャップ層を形成するキャップ層形成工程を実施することを特徴とする請求項1乃至8のうちのいずれか一つに記載の量子ドットの製造方法。

【請求項10】
前記第二A-B族化合物半導体及び前記第三A-B族化合物半導体は、前記第一A-B族化合物半導体よりもバンドギャップが大きいものであることを特徴とする請求項9に記載の量子ドットの製造方法。

【請求項11】
前記第一B族元素群は、前記異種B族元素の他に、前記第二B族元素群を構成する各B族元素を全て含むことを特徴とする請求項1乃至10のいずれか一つに記載の量子ドットの製造方法。

【請求項12】
前記A族元素群はIII族元素群であり、前記B族元素群はV族元素群であることを特徴とする請求項1乃至11のいずれか一つに記載の量子ドットの製造方法。

【請求項13】
前記第一A-B族化合物半導体はInAsPであり、前記第二A-B族化合物半導体はGaInPであることを特徴とする請求項1乃至12のうちのいずれか一つに記載の量子ドットの製造方法。

【請求項14】
前記第三A-B族化合物半導体はGaInPであることを特徴とする請求項9乃至13のうちのいずれか一つに記載の量子ドットの製造方法。
産業区分
  • 固体素子
  • 無機化合物
国際特許分類(IPC)
Fターム
画像

※ 画像をクリックすると拡大します。

JP2007209362thum.jpg
出願権利状態 権利存続中
名古屋大学の公開特許情報を掲載しています。ご関心のある案件がございましたら、下記まで電子メールでご連絡ください。


PAGE TOP

close
close
close
close
close
close
close