TOP > 国内特許検索 > 太陽光発電制御装置及び太陽光発電制御における電力評価方法

太陽光発電制御装置及び太陽光発電制御における電力評価方法 外国出願あり

国内特許コード P09P006295
整理番号 TDU-139
掲載日 2009年5月29日
出願番号 特願2007-289858
公開番号 特開2009-117658
登録番号 特許第5322256号
出願日 平成19年11月7日(2007.11.7)
公開日 平成21年5月28日(2009.5.28)
登録日 平成25年7月26日(2013.7.26)
発明者
  • 吉田 俊哉
  • 大庭 勝實
  • 大坪 道雄
出願人
  • 学校法人東京電機大学
発明の名称 太陽光発電制御装置及び太陽光発電制御における電力評価方法 外国出願あり
発明の概要

【課題】低分解能なAD変換器であっても微小な電力変化を検出して最大電力点追従制御が高精度で行える太陽光発電制御装置を提供する。
【解決手段】本発明の太陽光発電制御装置は、制御回路44がスイッチ41を電圧検出器8及び電流検出器9の出力A側にし、変調度Dを所定の変化幅dで増加させながら太陽電池1の動作電圧に低周波のリプル成分を与えることで開放電圧側から最大電力点探査を開始し、最大電力点近傍で動作点が振動し、変調度更新前の電力検出器43の出力する電力値よりも変調度更新後の電力値の方が小さくなれば最大電力点通過と判断し、スイッチ41を増幅器23,24の出力側に切り替えて最大電力点追従制御を継続することを特徴とする。
【選択図】図2

従来技術、競合技術の概要


太陽電池から効率よく電力を取り出すためには、太陽電池を常に最大電力点(Maximum Power Point:MPP)で動作させる必要がある。このため一般的な太陽光発電システムでは、最大電力点追従制御回路(Maximum Power Point Tracking:MPPT)が実装されている。



既に多くのMPPT手法が報告されており、その一つに山登り法と称する制御法がある。この制御法はチョッパ回路などの電力変換器を用いて、太陽電池の動作電圧に低周波で一定変化幅の揺動成分(以下、「リプル成分」と称する。)を与え、これに伴う電力の傾きを算出し、動作点をMPPに移動させる方法である。この制御法は外部環境変化に対する高い適応能力があり、広く用いられている。



この山登り法はMPPまでの追従速度の向上と、MPP収束後の出力電力の振動抑制がトレードオフの関係にある。この問題点に対して、変化幅を最適値に自動調整し、MPPへの速やかな追従を実現しながらも、MPP付近での振動を抑えた適応山登り法が提案されている(高原、山之内、川口、「適応山登り法による太陽光発電システムの最大電力取得制御」、電学論D、121巻6号、689-693ページ、平成13年―非特許文献1)。この適応山登り法を含め、山登り法はMPP収束後の精度を上げるために変化幅をできるだけ小さくする必要がある。しかし、マイクロコンピュータ(以下、「マイコン」と称する。)を用いて山登り法を行う場合、リプル成分の変化幅はAD変換器(以下、「ADC」と略記する。)の分解能を考慮して決める必要がある。安価なマイコンに搭載されているADCは低分解能で、内部雑音が多く精度が期待できないものが多い。そのため、山登り法でMPP収束後の精度を上げるために変化幅を小さくするためには、高分解能のADCが必要となるが、その場合には製品コストの増加につながる。



他方、山登り法だけに限らず多くのMPPT制御回路では、低日射時にMPPTの精度が悪化することが知られている。一般的に制御回路のパラメータを選定する場合、使用する太陽電池の最大定格に合わせて選定される。しかし、太陽電池は外部環境の変化に伴いその出力が大幅に変化するため、低日射時は制御回路に入力される信号レベルが大幅に減少してしまう。このためADCの分解能等の問題で制御の精度が悪くなってしまうのである。



低分解能なADCで微小な出力変化を検出するためには、太陽電池の電圧、電流を高ゲインで検出すればよい。しかし高ゲイン化すると、電流、電圧のリプル成分だけでなく直流成分も拡大してしまい、計測系の飽和(サチュレーション)が問題となる。



そこで、山登り法の特徴である、リプル成分による電力変化を評価してMPPTを行っている点に着目し、直流成分を除去しリプル成分のみのゲインを上げることが考えられる。しかし、直流成分を除去した電流、電圧から電力を求めると、本来の太陽電池による発電電力値とはまったく異なるものになる。



本願発明者らは、直流成分を除去した場合においても正確なMPPT制御が行える条件を見出し、これを応用することで、MPP近傍においては直流成分を完全に除去した場合においてもリプル成分のみで正しい電力評価が行えることも見出した。直流成分を除去したリプル成分のみであれば増幅器が飽和する恐れが小さくなるのでそのゲインを非常に高くすることができ、低分解能なADCで微小な電力変化を検出することができる。これを利用することで、MPPTの高精度化、低日射での精度向上が図れる。



従来、太陽光発電装置におけるMPPT制御技術については、例えば、特開2005-70890号公報(特許文献1)、特開平9-91050号公報(特許文献2)等があげられる。しかしながら、これらはいずれも上記のようなMPP点付近で直流成分を除去しあるいは抑制し、直流リプルを利用し、かつゲインを切替ることでMPPTの高精度化、低日射での精度向上をはかる技術については知られていない。

【特許文献1】特開2005-70890号公報

【特許文献2】特開平9-91050号公報

【非特許文献1】高原、山之内、川口、「適応山登り法による太陽光発電システムの最大電力取得制御」、電学論D、121巻6号、689-693ページ、平成13年

産業上の利用分野


本発明は、太陽光発電制御装置及び太陽光発電制御における電力評価方法に関する。

特許請求の範囲 【請求項1】
光を受けて発電する太陽電池と、
前記太陽電池の発電電力を所定の電力形式に変換する電力変換装置と、
前記電力変換装置の変調度を制御する制御回路と、
前記太陽電池の出力電圧を検出する電圧検出器と、
前記太陽電池の出力電流を検出する電流検出器と、
前記電圧検出器及び電流検出器の直流成分を除去するハイパスフィルタと、
前記ハイパスフィルタの電圧出力、電流出力それぞれを増幅する増幅器と、
前記電圧検出器及び電流検出器の出力信号若しくは前記増幅器の出力信号を切り替えて出力するスイッチと、
前記スイッチを経て出力される電圧信号及び電流信号から電力値を求め、前記制御回路に入力する電力検出器とを備え、
前記制御回路は、前記スイッチを前記電圧検出器及び電流検出器の出力側にし、前記変調度を変化させながら前記電力値を観測して前記電力値が最大となる動作点を探査する最大電力点追跡制御を行った後に、前記スイッチを前記増幅器の出力側に切り替えて前記最大電力点追従制御を継続することを特徴とする太陽光発電制御装置。

【請求項2】
前記制御回路において、前記変調度の変化を離散的とし、前記スイッチを前記電圧検出器及び電流検出器の出力側にした場合の前記変調度の変化幅より、前記スイッチを前記増幅器の出力側にした場合の変化幅を小さくしたことを特徴とする請求項1に記載の太陽光発電制御装置。

【請求項3】
前記電力変換装置は、前記太陽電池の発電電力を所定の直流電力に変換するDC・DCコンバータであり、
前記制御回路は、前記変調度として前記DC・DCコンバータの変調度を制御するものであって、前記スイッチを前記電圧検出器及び電流検出器の出力側にし、前記変調度を所定の変化幅で増加させながら前記太陽電池の動作電圧に低周波のリプル成分を与えることで開放電圧側から最大電力点探査を開始し、前記最大電力点近傍で動作点が振動し、変調度更新前の前記電力検出器の出力する電力値よりも変調度更新後の電力値の方が小さくなれば最大電力点通過と判断し、前記スイッチを前記増幅器の出力側に切り替えて最大電力点追従制御を継続することを特徴とする請求項1に記載の太陽光発電制御装置。

【請求項4】
前記制御回路は、当初の所定の第1の変化幅にて最大電力点探査を開始し、前記最大電力点通過後は、前記第1の変化幅よりも小さい値の第2の変化幅にて前記最大電力点追従制御を継続することを特徴とする請求項3に記載の太陽光発電制御装置。

【請求項5】
電圧、電流及び電圧電流特性上の傾きを計測し、それに応じて電流オフセット、電圧オフセットを生成するオフセット設定部を備え、
前記制御回路は前記オフセット設定部の生成した電流オフセットを直流値を除去した前記電流に加算し、前記オフセット設定部の生成した電圧オフセットを直流値を除去した前記電圧に加算し、このオフセット加算後の電流値、電圧値を用いて電力値を算出し、前記最大電力点追従制御を行うことを特徴とする請求項1~4のいずれかに記載の太陽光発電制御装置。

【請求項6】
太陽電池の出力電圧検出信号と出力電流検出信号から求めた電力検出値に対して、電力変換装置に与える変調度を変化させながら前記電力値が最大となる動作点を探査する最大電力点追跡制御を行う第1のステップと、
前記第1のステップにて前記電力値が最大となる動作点を探査した後に、ハイパスフィルタにて前記出力電圧検出信号と出力電流検出信号から直流成分を除去した後のリプル電圧信号成分、リプル電流信号成分に対して所定のゲインにて増幅した信号に対して前記最大電力点追従制御を継続する第2のステップとを有する太陽光発電制御における電力評価方法。

【請求項7】
前記変調度の変化を離散的とし、前記第1のステップにて用いる変調度の変化幅より、前記第2のステップにて用いる変調度の変化幅を小さくすることを特徴とする請求項6に記載の太陽光発電制御における電力評価方法。

【請求項8】
前記第1のステップでは、前記太陽電池の出力電圧検出信号と出力電流検出信号から求めた電力検出値に対して、変調度を所定の変化幅で増加させながら前記太陽電池の動作電圧に低周波のリプル成分を与えることで開放電圧側から最大電力点探査を開始し、
前記第2のステップでは、前記最大電力点近傍で動作点が振動し、変調度更新前の電力検出値よりも変調度更新後の電力検出値の方が小さくなれば最大電力点通過と判断し、ハイパスフィルタにて直流成分を除去した後のリプル電圧信号成分、リプル電流信号成分に対して所定のゲインをかけた信号に対して前記最大電力点追従制御を継続することを特徴とする請求項6に記載の太陽光発電制御における電力評価方法。

【請求項9】
当初は所定の第1の変化幅にて最大電力点探査を開始し、前記最大電力点通過後は、前記第1の変化幅よりも小さい値の第2の変化幅にて前記最大電力点追従制御を継続することを特徴とする請求項8に記載の太陽光発電制御における電力評価方法。

【請求項10】
電圧、電流及び電圧電流特性上の傾きを計測し、それに応じて電流オフセット、電圧オフセットを求め、
前記電流オフセットを直流値を除去した前記電流に加算し、前記電圧オフセットを直流値を除去した前記電圧に加算し、このオフセット加算後の電流値、電圧値を用いて電力値を算出し、前記最大電力点追従制御を継続することを特徴とする請求項6~9のいずれかに記載の太陽光発電制御における電力評価方法。
産業区分
  • 固体素子
  • 制御調整
  • 太陽熱利用
  • 発電、電動
  • 変電
国際特許分類(IPC)
Fターム
画像

※ 画像をクリックすると拡大します。

JP2007289858thum.jpg
出願権利状態 権利存続中
ライセンスご希望の方、またシーズの詳細に関することについては、下記「問合せ先」まで直接お問い合わせくださいますよう,お願い申し上げます。


PAGE TOP

close
close
close
close
close
close
close