TOP > 国内特許検索 > 映像信号変換システム

映像信号変換システム

国内特許コード P110004215
整理番号 A221P61
掲載日 2011年7月8日
出願番号 特願2008-227628
公開番号 特開2010-062955
登録番号 特許第5081109号
出願日 平成20年9月4日(2008.9.4)
公開日 平成22年3月18日(2010.3.18)
登録日 平成24年9月7日(2012.9.7)
発明者
  • 寅市 和男
  • 武 徳安
  • 大宮 康宏
出願人
  • 国立研究開発法人科学技術振興機構
発明の名称 映像信号変換システム
発明の概要 【課題】映像、アニメ等の動画情報を統一的に処理して高圧縮化し、高品質な動画像再生を可能にする映像信号変換システムを提供する。
【解決手段】真の入力画像が入力されるぼけ函数の劣化モデルの出力にノイズnを付加することにより得られる観測画像を入力として、ぼけ函数の再帰的最適化を行って推定された真の映像情報を抽出する逆フィルタからなり、入力映像信号に含まれるノイズを除去する前処理部20と、前処理部20からの映像信号について、フルーエンシ理論に基づいて対応点推定を行い、画像の動き情報を函数化して表現するとともに、フルーエンシ理論に基づいて信号空間を選択し、選択した信号空間毎に画像情報を函数化して表現し、上記映像信号を所定の形式で記述して圧縮符号化する圧縮符号化処理部30と、圧縮符号化処理部30により圧縮符号化された映像信号を高フレームレート化する高フレームレート化処理部40とを備える。
【選択図】図5
従来技術、競合技術の概要


近年、デジタル信号技術の進展に伴い、映像(動画像)、画像又は音声を対象にした、通信、放送、記録媒体[CD(Compact Disc)、DVD(Digital Versatile Disc)]、医用画像、印刷等の分野がマルチメディア産業或いはIT(Information Technology)として著しい発展を遂げている。映像や画像、音声に対するデジタル信号技術の一翼を担うのが情報量を低減する圧縮符号化であるが、その信号理論として、代表的にはシャノンの標本化定理があり、更に新しくはウェーブレット変換理論等がある。また、例えば音楽のCDでは、圧縮を伴わないリニアPCM(Pulse Code Modulation)が用いられるが、信号理論は同様にシャノンの標本化定理である。



従来、映像、アニメ画像などの動画の圧縮技術としてMPEGが知られており、デジタル放送やDVDにおけるMPEG-2方式の採用や、第3世代携帯電話のインターネット・ストリーミングや移動体通信などの分野におけるMPEG-4方式の採用などにより、映像信号のデジタル圧縮技術は、近年非常に身近なものとなっている。その背景には、蓄積メディアの大容量化、ネットワークの高速化、プロセッサの高性能化、システムLSIの大規模・低価格化などがある。このように、デジタル圧縮を必要とする映像応用システムを支える環境が着々と整ってきている。



MPEG2(ISO(International Organization for Standardization)/IEC(International Electrotechnical Commition)13818-2)は、汎用の画像符号化方式として定義された方式であり、飛び越し走査方式、順次走査方式の双方に対応できるように定義され、また標準解像度画像、高精細画像の双方に対応できるように定義されている。このMPEG2は、現在、プロフェッショナル用途及びコンシューマー用途の広範なアプリケーションに広く用いられている。MPEG2では、例えば720×480画素の標準解像度、飛び越し走査方式の画像データを4~8〔Mbps〕のビットレートにデータ圧縮することができ、また1920×1088画素の高解像度 、飛び越し走査方式の画像データを18~22〔Mbps〕のビットレートにデータ圧縮することができ、高画質で高い圧縮率を確保することができる。



一般に動画像の符号化では、時間方向および空間方向の冗長性を削減することによって情報量の圧縮を行う。そこで時間的な冗長性の削減を目的とする画面間予測符号化では、前方または後方のピクチャを参照してブロック単位で動きの検出および予測画像の作成を行い、得られた予測画像と符号化対象ピクチャとの差分値に対して符号化を行う。ここで、ピクチャとは1枚の画面を表す用語であり、プログレッシブ画像ではフレームを意味し、インタレース画像ではフレームもしくはフィールドを意味する。ここで、インタレース画像とは、1つのフレームが時刻の異なる2つのフィールドから構成される画像である。インタレース画像の符号化や復号化処理においては、1つのフレームをフレームのまま処理したり、2つのフィールドとして処理したり、フレーム内のブロック毎にフレーム構造またはフィールド構造として処理したりすることができる。



テレビジョン画像の品質を向上させる手法として、走査線の数を増やすとともに水平画素の数を増やす方法がある。例えば、現行のNTSC方式のビデオ信号は、2:1のインターレス走査を行っているため、垂直解像度は300本程度となる。一般のテレビジョン受像機で用いられているCRTの走査線は525本であり、インターレス走査によって解像度が低下しており、フィールドバッファを用いたフィールド補間によって垂直方向の画素数を増やして走査をノン・インターレス化することにより、垂直方向の解像度を上げる手法が知られている。



また、高品位テレビジョン受像機に用いられているCRTには、垂直画素数が通常のテレビジョン受像機のCRTに比べて2倍程度に設定されたものがあり、走査線方向の画素数を補間によって2倍に増やすことにより、水平方向の解像度を上げる手法が知られている。



従来から、画像の拡大あるいは縮小を簡単な処理によって行う方法として、所定間隔で同じ画素を繰り返したり間引いたりする手法が知られており、誤差による画像の歪みが少なく、しかも演算量を低減するための手法や、画像データを、より効率的に符号化するための手法が提案されている(例えば、特許文献1、2、3参照)。



【特許文献1】
特開平11-353472号公報
【特許文献2】
特開2000-308021号公報
【特許文献3】
特開2008-4984号公報

産業上の利用分野


本発明は、動画像を高圧縮化、高解像度化した画情報に変換する映像信号変換システムに関する。

特許請求の範囲 【請求項1】
真の入力画像f(x,y)が入力されるぼけ函数H(x,y)の劣化モデルの出力にノイズn(x,y)を付加することにより得られる観測画像g(X,y)を入力として、ぼけ函数H(X,y)の再帰的最適化を行って推定された真の映像情報を抽出する逆フィルタからなり、入力映像信号に含まれるノイズを上記逆フィルタにより除去する前処理部と、
上記前処理部によりノイズ除去処理が施された映像信号について、基準フレームにおける所定領域の画像濃淡値を面関数で近似し、且つ他のフレームにおける部分画像の濃淡値を面函数化し、上記基準フレームにおける面関数と他のフレームの面関数との相関値が最大となる位置を画像の対応点として推定し、該対応点のフレーム毎の位置の変化を画像の動き情報として函数化して表現するとともに、上記ノイズ除去処理が施された映像信号について、フルーエンシ理論に基づいて信号空間を選択し、選択した信号空間毎に画像情報を函数化して表現し、上記画像の動き情報を函数化した結果と上記選択した信号空間毎に画像情報を函数化した結果を所定の形式で記述して圧縮符号化する圧縮符号化処理部と、
上記圧縮符号化処理部により圧縮符号化された映像信号を高フレームレート化する高フレームレート化処理部と
を備えることを特徴する映像信号変換システム。

【請求項2】
上記圧縮符号化処理部は、上記前処理部によりノイズ除去処理が施された映像信号について、所定領域の画像濃淡値を函数化してフレーム毎の相関が最大となる位置を対応点として推定する対応点推定部と、
この対応点推定部によるフレーム毎の対応点位置を画像の動き情報として函数化して表現する動き函数化処理部からなる第1の函数化処理部を備え、
上記対応点推定部は、フレーム画像の部分領域を抽出する第1の部分領域抽出手段と、上記第1の部分領域抽出手段により抽出した部分領域に相似な連続する他のフレーム画像の部分領域を抽出する第2の部分領域抽出手段と、上記第1の部分領域抽出手段及び上記第2の部分領域抽出手段により抽出された各部分領域を同一比に変換し、変換した各画像の濃淡を区分多項式で函数表現して出力する函数近似手段と、上記函数近似手段の出力の相関値を演算する相関値演算手段と、上記相関値演算手段により算出される相関値の最大値を与える画像の位置ずれを演算し、該演算値を対応点のずれ量として出力するずれ量演算手段とからなることを特徴する請求項1記載の映像信号変換システム。

【請求項3】
上記圧縮符号化処理部は、さらに、上記前処理部によりノイズ除去処理が施された映像信号について、フルーエンシ理論に基づいて信号空間を選択する領域自動分類処理部と、
この領域自動分類処理部により選択した信号空間毎に画像情報を函数化して表現する函数化処理部からなる第2の函数化処理部を備え、
上記函数化処理部は、上記領域自動分類処理部により選択された多項式表現可能な領域について画像の濃淡を面函数で近似して表現し濃淡情報を函数化する濃淡函数化処理部と、
上記領域自動分類処理部により選択された多項式表現可能な領域について画像の輪郭線函数で近似して表現し輪郭情報を函数化する輪郭線函数化処理部とを備える
ことを特徴する請求項2記載の映像信号変換システム。

【請求項4】
上記濃淡函数化処理部は、上記領域自動分類処理部により選択された多項式表現可能な区分的平面領域(m≦2)、区分的曲面領域(m=3)、区分的球面領域(m=∞)の画像情報について、それぞれフルーエンシ函数を用いて濃淡情報を函数化することを特徴する請求項3記載の映像信号変換システム。

【請求項5】
上記輪郭線函数化処理部は、上記領域自動分類処理部により選択された画像情報について、区分的直線、区分的2次曲線、区分的円弧を抽出し分類する輪郭自動分類処理部と、上記輪郭自動分類処理部により分類された区分的直線、区分的2次曲線、区分的円弧をそれぞれフルーエンシ函数を用いて近似することにより、輪郭情報を函数化する函数化処理部とを備えることを特徴する請求項3記載の映像信号変換システム。

【請求項6】
上記高フレーム化処理部は、基準フレームにおける複数個の画素について、時間を異にする複数の画像フレームにおける画素の各対応点位置を推定する対応点推定処理部と、
上記対応点推定処理部により推定した各画像フレームにおける各対応点について、それぞれ上記対応点位置近傍の画素の濃淡を示す階調値から各対応点の階調値を求める第1の階調値生成処理部と、
上記基準フレームにおける複数個の画素に対して、上記第1の階調値生成処理部により求めた上記推定した各画像フレームにおける各対応点の階調値から、フレーム間の対応点軌跡上の濃淡値の変化をフルーエンシ函数で近似し、その函数から新たに挿入する補間フレームにおける対応点の各階調値を求める第2の階調値生成処理部と、
上記第2の階調値生成処理部により求めた上記補間フレームにおける各対応点の階調値から、上記補間フレームにおける各対応点の各画素の階調値を生成する第3の階調値生成処理部とを備えることを特徴とする請求項1記載の映像信号変換システム。

【請求項7】
上記高フレーム化処理部は、上記圧縮符号化処理部により圧縮符号化された映像信号について、函数表現された画像の動き情報及び画像情報により、画像の大きさを所定の大きさに拡大又は縮小するサイズ変換処理とともに高フレームレート化処理を行うことを特徴とする請求項1記載の映像信号変換システム。

【請求項8】
上記高フレーム化処理部は、基準フレームにおける複数個の画素について、その濃淡分布を函数近似する第1の函数近似処理部と、上記第1の函数近似処理部により近似された時間を異にする複数の上記基準フレームにおける上記濃淡分布の函数で相関演算を行い、その最大値を与えるそれぞれの位置を上記複数の基準フレームにおいて対応する対応点位置とする対応点推定処理部と、上記対応点推定処理部により推定された各基準フレームにおける対応点位置を基準フレームの原点からの水平方向、垂直方向の距離で座標化し、上記時間を異にする複数の基準フレームにおける該座標点の水平方向位置、及び垂直方向位置のそれぞれの変化を時系列信号に変換し、各基準フレ-ムの時系列信号を函数近似する第2の函数近似処理部と、上記第2の函数近似処理部で近似された函数により、上記複数の基準フレーム間の任意の時間における補間フレームについて、上記基準フレームの対応点位置に該当する補間フレーム内の対応する位置を対応点位置とし、該補間フレームの対応点位置における濃淡値を、上記基準フレームの対応点における濃淡値で補間して求め、該補間フレ-ムの対応点の濃淡値に合わせて上記第1の函数近似を当てはめて、該対応点近傍の濃淡分布を求め、該対応点近傍の濃淡値を補間フレームにおける画素点の濃淡値に変換する第3の函数近似処理部とを備えることを特徴とする請求項1記載の映像信号変換システム。
国際特許分類(IPC)
Fターム
画像

※ 画像をクリックすると拡大します。

JP2008227628thum.jpg
出願権利状態 登録
参考情報 (研究プロジェクト等) CREST 情報社会を支える新しい高性能情報処理技術 領域
ライセンスをご希望の方、特許の内容に興味を持たれた方は、問合せボタンを押してください。


PAGE TOP

close
close
close
close
close
close
close