TOP > 国内特許検索 > 半導体素子及び半導体素子の製造方法

半導体素子及び半導体素子の製造方法

国内特許コード P120008027
整理番号 S2011-0507
掲載日 2012年10月17日
出願番号 特願2011-059992
公開番号 特開2012-195519
出願日 平成23年3月18日(2011.3.18)
公開日 平成24年10月11日(2012.10.11)
発明者
  • 木本 恒暢
  • 須田 淳
  • 馮 淦
出願人
  • 国立大学法人京都大学
発明の名称 半導体素子及び半導体素子の製造方法
発明の概要

【課題】SiC半導体装置において、不純物添加工程や表面保護膜形成におけるプロセス条件のばらつきがあっても、簡便に逆方向耐圧に大きな影響を与えないターミネーション構造(接合終端構造)を提供する。
【解決手段】素子の外周端部に、第1導電型の耐圧維持層および有限長さの前記第1導電型とは異なる第2導電型の領域からなる接合終端構造を備えたSiC半導体素子であって、前記接合終端構造の一部において、第1の方向である層方向に対して均一ではなく、前記接合終端領域の内側端であって前記素子の外周端から前記接合終端領域の外側端に向かって、前記第1導電型領域の不純物濃度が空間的に変調され、不純物濃度が徐々に減少する傾向を持って形成された接合終端構造を有することを特徴とするSiC半導体素子。
【選択図】 図3

従来技術、競合技術の概要


炭化珪素(SiC)などのワイドギャップ半導体材料は、シリコン(Si)に比べて絶縁破壊強度が約10倍高いなど各種の優れた特性を有しており、高い耐逆電圧特性を有する高耐圧パワー半導体装置に好適な材料として注目されている。パワー半導体装置は、ショットキーダイオードやMOSFET、JFETなどのユニポーラ素子とpnダイオードやバイポーラトランジスタ、IGBT、GTOサイリスタなどのバイポーラ素子に分類されるが、SiCはいずれの素子でもSiの場合に比べて電力損失の大幅な低減を実現できる。



SiCを用いた従来のpnダイオードとして、例えば図18に示すようなメサ構造の素子がある。このpnダイオードでは、一方の面にカソード電極105を形成したSiC単結晶n+型基板101の他方の面にn型耐圧維持層102が形成され、n型耐圧維持層102の中央部にp型電荷注入層103が形成されている。p型電荷注入層103の両側には、ターミネーション用のp型層151が形成されている。



ここで「ターミネーション」(接合終端)とは、高耐圧半導体素子の電流が流されるpn接合部の周囲における電界集中を緩和するために、このpn接合部の周囲に設けた各種の半導体構造のことである。図18のpnダイオードでは、電流を流すためのpn接合と、電界集中を緩和するためのターミネーション用のp型層151とn型耐圧維持層102との間のpn接合が、硼素やアルミニウム等のイオン打ち込みにより形成されている。



さらに、下記特許文献1では、メサ壁部またはメサ壁部およびメサ周辺部に、その表面とpn接合界面とを空間的に分離する通電劣化防止層を形成した技術が開示されている。その図3に相当する図19に示す構造は、メサ周辺部210に電界緩和層231を形成している。この電界緩和層231は、p型不純物をイオン打ち込みすることによって形成される。



電界緩和層231を形成することによって、逆方向電圧の印加時に、電界緩和層231を形成した領域に空乏層が広がり、この空乏層によって耐圧性能がさらに向上する。電界緩和層231は、メサの周囲に環状に形成される。また、電界緩和層231は、p型導電層220から連続して形成されている。なお、本明細書では、メサ形ダイオードを例に挙げて接合終端構造に関する発明を説明するが、本発明はメサ形ダイオードに限定されるものではなく、プレーナ型でも良い。また、主としてpn接合ダイオードを例として説明するが、ショットキーダイオードやMOSFETなどのユニポーラ素子、GTOサイリスタやIGBTなどのバイポーラ素子にも適用可能である。



電界緩和層231の1つの態様では、p型の不純物の濃度がそれぞれ異なり、径方向に連続した複数の環状の層から電界緩和層231が構成されている。特に、JTE(Junction Termination Extension)構造であることが好ましい。電界緩和層231の具体的な構造の一例を図19に示した。図19(a)では、複数の連続した環状のp型ターミネーション231a~231cによって電界緩和層231を形成している。これらのp型ターミネーション231a~231cにおける不純物濃度は互いに異なっている。一例としては、最外縁に向かって不純物濃度を徐々に減少させる。p型ターミネーション231a~231cは、径方向の幅をほぼ同じ長さとしてもよいが、同図のように内側のp型ターミネーション231aの径方向の幅を長くするなど、互いに異なる幅としてもよい。また、同図では環状のp型ターミネーションの数を3つとしているが、さらにその数を多くしてもよい。図19(b)では、複数の離間した環状のp型ターミネーション231d~231gによって電界緩和層231を形成している。

産業上の利用分野


本発明は、半導体素子及び半導体素子の製造方法に関し、より詳細には、高耐圧構造を有する半導体技術に関する。

特許請求の範囲 【請求項1】
素子の外周端部に、第1導電型の耐圧維持層および有限長さの前記第1導電型とは異なる第2導電型の領域からなる接合終端構造を備えたSiC半導体素子であって、
前記接合終端構造の一部において、第1の方向である層方向に対して、前記接合終端領域の内側端であって前記素子の外周端から前記接合終端領域の外側端に向かって、前記第1導電型領域の不純物濃度が空間的に変調され、不純物濃度が徐々に減少する傾向を持って形成された接合終端構造を有することを特徴とするSiC半導体素子。

【請求項2】
前記接合終端構造において、
前記第1の方向と交差する第2の方向である深さ方向に前記第2導電型の不純物濃度分布が同じである領域が、層方向に対して複数に分割されており、かつ、その分割された領域の幅が前記接合終端領域の外側に向かって狭くなる傾向を持って形成されていることを特徴とする請求項1に記載のSiC半導体素子。

【請求項3】
前記接合終端構造において、
前記第1の方向と交差する第2の方向である深さ方向に前記第2導電型の不純物濃度分布が同じである領域が、層方向に対して複数に分割されており、かつ、その分割された領域の間隔が前記接合終端領域の外側に向かって広がる傾向を持って形成されていることを特徴とする請求項1に記載のSiC半導体素子。

【請求項4】
前記の接合終端構造において、
層方向に分割された領域の幅をLWj(jは自然数で接合終端領域の内側から番号を付す)、領域の間隔をLSjとするとき、LWj+1/(LWj+1 + LSj+1) = A×LWj/(LWj + LSj) (ここでA は0.1~0.9の範囲の実数であり、0.5~0.8が望ましい)なる関係が成り立つように平均的な不純物濃度が空間変調されていることを特徴とする請求項2又は3に記載のSiC半導体素子。

【請求項5】
請求項1から4までのいずれか1項に記載のSiC半導体素子の製造方法であって、
前記第2導電型の不純物を一括して添加する工程を有することを特徴とするSiC半導体素子の製造方法。

産業区分
  • 固体素子
国際特許分類(IPC)
Fターム
画像

※ 画像をクリックすると拡大します。

JP2011059992thum.jpg
出願権利状態 審査請求前
ライセンスをご希望の方、特許の内容に興味を持たれた方は、下記までご連絡ください。


PAGE TOP

close
close
close
close
close
close
close