TOP > 国内特許検索 > 電界効果トランジスタ及びその製造方法

電界効果トランジスタ及びその製造方法

国内特許コード P130009031
整理番号 E086P06D1
掲載日 2013年4月11日
出願番号 特願2012-265997
公開番号 特開2013-055358
登録番号 特許第5656966号
出願日 平成24年12月5日(2012.12.5)
公開日 平成25年3月21日(2013.3.21)
登録日 平成26年12月5日(2014.12.5)
発明者
  • 金田 敏彦
  • 下田 達也
  • 宮迫 毅明
  • ▲徳▼光 永輔
出願人
  • 国立研究開発法人科学技術振興機構
  • セイコーエプソン株式会社
発明の名称 電界効果トランジスタ及びその製造方法
発明の概要 【課題】従来よりも大幅に少ない原材料及び製造エネルギーを用いて製造することが可能な電界効果トランジスタを提供する。
【解決手段】本発明1つの電界効果トランジスタは、ソース領域144及びドレイン領域146並びにチャネル領域142を含む酸化物導電体層と、チャネル領域142の導通状態を制御するゲート電極120と、ゲート電極120とチャネル領域142との間に形成された強誘電体材料又は常誘電体材料からなるゲート絶縁層130とを備え、チャネル領域142の層厚は、ソース領域144の層厚及びドレイン領域146の層厚よりも薄い。
【選択図】図1
従来技術、競合技術の概要


図24は、従来の電界効果トランジスタ900を説明するために示す図である。
従来の電界効果トランジスタ900は、図24に示すように、ソース電極950及びドレイン電極960と、ソース電極950とドレイン電極960との間に位置するチャネル層940と、チャネル層940の導通状態を制御するゲート電極920と、ゲート電極920とチャネル層940との間に形成され、強誘電体材料からなるゲート絶縁層930とを備える。なお、図24において、符号910は絶縁性基板を示す。



従来の電界効果トランジスタ900においては、ゲート絶縁層930を構成する材料として、強誘電体材料(例えば、BLT(Bi4-xLaTi12)、PZT(Pb(Zr,Ti1-x)O))が使用され、チャネル層940を構成する材料として、酸化物導電性材料(例えば、インジウム錫酸化物(ITO))が使用されている。



従来の電界効果トランジスタ900によれば、チャネル層を構成する材料として酸化物導電性材料を用いているためキャリア濃度を高くすることができ、また、ゲート絶縁層を構成する材料として強誘電体材料を用いているため低い駆動電圧で高速にスイッチングすることができ、その結果、大きな電流を低い駆動電圧で高速に制御することが可能となる。



従来の電界効果トランジスタは、図25に示す従来の電界効果トランジスタの製造方法により製造することができる。図25は、従来の電界効果トランジスタの製造方法を説明するために示す図である。図25(a)~図25(e)は各工程図であり、図25(f)は電界効果トランジスタ900の平面図である。



まず、図25(a)に示すように、表面にSiO2層が形成されたSi基板からなる絶縁性基板910上に、電子ビーム蒸着法により、Pt(40nm)及びTi(10nm)の積層膜からなるゲート電極920を形成する。
次に、図25(b)に示すように、ゲート電極920の上方から、ゾルゲル法により、BLT(Bi3.25La0.75Ti12)又はPZT(Pb(Zr0.4Ti0.6)O)からなるゲート絶縁層930(200nm)を形成する。
次に、図25(c)に示すように、ゲート絶縁層930上に、RFスパッタ法により、ITOからなるチャネル層940(5nm~15nm)を形成する。
次に、図25(d)に示すように、チャネル層940上に、電子ビーム蒸着法により、Pt(30nm)及びTi(30nm)を真空蒸着してソース電極950及びドレイン電極960を形成する。
次に、RIE法及びウェットエッチング法(HF:HCl混合液)により、素子領域を他の素子領域から分離する。
これにより、図25(e)及び図25(f)に示すような、電界効果トランジスタ900を製造することができる。



図26は、従来の電界効果トランジスタ900の電気特性を説明するために示す図である。なお、図26中、符号940aはチャネルを示し、符号940bは空乏層を示す。
従来の電界効果トランジスタ900においては、図26に示すように、ゲート電圧が3V(VG=3V)のときのオン電流が約10-4A、オン/オフ比が1×10、電界効果移動度μFEが10cm/Vs、メモリウインドウが約2Vの値が得られている。

産業上の利用分野


本発明は、電界効果トランジスタ及びその製造方法に関する。

特許請求の範囲 【請求項1】
ソース領域及びドレイン領域並びにチャネル領域を含む酸化物導電体層と、前記チャネル領域の導通状態を制御するゲート電極と、前記ゲート電極と前記チャネル領域との間に形成され強誘電体材料又は常誘電体材料からなるゲート絶縁層とを備えた電界効果トランジスタの製造方法であって、
固体基板における一方の表面上に前記ゲート電極を形成する第1工程と、
強誘電体材料又は常誘電体材料の原料を含む溶液を前記固体基板における前記ゲート電極上に塗布して強誘電体材料又は常誘電体材料の原料を含む膜を形成した後、熱処理を施すことにより、前記ゲート絶縁層を形成する第2工程と、
酸化物導電性材料の原料を含む溶液を前記ゲート絶縁層上に塗布することにより酸化物導電性材料の原料を含む膜を形成した後、前記ソース領域に対応する領域及び前記ドレイン領域に対応する領域よりも前記チャネル領域に対応する領域が凸となるように形成された凹凸型を用いて、前記チャネル領域に対応する領域における前記酸化物導電性材料の原料を含む膜の層厚が5nm~100nmの範囲内にある所定の層厚になるように、前記酸化物導電性材料の原料を含む膜に対して型押し成形加工を行い、さらにその後、熱処理を施すことにより、前記ソース領域、前記ドレイン領域及び前記チャネル領域を形成する第3工程とを、この順序で含み、
前記チャネル領域の層厚が前記ソース領域の層厚及び前記ドレイン領域の層厚よりも薄い前記酸化物導電体層を形成する、
電界効果トランジスタの製造方法。

【請求項2】
ソース領域及びドレイン領域並びにチャネル領域を含む酸化物導電体層と、前記チャネル領域の導通状態を制御するゲート電極と、前記ゲート電極と前記チャネル領域との間に形成され強誘電体材料又は常誘電体材料からなるゲート絶縁層とを備えた電界効果トランジスタの製造方法であって、
固体基板における一方の表面上に前記ゲート電極を形成する第1工程と、
強誘電体材料又は常誘電体材料の原料を含む溶液を前記固体基板における一方の表面上に塗布して強誘電体材料又は常誘電体材料の原料を含む膜を形成した後、前記チャネル領域に対応する領域よりも前記ソース領域に対応する領域及び前記ドレイン領域に対応する領域が凸となるように形成された凹凸型を用いて、前記チャネル領域に対応する領域における前記酸化物導電性材料の原料を含む膜の層厚が5nm~100nmの範囲内にある所定の層厚になるように、前記強誘電体材料又は常誘電体材料の原料を含む膜に対して型押し成形加工を行い、さらにその後、熱処理を施すことにより、前記ソース領域に対応する領域及び前記ドレイン領域に対応する領域よりも前記チャネル領域に対応する領域が凸となるような構造を有する前記ゲート絶縁層を形成する第2工程と、
酸化物導電性材料の原料を含む溶液を前記固体基板における一方の表面上に塗布して酸化物導電性材料の原料を含む膜を形成した後、平坦型を用いて前記酸化物導電性材料の原料を含む膜に対して型押し加工を行い、さらにその後、熱処理を施すことにより、前記ソース領域、前記ドレイン領域及び前記チャネル領域を形成する第3工程とをこの順序で含み、
前記チャネル領域の層厚が前記ソース領域の層厚及び前記ドレイン領域の層厚よりも薄い前記酸化物導電体層を形成する、
界効果トランジスタの製造方法。

【請求項3】
前記第2工程においては、前記固体基板における一方の表面上に前記強誘電体材料又は常誘電体材料の原料を含む膜を形成した後、平坦型を用いて前記強誘電体材料又は常誘電体材料の原料を含む膜の表面を平坦化する、
請求項1又は請求項2に記載の電界効果トランジスタの製造方法。

【請求項4】
前記第3工程においては、型押し成形技術を用いて前記酸化物導電性材料の原料を含む膜の一部を除去することにより素子分離する工程を含む、
請求項1乃至請求項3のいずれか1項に記載の電界効果トランジスタの製造方法。

【請求項5】
前記第1工程においては、前記ゲート電極を形成する部分にコンタクトプリンティング法を用いてめっき触媒物質を付着し、その後、当該めっき触媒物質が付着した領域に無電解めっきを施すことにより前記ゲート電極を形成する、
請求項1乃至請求項4のいずれか1項に記載の電界効果トランジスタの製造方法。

【請求項6】
前記第1工程においては、前記ゲート電極を形成する部分にコンタクトプリンティング法を用いて親液化処理を施し、その後、当該親液化処理を施した領域にゲート電極の原料を含むインクを供給し、さらにその後、熱処理を施すことにより前記ゲート電極を形成する、
請求項1乃至請求項5のいずれか1項に記載の電界効果トランジスタの製造方法。

【請求項7】
ソース領域及びドレイン領域並びにチャネル領域を含む酸化物導電体層と、前記チャネル領域の導通状態を制御するゲート電極と、前記ゲート電極と前記チャネル領域との間に形成され強誘電体材料又は常誘電体材料からなるゲート絶縁層とを備えた電界効果トランジスタの製造方法であって、
固体基板における一方の表面上に、酸化物導電性材料の原料を含む溶液を塗布することにより酸化物導電性材料の原料を含む膜を形成した後、前記ソース領域に対応する領域及び前記ドレイン領域に対応する領域よりも前記チャネル領域に対応する領域が凸となるように形成された凹凸型を用いて、前記チャネル領域に対応する領域における前記酸化物導電性材料の原料を含む膜の層厚が5nm~100nmの範囲内にある所定の層厚になるように、前記酸化物導電性材料の原料を含む膜に対して型押し加工を行い、さらにその後、熱処理を施すことにより、前記ソース領域、前記ドレイン領域及び前記チャネル領域を形成する第1工程と、
強誘電体材料又は常誘電体材料の原料を含む溶液を、前記チャネル領域上に塗布して強誘電体材料又は常誘電体材料の原料を含む膜を形成した後、平坦型を用いて前記強誘電体材料又は常誘電体材料の原料を含む膜に対して型押し加工を行い、さらにその後、熱処理を施すことにより、前記ゲート絶縁層を形成する第2工程と、
前記ゲート絶縁層上に、前記ゲート電極を形成する第3工程とを、この順序で含み、
前記チャネル領域の層厚が前記ソース領域の層厚及び前記ドレイン領域の層厚よりも薄い前記酸化物導電体層を形成する、
界効果トランジスタの製造方法。

【請求項8】
前記第1工程においては、型押し成形技術を用いて前記酸化物導電性材料の原料を含む膜の一部を除去することにより素子分離する工程を含む、
請求項7に記載の電界効果トランジスタの製造方法。

【請求項9】
前記第3工程においては、前記ゲート電極を形成する部分に、コンタクトプリンティング法を用いてめっき触媒物質を付着し、その後、当該めっき触媒物質が付着した領域に無電解めっきを施すことにより前記ゲート電極を形成する、
請求項7又は請求項8に記載の電界効果トランジスタの製造方法。

【請求項10】
前記第3工程においては、前記ゲート電極を形成する部分にコンタクトプリンティング法を用いて親液化処理を施し、その後、当該親液化処理を施した領域にゲート電極の原料を含む原料を含むインクを供給し、さらにその後、熱処理を施すことにより前記ゲート電極を形成する、
請求項7乃至請求項9のいずれか1項に記載の電界効果トランジスタの製造方法。

【請求項11】
酸化物導電性材料の原料を含む溶液には、完成時に前記チャネル領域のキャリア濃度が1×1018cm-3~1×1021cm-3の範囲内になるような濃度の不純物が添加されている、
請求項1乃至請求項10のいずれか1項に記載の電界効果トランジスタの製造方法。
産業区分
  • 半導体
  • 固体素子
国際特許分類(IPC)
Fターム
画像

※ 画像をクリックすると拡大します。

JP2012265997thum.jpg
出願権利状態 登録
参考情報 (研究プロジェクト等) ERATO 下田ナノ液体プロセス 領域
ライセンスをご希望の方、特許の内容に興味を持たれた方は、問合せボタンを押してください。


PAGE TOP

close
close
close
close
close
close
close