TOP > 国内特許検索 > 熱蛍光線量測定用素子及び放射線検出器

熱蛍光線量測定用素子及び放射線検出器 コモンズ

国内特許コード P150012368
掲載日 2015年10月16日
出願番号 特願2010-007905
公開番号 特開2011-145246
登録番号 特許第5578510号
出願日 平成22年1月18日(2010.1.18)
公開日 平成23年7月28日(2011.7.28)
登録日 平成26年7月18日(2014.7.18)
発明者
  • 福田 和悟
出願人
  • 学校法人大阪産業大学
発明の名称 熱蛍光線量測定用素子及び放射線検出器 コモンズ
発明の概要 【課題】熱蛍光グローピーク温度をより高い温度領域にシフトさせるとともに、結晶欠陥に起因する励起電子の基底状態への遷移を抑制して、放射線の照射直後の励起状態が長時間に亘って維持する。
【解決手段】母材であるCaFに、0.1mol%のTbF、0.5mol%のGdF及び0.1mol%のSmFを混合してこれらを溶融し、このCaFの単結晶を成長させた。この単結晶にX線を照射し、グローピーク強度を評価したところ、80℃付近(低温領域)に小さいピークと、400℃付近(高温領域)に大きいピークが確認できた。このように、低温領域のピークを高温領域のピークよりも相対的に小さくすると、添加したTb電子のFセンタが安定したものとなり、時間経過に伴うFセンタからの基底状態へのエネルギー遷移が生じにくくなる。このため、X線等の放射線の照射直後の励起状態が長時間に亘って維持することができる。
【選択図】図1
従来技術、競合技術の概要


X線、中性子線、紫外線、ガンマ線等の放射線の被曝量を検知するために、放射線を扱う作業者(医療従事者や原子力発電所の作業者等)が作業衣の胸等に付けるバッジ型の検知装置が広く普及している。この検知装置には、フッ化カルシウムCaFやフッ化リチウムLiF等の母材に、テルビウムTb、サマリウムSm、ガドリニウムGd等の希土類元素の酸化物を添加した熱蛍光線量測定素子が収納されている。



この熱蛍光線量測定素子に放射線が照射されると、添加元素のGdの電子は高いエネルギー状態の励起状態(7/2)となる。この励起状態の電子は、次第にエネルギー的に安定な基底状態(S)へ戻る。このとき、この電子のもつエネルギーがTb及びSmの電子に受け渡される(エネルギー遷移)。さらに、Sm電子からTb電子へのエネルギー遷移も連続的に生じ、このTb電子の励起効率が高まる。



このTb励起電子は、結晶中の不純物原子等にトラップされてFセンタと呼ばれる安定状態を形成する。このFセンタは、少なくとも数日間(2~3日程度)の間は維持される。そして、このFセンタが維持されている熱蛍光線量測定素子を室温から400℃程度まで昇温すると、励起されたTb電子が基底状態に戻る。この際に、前記励起状態と基底状態のエネルギー差に対応した発光(蛍光)が生じる(特許文献1の明細書段落0016を参照)。この発光が生じる温度(熱蛍光グローピーク温度)は、放射線の種類によって異なることが分かっており、前記昇温の際にこの温度を読み取ることにより、放射線の種類を特定できる(特許文献2の図1等を参照)。また、その温度における発光強度を測定することで、その放射線の照射強度を知ることができる。



この熱蛍光線量測定素子は、母材の粉末状CaF等に、粉末状の酸化テルビウムTb等の添加物を添加して均一に混合し、1000℃程度の温度で焼結した焼結体として得るのが一般的である(特許文献2の明細書段落0013を参照)。



このようにして得た熱蛍光線量測定素子は、放射線に対して高い感度を有し、前記バッジ型の検知装置としての用途の他に、従来のX線フィルム等の現像式フィルムの代用となる放射線検出器(イメージングプレート)に応用されている。この放射線検出器は、プラスチックシート等からなる基材の表面に、粉末状とした前記熱蛍光線量測定素子を定着させたものである。この定着は、例えば、液状の樹脂に前記粉末状の熱蛍光線量測定素子を混合して混合物とし、この混合物を前記表面に塗布及び硬化させることによってなされる。



この放射線検出器にX線等の放射線を照射すると、この放射線が照射された部分においてTb電子の励起が生じて、上述したFセンタが形成される。このFセンタが形成された放射線検出器に、前記放射線のエネルギーよりも低いエネルギーをもつ長波長の光(例えば、アルゴンレーザ光やヘリウムネオンレーザ光)を照射して、その表面を全面に亘ってスキャンする。この長波長光の照射によって、Fセンタの電子は再び伝導帯に励起され、その後正孔と再結合する。このとき、再結合前後のエネルギー差に対応した発光が生じる。この発光は、長波長光の照射によってFセンタの電子が再励起されて起こるもので、光誘起ルミネッセンスと呼ばれる。



この放射線検出器に記録された情報は、前記長波長光の照射(情報の読み出し)によって失われるが、前記照射を行わなくとも、時間の経過によっても次第に失われる。これは、Fセンタを形成するTbの電子が、時間の経過とともに徐々に基底状態へと遷移することに起因するものである。このFセンタの安定性は、前記熱蛍光線量測定素子を昇温したときに、どの程度の温度まで昇温した際に発光が生じたかによって判断することができる。例えば、前記発光が低温(100℃程度)で生じる熱蛍光線量測定素子においてはFセンタが不安定であるのに対して、前記発光が高温(400℃程度)で生じる熱蛍光線量測定素子においてはFセンタが安定している(放射線照射後の時間経過により基底状態となりにくい)と判断できる。

産業上の利用分野


この発明は、X線や中性子線等の放射線の照射量の測定に用いる熱蛍光線量測定用素子、及びこの素子を用いた放射線検出器に関する。

特許請求の範囲 【請求項1】
TbFを0.01~0.2mol%、GdFを0.01~1mol%、及びSmFを0.01~0.2mol%を含有する単結晶CaFからなる熱蛍光線量測定素子。

【請求項2】
TbFを0.1mol%、GdFを0.5mol%、及びSmFを0.1mol%を含有する単結晶CaFからなる熱蛍光線量測定素子。

【請求項3】
X線又は紫外線の強度測定に用いる請求項1又は2に記載の熱蛍光線量測定素子。

【請求項4】
請求項1乃至3のいずれか一つに記載の単結晶CaFを粉末状とし、この粉末状CaFをフィルム基材表面に定着させた放射線検出器。
国際特許分類(IPC)
Fターム
画像

※ 画像をクリックすると拡大します。

JP2010007905thum.jpg
出願権利状態 登録
ライセンスをご希望の方、特許の内容に興味を持たれた方は、下記までご連絡ください。


PAGE TOP

close
close
close
close
close
close
close