TOP > 国内特許検索 > 隠れマルコフモデルによる運動データの認識・生成方法、それを用いた運動制御方法及びそのシステム

隠れマルコフモデルによる運動データの認識・生成方法、それを用いた運動制御方法及びそのシステム コモンズ

国内特許コード P04P001452
整理番号 A091P47
掲載日 2005年1月18日
出願番号 特願2003-129774
公開番号 特開2004-330361
登録番号 特許第4027838号
出願日 平成15年5月8日(2003.5.8)
公開日 平成16年11月25日(2004.11.25)
登録日 平成19年10月19日(2007.10.19)
発明者
  • 中村 仁彦
  • 稲邑 哲也
  • 谷江 博昭
出願人
  • 国立研究開発法人科学技術振興機構
発明の名称 隠れマルコフモデルによる運動データの認識・生成方法、それを用いた運動制御方法及びそのシステム コモンズ
発明の概要 【課題】隠れマルコフモデル(HMM)によって抽象化された対象の運動の時系列データを再現することができる、隠れマルコフモデルによる運動データの認識・生成方法、それを用いた運動制御方法及びその制御システムを提供する。
【解決手段】隠れマルコフモデルによる運動データの認識・生成方法において、状態遷移列候補の計算過程と、出力ベクトル列の計算過程と、最終的な出力ベクトル列の計算過程、隠れマルコフモデルの空間への配置過程とを有し、運動認識と運動生成を隠れマルコフモデルのみによって統合する。
【選択図】 図1
従来技術、競合技術の概要


ロボットの運動制御や実環境認識などには、時系列データの記憶と再現が必要不可欠である。この際、瞬間のデータであるキーフレーム表現を用いて記憶すると、ロボットの運動制御や環境の特徴的な要素の把握などに有効である。



従来の関連技術としては、以下の非特許文献1及び非特許文献2に示すものがある。



(1)非特許文献1は、音声データに対して隠れマルコフモデルを適用し、最適な状態遷移列を繰り返し計算によって探索することで音声合成を実現するようにしている。



(2)非特許文献2は、隠れマルコフモデルによって人間の運動を抽象化し、動作の確認に応用している。



【非特許文献1】
T.Masuko,K.Tokuda,T.Kobayashi and S.Imai:“Speech synthesis from HMMs using dynamic features,”Proceedings of International Conference on Acoustics,Speech,and Signal Processing,pp.382-392,1996.



【非特許文献2】
K.Ogawara,J.Takamatsu,H.Kimura and K.Ikeuchi:“Modeling Manipulation Interactions by Hidden Markov Models,”Proc.of 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems,pp.1096-1101,2002.



【非特許文献3】
山根克,中村仁彦.ヒューマンフィギュアの全身運動生成のための協応構造化インターフェース.日本ロボット学会誌,Vol.20,No.3,pp.335-343,2002.



【非特許文献4】
松本吉央,稲葉雅幸,井上博允.ビューベーストアプローチに基づく移動ロボットナビゲーション.日本ロボット学会誌,Vol.20,No.5,pp.506-514,2002.



【非特許文献5】
Tetsunari Inamura,Iwaki Toshima,and Yoshihiko Nakamura.Acquisition and embodiment of motion elements in closed mimesis loop.In the Proc.of IEEE Int’l Conf.on Robotics & Automation,pp.1539-1544,2002.



【非特許文献6】
高根芳雄.多次元尺度法.東京大学出版会,1980.



【非特許文献7】
Merlin Donald.Origins of the Modern Mind.Harvard University Press,Cambridge,1991.



【非特許文献8】
稲邑哲也,中村仁彦.教示者と学習者の身体差を吸収するミラーニューロンモデル.第20回日本ロボット学会学術講演会予稿集,p.3H18,2002.

産業上の利用分野


本発明は、隠れマルコフモデルによる運動(行動)データの認識・生成方法、それを用いた運動制御方法及びそのシステムに係り、ヒューマノイドロボットやコンピュータ・グラフィックスキャラクターの運動制御方法及びその制御システムに関する。特に、隠れマルコフモデルを用いて抽象化されたヒューマノイドにおける全身の運動情報を、少数のパラメータから復元し、自然な運動を再現する方法に関するものである。なお、ここでは、「運動」なる用語は、適宜「行動」に読み替えることができるものと定義する。

特許請求の範囲 【請求項1】
(a)人間の一連の動作を提供する第1のステップと、前記人間の一連の動作を観察する第2のステップと、前記人間の一連の動作の角度データ(レベル)を取得する第3のステップと、動作エレメント(θ,Σ)を挿入する第4のステップと、動作シーケンス(レベル)を取得する第5のステップと、隠れマルコフモデルを使用する第6のステップと、原始シンボルを取得する第7のステップと、コミュニケーション概念を形成する第8のステップとを有する運動データの認識過程と、
(b)該運動データの認識過程とは逆に、形成されたコミュニケーション概念を用いる第9のステップと、前記形成されたコミュニケーション概念から原始シンポルを取得する第10のステップと、前記隠れマルコフモデルを使用する第11のステップと、前記隠れマルコフモデルを使用し、動作シーケンス(レベル)を取得する第12のステップと、動作エレメント(θ,Σ)を挿入する第13のステップと、対象の動作の角度データ(レベル)を取得する第14のステップと、前記得られた対象の動作の角度データ(レベル)を具現化する第15のステップと、前記得られた対象の運動制御を行う第16のステップとを有する運動データの生成過程と、を施すことを特徴とする隠れマルコフモデルによる運動データの認識・生成方法。

【請求項2】
以下の過程(a)~(e)を有するレフト・トォ・ライト型の隠れマルコフモデルを用いたヒューマノイド運動データの認識・生成方法において、
(a)一番左の状態ノードから開始し、次に遷移する状態ノードを状態遷移行列aを用いて確率的に決定し、遷移を繰り返して、一番右の状態ノードに到達した段階で状態遷移列qN-1 を保存して生成試行を終了し、この状態遷移列の生成をN回繰り返してサンプリングする、ここで、状態遷移列の長さは生成試行ごとに異なるため、時間軸方向に伸縮させることで状態遷移列の長さを同一にした後、平均を取って代表的な状態遷移列qN を求める、状態遷移列候補の計算過程と、
(b)上記(a)の計算で求めた状態遷移列qから出力されるベクトル列OKTを求める、つまり、状態遷移する際に出力されるベクトルOKTは、各状態ノードに割り振られている確率密度分布関数に従って確率的に決定され、このベクトル生成を一つの状態遷移列qに対してM回行い、そのM個のベクトル列を各時刻において平均することで、代表となるベクトル列Oを計算する、出力ベクトル列の計算過程と、
(c)状態遷移列qはN個の状態遷移列qから生成されているので、出力ベクトル列Oを求める計算がN回繰り返され、N個の出力ベクトルはそれぞれ異なる時間長さを持っているので、上記(a)の方法と同じ方法で時間長さを統一し、平均し、最終的な出力ベクトル列uを求める、最終的な出力ベクトル列の計算過程と、
(d)隠れマルコフモデル間の類似度をKullback-Leibler情報量を用いて評価し、この値に基づいて多次元尺度法で空間を構成し、この空間上で二つの動作を表す点の内分点を取り、この内分点に相当する隠れマルコフモデルを求め、該隠れマルコフモデルから運動を生成すると二つの動作が内分されたような運動を生成する、隠れマルコフモデルの空間への配置過程とを有し、
(e)請求項1に記載の運動データの認識過程と運動データの生成過程を前記隠れマルコフモデルのみによって統合する隠れマルコフモデルによる運動データの認識・生成方法。

【請求項3】
請求項記載の隠れマルコフモデルによる運動データの認識・生成方法であって、前記隠れマルコフモデルから最も可能性が高く観測される前記状態遷移列と出力ベクトル列を求める際に、確率的なサンプリング試行を数回行うことによって運動データを生成させることを特徴とする隠れマルコフモデルによる運動データの認識・生成方法。

【請求項4】
請求項記載の隠れマルコフモデルによる運動データの認識・生成方法であって、並列計算させることによって、一回のサンプリング試行と同じオーダーの計算時間で運動データを生成させることを特徴とする隠れマルコフモデルによる運動データの認識・生成方法。

【請求項5】
請求項記載の隠れマルコフモデルによる運動データの認識・生成方法に基づくシンボル操作を用いた運動データの認識・生成システムの運動制御方法。

【請求項6】
請求項5記載の隠れマルコフモデルによる運動データの認識・生成方法に基づくシンボル操作を用いた運動データの認識・生成システムの運動制御方法によって制御するヒューマノイドロボットシステム。

【請求項7】
請求項6記載のヒューマノイドロボットシステムであって、隠れマルコフモデルパラメータを用いてヒューマノイドにおける全身の運動情報を、少数の前記隠れマルコフモデルパラメータから復元し、自然な運動を再現するヒューマノイドロボットシステム。

【請求項8】
請求項記載の隠れマルコフモデルによる運動データの認識・生成方法に基づくシンボル操作を用いた運動データの認識・生成システムの運動制御方法を用いて制御するコンピュータ・グラフィックスキャラクターの動作生成エンジンシステム。

【請求項9】
請求項1記載の隠れマルコフモデルによる運動データの認識・生成方法において、
(a)連続分布型隠れマルコフモデルによるキーフレーム表現を行う過程と、
(b)前記連続分布型隠れマルコフモデルからの時系列データ再現を行う過程とを有することを特徴とする隠れマルコフモデルによる運動データの認識・生成方法。
国際特許分類(IPC)
Fターム
画像

※ 画像をクリックすると拡大します。

JP2003129774thum.jpg
出願権利状態 登録
参考情報 (研究プロジェクト等) CREST 脳を創る 領域
ライセンスをご希望の方、特許の内容に興味を持たれた方は、問合せボタンを押してください。


PAGE TOP

close
close
close
close
close
close
close