TOP > 研究報告検索 > 線虫の発生・分化・形態形成の制御におけるMAPKカスケードの関与

線虫の発生・分化・形態形成の制御におけるMAPKカスケードの関与

研究報告コード R013000253
掲載日 2003年10月1日
研究者
  • 松本 邦弘
研究者所属機関
  • 名古屋大学大学院理学研究科
研究機関
  • 名古屋大学大学院理学研究科
報告名称 線虫の発生・分化・形態形成の制御におけるMAPKカスケードの関与
報告概要 形態形成・器官形成の過程には,線虫から高等脊推動物に至るまで,種を越えて共通なシグナル分子による統一的な機構が存在する。MAPKカスケードに関する研究はシグナル伝達研究の中心地位を占め,脊推動物における形態形成・器官形成の成立機構を明らかにする上で重要である。線虫をモデル動物として,発生過程における細胞運命,細胞極性,非対称性を制御するMAPKシグナル伝達メカニズムについて,以下の項目について議論する。TAKl-NLKカスケードとWntシグナル伝達経路とのクロストーク(図1)。p38MAPKカスケードによる神経細胞の左右非対称的運命決定の制御(図2)。JNK MAPKカスケードによる神経系の制御(図3)。線虫においても,MAPKカスケードが発生・分化・形態形成の制御に関与することが明らかとなり,高等脊椎動物におけるMAPKカスケードによる発生・分化の制御機構を解明する上で良いモデルになるものと考えられる。
画像

※ 画像をクリックすると拡大します。

R013000253_01SUM.gif R013000253_02SUM.gif R013000253_03SUM.gif
研究分野
  • 発生と分化
  • 神経系一般
  • 神経系一般
関連発表論文 (1)Yamaguchi, K., Shirakabe, K., Shibuya, H., Irie, K., Oishi, I., Ueno, N., Taniguchi, T., Nishida, E. & Matsumoto, K. Identification of a member of the MAPKKK family a potential mediator of TGF-β signal transduction. Science, 270: 2008-2011 (1995).
(2)Shibuya, H., Yamaguchi, K., Shirakabe, K., Tonegawa, A., Gotoh, Y., Ueno, N., Irie, K., Nishida, E. & Matsumoto, K. TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science, 272: 1179-1182 (1996).
(3)Ichijo, H., Nishida, E., Irie, K., Dijke, P., Saitoh, M., Moriguchi, T., Takagi, M., Matsumoto, K., Miyazono, K. & Gotoh, Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science, 275: 90-94 (1997).
(4)Kurokawa, M., Mitani, K., Irie, K., Matsuyama, T., Takahashi, T., Chiba, S., Yazaki, Y., Matsumoto, K. & Hirai, H. The oncoprotein Evi-1 represses TGF-β signalling by inhibiting Smad3. Nature, 394: 92-96 (1998).
(5)Ninomiya-Tsuji, J., Kishimoto, K., Hiyama, A., Inoue, J., Cao, Z. & Matsumoto, K. The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature, 398: 252-256 (1999).
(6)Meneghini, M., Ishitani, T., Carter, C., Hisamoto, N., Ninomiya-Tsuji, J., Thorpe, J., Matsumoto, K. & Bowerman, B. MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in C. elegans. Nature, 399: 793-797 (1999).
(7)Ishitani, T., Ninomiya-Tsuji, J., Nagai, S., Nishita, M., Meneghini, M., Barker, N., Waterman, M., Bowerman, B., Clevers, H., Shibuya, H. & Matsumoto, K. The TAK1-NLK-MAPK related pathway antagonizes signalling between β-catenin and the transcription factor TCF. Nature, 399: 798-802 (1999).
(8)Adachi-Yamada, T., Fujimura-Kamada, K., Nishida, Y. & Matsumoto, K. Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing. Nature, 400: 166-169 (1999).
(9)Nishiwaki, K., Hisamoto, N. & Matsumoto, K. A metalloprotease disintegrin that control cell migration in Caenorhabditis elegans. Science, 288: 2205-2208 (2000).
(10)Sagasti, A., Hisamoto, N., Hyodo, J., Tanaka-Hino, M., Matsumoto, K. & Bargmann, C.I. The CaMKII UNC43 activates the MAPKKK NSY-1 to excute a lateral signaling decision required for asymmetric olfactory neuron fates. Cell, 105: 221-232 (2001).
(11)Tadauchi, T., Matsumoto, K., Herskowitz, I. & Irie, K. Post-transcriptional regulation through the HO 3′-UTR by Mpt5, a yeast homolog of Pumilio and FBF. EMBO J., 20: 552-561 (2001).
(12)Suzuki, N., Buechner, M., Nishiwaki, K., Hall, D.H., Nakanishi, H., Takai, Y., Hisamoto, N. & Matsumoto, K. A putative exchange factor for Rho/Rac is required for development of the excretory cell in C. elegans. EMBO Rep., In press (2001).
(13)Wakayama, T., Kondo, T., Ando, S., Matsumoto, K. & Sugimoto, K. Piel, a protein interacting with Mecl, controls cell growth and checkpoint responses in Saccharomyces cerevisiae. Mol. Cell. Biol., 21: 755-764 (2001).
(14)Takaesu, G., Ninomiya-Tsuji, J., Kishida, S., Li, X., Stark, G.R. & Matsumoto, K. Interleukin-1(IL-1) receptor-associated kinase leads to activation of TAK1 by inducing TAB2 translocation in the IL-1 signaling pathway. Mol. Cell. Biol., 21: 2475-2484 (2001).
(15)Takaesu, G., Kishida, S., Hiyama, A., Yamaguchi, K., Shibuya, S., Irie, I., Ninomiya-Tsuji, J. & Matsumoto, K. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol. Cell, 5: 649-658 (2000).
(16)Naiki, T., Shimomura, T., Kondo, T., Matsumoto, K. & Sugimoto, K. Rfc5, in coorporation with Rad24, controls DNA damage checkpoints throughout the cell cycle. Mol. Cell. Biol., 20: 5888-5896 (2000).
(17)Kishimoto, K., Matsumoto, K. & Ninomiya-Tsuji, J. TAK1 mitogen-activated protein kinase kinase kinase is activated by autophosphorylation within its activation loop. J. Biol. Chem., 275: 7359-7364 (2000).
(18)Suzanne, M., Irie, K., Glise, B., Agnes, F., Mori, E., Matsumoto, K. & Noselli, S. The Drosophila p38 MAPK pathway is required during oogenesis for asymmetric development. Genes & Dev., 13: 1464-1474 (1999).
(19)Yamaguchi, K., Nagai, S., Ninomiya-Tsuji, J., Nishita, M., Tamai, K., Irie, K., Ueno, N., Nishida, E., Shibuya, H. & Matsumoto, K. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J., 18: 179-187 (1999).
(20)Kawasaki M., Hisamoto N., Iino Y., Yamamoto M., Ninomiya-Tsuji, J. & Matsumoto, K. A Caenorhabditis elegans JNK signal transduction pathway regulates coordinated movement via type-D GABAergic motor neurons. EMBO J., 18: 3604-3615 (1999).
(21)Kondo, T., Matsumoto, K. & Sugimoto, K. Role of a complex containing Rad17, Mec3, and Ddc1 in the DNA damage checkpoint pathway. Mol. Cell. Biol., 19: 1136-1143 (1999).
(22)Adachi-Yamada, T., Nakamura, M., Irie, K., Tomoyasu, Y., Sano, Y., Mori, E., Goto, S., Ueno, N., Nishida, Y. & Matsumoto, K. p38 mitogen-activated protein kinase can be involved in transforming growth factor β superfamily signal transduction in Drosophila wing morphogenesis. Mol. Cell. Biol., 19: 2322-2329 (1999).
(23)Inagaki, M., Schmelzle, T., Yamaguchi, K., Irie, K., Hall, M.N. & Matsumoto, K. PDK1 homologs activate the Pkc1-MAP kinase pathway. Mol. Cell. Biol., 19: 8344-8352 (1999).
研究制度
  • 戦略的基礎研究推進事業、生命活動のプログラム/研究代表者 松本 邦弘(名古屋大学大学院理学研究科)/科学技術振興事業団
研究報告資料
  • 松本 邦弘. 発生・分化,神経系を制御するシグナル伝達ネットワーク. 戦略的基礎研究推進事業 「生命活動のプログラム」 平成7年度 採択研究課題 終了シンポジウム 講演予稿集,2001. p.4 - 7.

PAGE TOP