TOP > 研究報告検索 > 離散・連続複合系の分散最適化シミュレーション

離散・連続複合系の分散最適化シミュレーション

研究報告コード R070000003
整理番号 R070000003
掲載日 2008年4月11日
研究者
  • 室田 一雄
研究者所属機関
  • 東京大学大学院情報理工学系研究科
研究機関
  • 東京大学大学院情報理工学系研究科
報告名称 離散・連続複合系の分散最適化シミュレーション
報告概要 工学システムのシミュレーションについては,各固有分野で十分な技術的蓄積があるが,離散と連続が複合したシステムや,極めて多数の独立したエージェントからなる分散的状況における最適化シミュレーションについては,未だ,確固たる数理的基礎に基づく方法論は確立されていない。本研究の研究課題は以下の3点である:・偏微分方程式や代数方程式で記述される現象(連続系)と事象生起による状態の変化(離散系)を含む複合システムに対するシミュレーション技法の数学的基礎として,最適化における連続と離散の整合性の問題,・競合関係にある独立なコンポーネントから成り,数理モデル全体の詳細が把握できないような分散的状況にあるシステムを対象とする最適化手法,・分散的状況における最適化アルゴリズムの基礎として,凸解析,離散凸解析を含む広義の凸解析における手法(特に分離定理など利用法)。
画像

※ 画像をクリックすると拡大します。

R070000003_01SUM.gif
研究分野
  • 計算機シミュレーション
  • システム最適化手法
  • 数値計算
関連発表論文 (1) Kazuo Murota and Akiyoshi Shioura: Conjugacy relationship between M-convex and L-convex functions in continuous variables, Mathematical Programming, Vol. 101, No. 3, 415-433, 2004.
(2) Kazuo Murota and Akihisa Tamura: Proximity theorems of discrete convex functions, Mathematical Programming, Vol. A99, No. 3, 539-562, 2004.
(3) Kazuo Murota, Hiroo Saito and Robert Weismantel: Optimality criterion for a class of nonlinear integer programs, Operations Research Letters, Vol. 32, 468-472, 2004.
(4) Kazuo Murota and Akiyoshi Shioura: Quadratic M-convex and L-convex functions, Advances in Applied Mathematics, Vol. 33, No. 2, 318-341, 2004.
(5) Hiroshi Hirai and Kazuo Murota: M-convex functions and tree metrics. Japan Journal of Industrial and Applied Mathematics, Vol. 21, No. 3, 391-404, 2004.
(6) Satoru Iwata, Satoko Moriguchi and Kazuo Murota: A capacity scaling algorithm for M-convex submodular flow, Mathematical Programming, Vol. 103, No. 1, 181-202, 2005.
(7) Kazuo Murota: Note on multimodularity and L-convexity, Mathematics of Operations Research, Vol. 30, No. 3, 658-661, 2005.
(8) Kazuo Murota(東京大学大学院情報理工学系研究科、PRESTO JST): Conjugacy relationship between M-convex and L-convex functions in continuous variables, 18th International Symposium on Mathematical Programming, Copenhagen, August 18-22, 2003.
(9) 室田一雄(東京大学大学院情報理工学系研究科,PRESTO JST):離散凸解析への誘い,2004年度日本数学会年会,企画特別講演,筑波大学,3月28日-3月31日,総合講演・企画特別講演アブストラクト,99-109,2004.
(10) 齊藤廣大(東京大学大学院情報理工学系研究科),室田一雄(東京大学大学院情報理工学系研究科):ロバスト混合整数計画に対するBenders分解法,日本オペレーションズ・リサーチ学会2005年度春季研究発表会,3月16日-17日,236-237,2005.
(11) Kazuo Murota(東京大学大学院情報理工学系研究科、PRESTO JST): M-convex functions on jump systems, Generalization of minsquare factor problem, The 4th Japanese-Hungarian Symposium On Discrete Mathematics and Its Applications, Budapest, June 3-6, 2005.
研究報告資料
  • 室田 一雄. 離散・連続複合系の分散最適化シミュレーション. シミュレーション技術の革新と実用化基盤の構築 第1回 シンポジウム 講演要旨集, 2005. p.45 - 49.

PAGE TOP