(12) 特許協力条約に基づいて公開された国際出願
(43) 国際公開日
2016年10月6日(06.10.2016)

WO 2016/158670 A1

(19) 世界知的所有権機関
国際事務局

(74) 代理人: 特許業務法人 もえぎ特許事務所
MEOGI PATENT OFFICE; 〒105000 東京都港区
虎ノ門二丁目7番7号 東京(JP)

(81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AO, AT, AU, AZ, BA,
BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN,
CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN,
IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX,
MY, MZ, NA, NG, NL, NO, NZ, OM, PA, PE, PG, PH,
PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK,
SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) 出願人: 学校法人日本大学(NIHON UNIVERSITY)
[JP/JP]; 〒102875 東京都千代田区九段南四丁目
8番24号 学校法人日本大学内 東京(JP).

(72) 発明者: 松本 太郎(MATSUMOTO, Taro); 〒102875 東京都千代田区九段南四丁目8番24号
学校法人日本大学内 東京(JP).

(54) Title: COMPOSITION FOR VASCULAR REGENERATION THERAPY, CONTAINING DEDIFFERENTIATED FAT
CELLS AS ACTIVE INGREDIENT

(54) 発明の名称: 脂肪細胞を有効成分とする血管再生療法用組成物

(57) Abstract: The present invention addresses the problem of providing a cell for use in a vascular regeneration therapy, which has a superior blood flow-improving effect compared with a bone marrow-derived MSC, an ASC or the like that is a conventional cell for use in a therapy, and which can be obtained easily in an amount sufficient for transplantation, and which has stable quality. It is found that a human DFAT has a high neovascularization ability, can exhibit a high proliferation ability after being subcultured and therefore can be produced easily in an amount needed for transplantation, and does not undergo transformation. Therefore, it is found for the first time that a human DFAT is effective for a vascular regeneration therapy for a human body. These findings lead to the accomplishment of the present invention. That is, the present invention provides a blood flow-improving agent containing human dedifferentiated fat cells (human DFAT) as an active ingredient.

(57) 要約: 本発明は、従来の治療用細胞である骨髄MSCやASC等に比べ、優れた血流改善作用を示す血管再生療法用細胞であって、かつ移植に必要な十分量を取得することが容易であり、安定した品質の前記血管再生療法用細胞を提供することを課題とする。ヒトDFATが高い血管新生能を有するのみならず、継代培養後の増殖能が高く移植に必要な細胞数を容易に獲得できること、および形質転換も起こらないことを見出し、これにより初めてヒトDFATがヒトの血管再生治療にも有効であることを明らかにし、本発明を完成した。すなわち、本発明は、ヒト分脱分化脂肪細胞（ヒトDFAT）を有効成分とする血流改善剤を提供する。
明細書

発明の名称:

脱分化脂肪細胞を有効成分とする血管再生療法用組成物

技術分野

[0001] 本発明は、血管再生療法用組成物に関する。特に脱分化脂肪細胞（dedifferentiated fat cell：DFAT）を有効成分とする血管再生療法用組成物に関する。

背景技術

[0002] 従来、薬物療法や外科的療法が適応とならない難治性末梢動脈疾患（以下、単にPADということがある）に対して、(i) 自己骨髄単核球を虚血筋肉内投与することによる血管新生療法が行われ、その有効性が確認されてきた（TACTスタディ）。その後、(ii) G-CSF動員末梢血単核球、(iii) 脂肪組織由来stromal vascular fraction（SVF）細胞、(iv) 末梢血単核球、(v) G-CSF動員CD34 陽性細胞、(vi) 骨髄由来CD133陽性細胞、(vii) 培養骨髄間葉系幹細胞（MSC）（viii）培養脂肪組織由来幹細胞（ASC）など多くの自己細胞を用いた同様の血管新生療法が行われている。

上記(i)～(viii)のうち、(i)～(v)の細胞は培養を行いが、必要な細胞数を得るために多量の組織採取が必要となり患者に与える侵襲性が高い。このため採取に伴う侵襲性が比較的低い（iv）を除いて治療回数は通常1回のみに限られる。

また、(i)～(iv)の細胞は、種多な細胞集団であるため、移植効果や安全性が一定ではない。

また、(v)、(vi)の細胞は、幹細胞マーカー抗体を利用して選別操作を行うことにより細胞の均一性を高めることができるが、抗体選別に伴う煩雑性や調製効率の低下、調製コストが高くなるといった問題がある。

(viii)の細胞は骨髄液を数10ml採取し、付着培養し増殖させてか
ら使用し、（v i i i）の細胞は、脂肪組織を酵素処理し、（v i i）と同様に付着培養し増殖させてから使用する。そのため、（v i i）、（v i i i）の細胞は共に、比較的少量の組織から大量調製が可能であるというメリットがあるが、この方法は成育組織に微量に存在する幹細胞を培養・増殖させる方法であるため、他細胞の混入が避けられず、治療に必要な細胞数を得るために継代培養を何回か繰り返す必要がある。治療回数は通常1回のみである。また増殖能など細胞の性能に個体差があり、年齢・基礎疾患による影響を受けやすいというデメリットがある。

（i）〜（v i i i）の細胞の共通する問題点は、治療コストがかかり、性能に個体差があり、必要細胞数が得られず症例や治療方法（n o n - r e s p o n d e r）が存在すること、患者に対する侵襲性を考慮すると通常1回の治療にとどまること、である。現時点で、これらの細胞を用いた難治性末梢動脈疾患（P A D）に対する臨床試験は多数行われているが、プラセボ・コントロール試験で有意な効果を示した細胞はまだない。

また、このほかにも、ラットの脂肪組織由来前駆細胞やラットの脂肪組織由来間葉系幹細胞が血管新生に有効であることが開示されている（特許文献1, 2）。

本発明者らは、マウス等のヒト以外の動物の脂肪組織由来の熟成脂肪細胞の脱分化を誘導することで前駆脂肪細胞として脱分化脂肪細胞（D F A T）を樹立することに初めて成功し（特許文献3）、D F A Tを分化誘導することにより、骨芽細胞、筋芽細胞、軟骨細胞、神経細胞等の機能を獲得できることを示してきた（特許文献4）。

また、本発明者らは、マウスおよびラットのD F A Tが血管新生能を有することについても明らかにしてきた（非特許文献1〜3）。しかし、マウスやラットのD F A Tは継代培養後の増殖能が低いことから移植に必要な数まで増やすことが困難であり、継代培養により形質転換（不死化）が起こることから造腫瘍性の可能性が高まり安全に移植できない。これらの理由から、ヒトD F A TにおいてもマウスやラットのD F A Tと同様の現象が起こり、
治療には適さないと考えられてきた。

先行技術文献

特許文献

特許文献2: 特開2012-205927号公報
特許文献3: 特許第5055611号公報
特許文献4: 特許第5055613号公報

非特許文献

発明の概要

発明が解決しようとする課題

[0005] 本発明は、従来技術の治療用細胞である骨髄MSCやASC等に比べ、優れた血流改善作用を示す血管再生療法用細胞であって、かつ移植に必要な十分量を取得することが容易であり、安定した品質の前記血管再生療法用細胞を提供することを目的とする。

課題を解決するための手段

[0006] マウスやラットのDFATは、血管新生能はあっても、上述の理由により、実際の治療には適さないことからヒトDFATについても同様であろうと考えられてきた。しかし、本発明者らは意外にも、ヒトDFATが高い血管新生能を有するのみならず、マウスやラットのDFATとは異なり、継代培
養後の増殖能が高く移植に必要な細胞数を容易に獲得できること、および形質転換も起こらないことを見出した。そして、これによりヒトDFATがヒトの血管再生治療にも有効であることを初めて明らかにした。

すなわち、本発明は以下の構成を有する。

（1）ヒト脱分化脂肪細胞（ヒトDFAT）を有効成分とする血流改善剤。
（2）ヒト脱分化脂肪細胞（ヒトDFAT）を有効成分とする血管新生促進剤。
（3）ヒト脱分化脂肪細胞（ヒトDFAT）を有効成分とする虚血性疾患治療剤。
（4）虚血性疾患が末梢動脈疾患（PAD）または虚血性心筋症である、前記（3）に記載の虚血性疾患治療剤。
（5）ヒト脱分化脂肪細胞（ヒトDFAT）が、1～4代継代培養されたヒト脱分化脂肪細胞（ヒトDFAT）である、前記（1）～（4）のいずれかに記載の剤。

発明の効果

[0007] 本発明は、ヒト成熟脂肪細胞から調製されるヒト脱分化脂肪細胞（ヒトDFAT）が、優れた血管新生能を有し、末梢動脈疾患（PAD）などの虚血性疾患に対する細胞治療の有効な細胞ソースとなり得ることを明らかにした。

したがって、本発明は、以下の効果を有する。

（1）大規模な細胞調製施設や、増殖因子、純度を高めるための抗体選別などが必要な、また短い培養期間で大量調整が可能であるため、調製コストが低くおさえることができる。
（2）採取が容易な少量の脂肪組織から純度の高い再生医療用ドナー細胞を効率よく採取でき、得られた細胞は高い血管新生能を有する。
（3）一回の組織採取により複数回の治療が可能となり、ドナー年齢や基礎疾患に影響されずに一定の有効性を示す治療が可能となる。
（4）既存の細胞ソースと異なり、PADに対して長期有効性を示すことが可能である。
図面の簡単な説明
[0008] [図1]ヒトDFATの核型解析結果を示す。（A）ギムザ染色による染色体構造の写真。（B）染色体数の測定結果を示す表。
[図2]プロモーター領域DNAメチル化を検討した癌関連遺伝子リストを示す。
[図3]ヒトDFAT培養上清中に分泌されるサイトカインの網羅的解析結果を示す。
[図4]ヒトDFAT（hDFAT）、ヒトASC（hASC）、ヒト前駆脂肪細胞（hPreadipocyte）、ヒト線維芽細胞（hFibroblast）、ヒト骨髄MSC（hBM-MSC）培養上清中の分泌サイトカイン（HGF、SDF-1、MCP-1、IL-6、VEGF、Leptin）の定量結果を示す。かっこの内の数値はドナー年齢を示す。
[図5]ヒトDFAT培養上清の血管新生能の検討結果を示す。（A）ヒトDFAT培養上清による血管内皮細胞の増殖を示す写真。（B）ヒトDFAT培養上清およびヒト骨髄MMC培養上清によりウェル中に形成された血管管腔の長さの合計（管腔長）及び面積の合計（管腔面積）を示すグラフ。
[図6]ドナー年齢の違いによるヒトDFAT培養上清の血管新生能の検討結果を示す。ドナーは、2歳男性（hDFAT2yM）、29歳男性（hDFAT29yM）、56歳女性（hDFAT56yF）、75歳女性（hDFAT75yF）、82歳女性（hDFAT82yF）である。
[図7]同一ドナー由来のヒトDFAT培養上清（hDFAT）とヒトASC培養上清（hASC）の血管新生能の比較検討結果を示す。（A）組織学的観察結果を示す写真。（B）ウェル中に形成された血管管腔の長さの合計（管腔長）、面積の合計（管腔面積）、分枝の数の合計（管腔分枝数）、接合部の数の合計（管腔接合数）についてそれぞれ示すグラフ。
[図8]免疫不全マウス下肢虚血モデルにおけるヒトDFAT移植の効果を示す。（A）レーザードップラー血流計による移植0日目と28日目のマウス下肢部の血流の程度を示す写真。「1」と記載された赤い線で囲った部
分は虚血肢を示し、「2」と記載された白い線で囲った部分は健側肢を示す。（B）移植0日目、7日目、14日目、21日目、28日目におけるマウス健側肢に対する虚血肢の虚血率を示すグラフ。
[図9]ヒトDFATおよびヒトASCにおけるCD34の陽性率を示すグラフ。
[図10]ヒトDFAT（hDFAT）、ヒトASC（hASC）培養上清中の分泌サイトカイシン（HGF）の定量結果を示す。
[図11]ヒトDFAT（hDFAT）、ヒトASC（hASC）培養上清中の分泌サイトカイシン（VEGF）の定量結果を示す。
発明を実施するための形態

[0009]（ヒトDFAT）

本発明におけるヒトDFATの調整方法は、たとえば、本発明者らによってなされた特開2000-836568号公報を参考にしておこなうとよい。すなわち、ヒトの皮下または内臓などの脂肪組織をコラゲナーゼ処理したのち、口径100～200μmのメッシュでフィルトレーションすることにより単胞性脂肪細胞のみならす単一の画分を採取する。それらの単胞性脂肪細胞を天井培養することで産生された線維芽細胞様脂肪細胞を、さらに継代培養することによってヒト脱分化脂肪細胞（ヒトDFAT）を得ることができ。また、上記天井培養以外の方法によっても、成熟脂肪細胞を培養することにより、成熟脂肪細胞を起源とする脂肪滴を有さない細胞を調整する方法等によりヒトDFATを得ることができる。

得られた細胞がヒトDFATであるとの確認は、例えば、以下のようなヒトDFAT特有の性質を有するかどうかにより判断することができる。

ヒトDFATはプラスチックへの付着性を有し、in vitroで骨芽細胞、脂肪細胞、軟骨細胞、平滑筋細胞への多分化能を示す。また、細胞表面抗原として、CD13, CD29, CD44, CD49d, CD73, CD90, CD105陽性、CD11b, CD14, CD34, CD45, CD19, HLA-DR陰性であり、国際細胞治療学会（ISCT）が定めた
MSCの最小基準を満たす。また、ヒトDFATはリポプロテインリバーゼ、GLUT4といった成熟脂肪細胞のマーカー遺伝子の発現が消失している一方、PPARG、RUNX2、SOX9といった脂肪、骨、軟骨の初期分化マーカー遺伝子が発現している。さらに、ヒトDFATは高い細胞増殖能を有し、細胞倍加時間は第2継代細胞で約6.5時間、第10継代で約48時間であった。第5継代以後は多分化能が低下するため、第1継代～第4継代で使用することが望ましい。

ヒトDFATは10mlの吸引脂肪または1gの脂肪組織より上記調整方法により、約2週間の初代培養で10^8の細胞が得られる。これは培養ASCの約25倍の調製効率である。従って、2〜3回継代培養することにより10^9オーダーの細胞を得ることが可能である。1回の細胞治療に用いる細胞数は約10^8個であるため、1回（約10ml）の脂肪組織採取で、得られた細胞を小分けして凍結保存すれば、約10回治療が可能であることがわかる。

また、ヒトDFATは初代培養から均質な細胞が得られる。初代培養ASCは平滑筋細胞（18.6％）、血管内皮細胞（2.7％）、単球（13.3％）の混入があるが、初代培養ヒトDFATのこれらの細胞の混入率は0.1％以下と非常に低いものであった。

また、ヒトDFATは継代した細胞のみならず初代培養細胞もCD34陰性であり、培養開始時にCD34陽性であるが継代培養によって発現が低下するASCと比べて安定した形質を維持している（図9、参照）。成熟脂肪細胞を単離する際、コラゲナーゼ処理やフィルトレーションを適切、十分に行わないと、成熟脂肪細胞以外の細胞が成熟脂肪細胞に付着し、天井培養にて増殖するため本発明とは異なり、CD34陽性細胞などが増加することがある。

また、ヒトDFATはドナー年齢や基礎疾患に影響されず、調製可能であることも明らかになった。これらの特性は、治療用細胞としての性能の個体差をなくし、治療不応例を減らすこと（治療用細胞の標準化）に寄与すると考えられる。
さらには、実施例にて後述する下肢虚血モデル動物への移植実験において、ヒトDFATは、末梢血単核球や線維芽細胞より有意に高い血流改善効果を示した。

[0010]（血管新生）

本発明において血管新生とは、既存の血管より新しい血管が形成される現象をいい、虚血性疾患における側副血行路の形成のほか、胎生期における生理的な血管発達、さらには癌や糖尿病性網膜症などの病的状態でも起こる。動脈硬化や血栓などにより血管が閉塞し、局所組織が血流障害に陥った状態において、生理活性物質や細胞などを用いて人为的に血管新生を誘導することを特に治療的血管新生または血管再生と呼ぶ。本明細書において、血管新生と血管再生は特に断らない限り同義で用いられる。

血管再生（または治療的血管新生）のより具体的な例としては、末梢動脈疾患（P A D）や狭心症、心筋梗塞などの虚血性疾患患者における血流改善が挙げられる。血管再生能を有する細胞の性能は、HGF、VEGF-A、FGF-2、SDF-1、 leptinなどの血管新生促進因子の発現量・分泌量や、血管構成細胞である血管内皮細胞やベリサイトへの分化能などにより確認することができる。

[0011]本発明のヒトDFATを使用した血管再生に係る治療方法は、例えば、患者自身から調製したDFAT（自家DFAT）を複数のバイアルに入れ液体窒素タンクに凍結保存しておく。これを定期的に解凍して、虚血部位（筋肉）に注射することにより血流改善を図る方法が挙げられる。

また、外科手術などで破棄される脂肪組織を利用した他家移植用DFAT細胞バンクの構築も可能である。この場合は、何らかの理由で自家DFATが調製できない患者に対し、HLAフルマッチした凍結保存DFATを解凍し、患者の虚血部位に注射するといった治療モデルが想定される。

[0012]本発明は、本発明のヒトDFATを有効成分とする、血管を再生し虚血による障害組織を修復させる薬剤に関する。

本発明の薬剤は、ヒトDFATそのものでもよいし、保存剤や安定剤等の
製剤上許容しうる担体を添加してもよい。製剤上許容しうるとは、それ自体は上記の活性を有さない材料であって、上記の薬剤とともに投与可能な製剤上許容される材料を意味する。

[0013] 本発明において、「投与する」とは、非経口的に投与することが含まれる。非経口的な投与としては、注射剤という形での投与を挙げることができ、注射剤としては、皮下注射剤、筋内注射剤、あるいは腹腔内注射剤等を挙げることができる。注射剤を投与する方法としては、ヒト体内の一部（腎器等の一組織）を標的として局所的に投与を行っても良いし、血管内に投与することにより、生物体全体に本発明の細胞を循環させてもよい。また、複数箇所の標的に同時に投与を行ってもよい。また、本発明の細胞を、処置を施したい領域に局所的に投与することもできる。例えば、手術中の局所注入口、カテーテルの使用により投与することも可能である。

注射剤を調製する場合、必要により、pH調製剤、緩衝剤、安定剤、保存剤等を添加し、常法により、皮下、筋肉内、静脈内注射剤とする。

[0014] 投与量は、患者の年齢、性別、体重および症状、治療効果、投与方法、処理時間、あるいは該細胞に含有される活性成分の種類などにより異なり、特に制限されるものではない。本発明の細胞は、少なくとも1つの既知の化学療法剤と共に薬学的組成物の一部として投与されてもよい。一つの態様において、本発明の細胞および既知の化学療法剤は、実質的に同時に投与されてもよい。また、ヒトより摘出されたヒトの一部に本発明の細胞を投与し、摘出を行ったヒトまたは他のヒトに、該ヒトの一部分を処理することも可能である。

実施例

[0015] [実施例1] ヒトDFATの形質解析
（1）核型解析
（1-1）試験方法
（i）ヒトDFATの調整
本発明者らによってなされた特開2000-83656号公報を参考にし
て行った。すなわち、ドナーであるヒトの皮下脂肪組織をコラゲナーゼ処理したのち、口径100～200μmのメッシュでフィルトレーションすることにより単胞性脂肪細胞のみからなる単一の画分を採取した。それらの単胞性脂肪細胞を天井培養して産生される線維芽細胞様脂肪細胞を継代培養することによってヒト脱分化脂肪細胞（ヒトDFAT）を調製した。

ドナー対象者は、日本大学医学部附属病院　形成外科、整形外科、小児外科にて外科手術を受けた10歳から22歳の患者である。ヒトDFATの調整方法は以下の試験例において同じである。

(iii) (i) により得られた培養ヒトDFAT（n = 3）をコルセミド処理し染色体標本を作製し、染色体数の測定およびギムザ染色による染色体構造の観察を行った。

(1-2) 試験結果

50細胞分の染色体数を測定した結果、すべての細胞において、染色体数は、正常ヒト染色体数である46であった（図1（B））。また、ギムザ染色では顕著な染色体構造の異常は観察されなかった（図1（A））。他の2細胞株でも同様の結果が得られた。

[0016] (2) CGHマイクロアレイ

(2-1) 試験方法

ヒト成熟脂肪細胞およびヒトDFAT（ヒト成熟脂肪細胞から実施例1の方法により調製）（n = 3）からゲノムDNAを抽出し、ヒト成熟脂肪細胞とヒトDFATのゲノムのコピーヌ数の変化を、CGHマイクロアレイ（Agilent社）を用いて解析した。

(2-2) 試験結果

上記培養前後におけるゲノムDNAのコピー数の増幅はほとんど認められず、DFATのゲノムコピー数のプロファイルは成熟脂肪細胞とほぼ一致していた（図示せず）。成熟脂肪細胞の脱分化によりDFATが産生される過程において、ゲノムコピー数はほとんど変化しないことが明らかになった。

[0017] (3) DNAメチル化解析（MassARRAY法）
（3－1）試験方法
ヒト成熟脂肪細胞およびヒトDFAT（n=3）からゲノムDNAを抽出し、既知の癌関連遺伝子（計96遺伝子）のプロモーター領域CpGアイランドにおけるDNAメチル化修飾を、MassARRAY法（Sequenom社）を用いて網羅的に解析した（図3）。

（3－2）試験結果
成熟脂肪細胞とDFATとの間には、癌関連遺伝子のプロモーター領域CpGのメチル化プロファイルは非常に類似しており、脱分化に伴う特徴的なメチル化変動は検討した遺伝子群（92遺伝子CpG）の中では全く確認されなかった。

[0018] （4）テロメラーゼ活性測定
（4－1）試験方法
市販されているテロメラーゼ測定キット（TelotAGA Telomerase PCR ELISAplus、ロシュ・ダイアグノスティックス株式会社）を用いて、異なった年齢から調整した培養ヒトDFAT（n=3、細胞数：2×10⁵）より細胞抽出液を採取し、テロメラーゼ活性を測定した。

（4－2）試験結果
キット内の内部スタンダードとコントロールテンプレートを用いてテロメラーゼ反応産物量を定量した結果、測定したすべての培養ヒトDFATにおいてテロメラーゼ活性は検出されなかった。この結果により、癌細胞で高頻度に見られる既知の異常所見（染色体数の異常、ゲノムコピー数の異常、癌関連遺伝子のメチル化異常、テロメラーゼ活性の亢進）がヒトDFATでは認められず、細胞の安全性を示す重要な所見が得られた。

[0019] [実施例2] ヒトDFATの血管新生能の検討
1. DFAT分泌サイトカインの解析
（1）発現サイトカインのプロテインアレイ解析
（1－1）試験方法
（i）ヒトASCの調整方法
実施例1と同様にして得られたヒトDFATの沈降分画（間質血管分画stromal vascular fraction; SVF）からSVF細胞を採取し、培養フラスコ内で約2週間付着培養を行い、ヒトASCを調製した。ヒトASCの調整方法は以下の試験例において同じである。

（iii）第2〜第4継代のそれぞれの細胞がコンフルエンテに到達した時点で、培地を5%ウシ胎仔血清（FBS）含有DMEM培地5mlに交換し、さらに72時間培養した。

その後培養ヒトDFAT、ヒトASCより培養上清を採取し、0.45mmフィルターで濾過した後、プロテインアレイ法にて発現、分泌するサイトカインを検出した。

（1-2）試験結果
ヒトDFATからTIMP-1、TIMP-2、IL-6、IL-8、MCP-1などの種々のサイトカイン群の分泌が確認された（図3）。

[0020] （2）発現サイトカインのELISA法による定量

（2-1）試験方法
培養ヒトDFAT（各ドナーにつきn=3）、ヒトASC（ヒトDFATと同ードナー由来、各ドナーにつきn=3）、ヒト前駆脂肪細胞（hPreadipocyte）、ヒト骨髄MSC（hBM-MSC）、ヒト線維芽細胞（hFibroblast）より培養上清を採取し、プロテインアレイで分泌が確認されたサイトカインを中心に培養上清中の濃度を、ELISAキットを用いて測定した。検討対象サイトカインとしてHGF、VEGF、bFGF、SDF-1、IL-6、IL-8、MCP-1、Leptin、IGF-1、TGFβ1を測定した。各細胞の調整方法を以下に示す。測定は、各ドナーにつき3つの検体を調整して（n=3）測定し、得られた3つのデータの平均値と標準偏差を求めた。

（i）ヒト前駆脂肪細胞（hPreadipocyte）
DSファーマメディカル株式会社より購入したヒト前駆脂肪細胞を解凍、
洗浄し、付着培養して調製した。培地は、10％FBS含有DMEMを用いた。ヒト前駆脂肪細胞の調整方法は以下の試験例において同じである。
（ii）ヒト骨髄MSC（hBM-MSC）
市販されている初代培養細胞（Lonza社）を解凍、洗浄し、付着培養して調製した。培地は、10％FBS含有DMEMを用いた。ヒト骨髄MSCの調整方法は以下の試験例において同じである。
（2-2）試験結果
ヒトDFATからはHGF、VEGF、SDF-1、IL-6、IL-8、MCP-1、leptinが高発現（1－10ng/ml）していることが確認された。特に、HGFおよびSDF-1はpreadipocyte、ヒトASC、ヒト骨髄MSCに比べて特徴的に発現が高いことが明らかになった（図4）。

[0021]2. ヒトDFAT培養上清のin vitroにおける血管新生能
（1）ヒトDFATとヒト骨髄MSC（hBM-MSC）の比較
（1-1）試験方法
血管新生キット（KZ-1000, KURABO, Osaka, Japan）を用いて、ヒトDFAT培養上清のin vitroにおける血管新生能を検討した。本キットは24ウェルプレートにあらかじめヒト線維芽細胞とヒト血管内皮細胞が共培養され、専用の血管新生培地で培養することで血管内皮細胞の管腔形成が誘導されるデザインである。これに被検物質を含むサンプル培地を加えて培養することで、管腔形成能に差が生じる。血管新生能の測定は本キットのプロトコールに従って管腔形成を誘導し、マウス抗ヒトCD31抗体を用いた免疫染色により管腔形成を可視可した。DFAT培養上清やヒト骨髄MSC培養上清は上記の方法で調整し、付属の血管新生培地に1：1で混和してサンプル培地とした。
（1-2）試験結果
ヒトDFATの培養上清は血管内皮細胞の増殖、管腔形成を著明に促進した。DFATの血管新生能は、骨髄MSCと同等またはそれ以上であった（
図5）。

[0022] (2) ドナー年齢の違いによる比較

(2 – 1) 試験方法

ドナー年齢の違いによるDFA T培養上清の血管新生能について検討した。ポジティブコントロールとしてVEGF-A (10 ng/ml R&D Systems) を使用した。

(i) ドナー年齢および性別

2歳男性、29歳女性、56歳女性、75歳女性、82歳女性の5人である。

(2 – 2) 試験結果

高齢ドナー（75歳、82歳）由来のヒトDFAT培養上清が、若年者と比較しても同等の血管新生能を有することが明らかになった（図6）。すなわち、ヒトDFAT培養上清の血管内皮細胞の管腔形成能に年齢による違いはなかった。

[0023] (3) ヒトDFATとASC（同一ドナー由来）の比較

(3 – 1) 試験方法

同一ドナーに由来するヒトDFATとヒトASCの血管新生能の比較検討を行った。ヒトDFATとヒトASCの調整方法は、実施例1と同じである。

(3 – 2) 試験結果

ヒトDFAT培養上清はヒトASC培養上清と比較して管腔長、管腔面積、分枝数および接合部数などが有意に高値を示した（図7）。

[0024] [実施例3] 免疫不全マウス下肢虚血モデルにおけるヒトDFAT移植実験

1. ヒトDFATのモデルマウスの筋肉内への移植

(1) 試験方法

免疫不全（SCID）マウス下肢虚血モデル（日本クレア株式会社、 n = 20）に対し、虚血作成6時間後にヒトDFAT（1 x 10⁵）を虚血筋肉内に移植し、レーザードップラー血流計による血流測定および組織学的検討を
行った。そして生理食塩水を投与するコントロール群、ヒト末梢血単核球を移植する群との比較検討を行った。

（i）ヒト末梢血単核球の調整方法

健常人の血液から血球分離溶液Lymphoprep（コスモバイオ株式会社製）を用いた比重遠心法により調整した。

（2）試験結果

DFAT移植群ではコントロール群に比べ、移植3週後より有意に血流改善が認められた。また、DFAT移植した虚血組織では血管密度が有意に増加していた。DFAT移植による血流改善効果は、ヒト末梢血単核球移植に比べても優れていることが明らかになった（図8）。

[0025] 2．蛻光ラベルしたヒトDFATのモーデルマウス組織への移植

（1）試験方法

SCIDマウス下肢虚血モデル（n=16）に対し、QTracker（商品名、Life Technologies社製）にて蛻光ラベルしたヒトDFAT（1×10^5）を左側虚血組織および右側健常組織内に移植し、移植2日、7日、15日、1ヶ月、2ヶ月、3ヶ月、4ヶ月、6ヶ月後に2匹ずつ両側筋組織および肺、肝臓、腎臓、脾臓、腎臓を採取し、肉眼的、組織学的に移植細胞の局在、分布、腫瘍形成の有無について検討を行った。組織学的なヒトDFATの同定はQTrackerによる蛻光および抗HLA抗体（市販）による免疫染色で行った。

（2）試験結果

虚血組織内では移植1ヶ月、正常筋組織では移植15日後までは移植部位を中心にDFATが検出された。一方、虚血組織内では移植2ヶ月、正常筋組織では移植1ヶ月後からは移植したDFATはほとんど検出されなくなり、その後も検討した全ての組織において、細胞の増殖性変化や腫瘍形成などの有害事象は認められなかった。

[0026] [実施例4] ヒトDFAT分泌サイトカインの解析

（1）ドナー年齢の違いによる比較
（1 - 1）試験方法

培養ヒトDFAT（各ドナーの継代数2，4，6，8に付くn = 3）およびヒトASC（ヒトDFATと同一ドナー由来、各ドナーの継代数2，4，6，8に付くn = 3）より培養上清を採取し、実施例2、（2）と同様の方法により、分泌されたサイトカイン（HGF，VEGF）の濃度を測定した。

(i) ドナー年齢および性別

生後一ヶ月男性、生後6ヶ月男性、34歳女性、61歳男性、74歳女性の5人である。

（1 - 2）試験結果

HGFについては、いずれのドナー由来のヒトDFATも、同一ドナー由来のヒトASCと比べて高発現している傾向が確認された。特に継代早期（継代数2，継代数4）や高齢ドナー（74歳）では、HGF濃度の差が顕著であることが確認された（図10）。

また、VEGFについては、ヒトDFATは、同一ドナー由来のヒトASCと明らかに差はなく、ドナー年齢や継代数に影響されず、ほぼ同等に発現していることが確認された（図11）。

産業上の利用可能性

[0027] 本発明によれば、ヒト成熟脂肪細胞から調製されるヒト脱分化脂肪細胞（ヒトDFAT）を利用することで、末梢動脈疾患（PAD）などの虚血性疾患に対する細胞治療方法を提供することができる。
請求の範囲

【請求項1】ヒト脱分化脂肪細胞（ヒトDFAT）を有効成分とする血流改善剤。

【請求項2】ヒト脱分化脂肪細胞（ヒトDFAT）を有効成分とする血管新生促進剤。

【請求項3】ヒト脱分化脂肪細胞（ヒトDFAT）を有効成分とする虚血性疾患治療剤。

【請求項4】虚血性疾患が末梢動脈疾患（PAD）または虚血性心筋症である、請求項3に記載の虚血性疾患治療剤。

【請求項5】ヒト脱分化脂肪細胞（ヒトDFAT）が、1〜4代継代培養されたヒト脱分化脂肪細胞（ヒトDFAT）である、請求項1〜4のいずれかに記載の剤。
<table>
<thead>
<tr>
<th>染色体数</th>
<th>細胞数</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>50</td>
</tr>
<tr>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>Gene</td>
<td>Amplicon/Name</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>ABL1</td>
<td>201_ABL1</td>
</tr>
<tr>
<td>AKT1</td>
<td>AKT1_02</td>
</tr>
<tr>
<td>AKT2</td>
<td>207_AKT2_01</td>
</tr>
<tr>
<td>ALK</td>
<td>209_ALK</td>
</tr>
<tr>
<td>APC</td>
<td>211_APC</td>
</tr>
<tr>
<td>ARHGFI2</td>
<td>212_ARHGFI2</td>
</tr>
<tr>
<td>ATIC</td>
<td>218_ATIC</td>
</tr>
<tr>
<td>BCL11A</td>
<td>039_BCL11A_001</td>
</tr>
<tr>
<td>BCL2</td>
<td>095_BCL2_001</td>
</tr>
<tr>
<td>BCL6</td>
<td>226_BCL6</td>
</tr>
<tr>
<td>BCR</td>
<td>229_BCR_01</td>
</tr>
<tr>
<td>BRAF</td>
<td>236_BRAF</td>
</tr>
<tr>
<td>BRC1A</td>
<td>237_BRC1A</td>
</tr>
<tr>
<td>CBFB</td>
<td>244_CBFB</td>
</tr>
<tr>
<td>CBL</td>
<td>245_CBL</td>
</tr>
<tr>
<td>CCDC6</td>
<td>264_CCDC6</td>
</tr>
<tr>
<td>CCNA2</td>
<td>581_CCNA2_01</td>
</tr>
<tr>
<td>CCND1</td>
<td>584_CCND1_1_01</td>
</tr>
<tr>
<td>CCND2</td>
<td>013_CCND2_002</td>
</tr>
<tr>
<td>CCND3</td>
<td>014_CCND3_001</td>
</tr>
<tr>
<td>CDK4</td>
<td>249_CDK4</td>
</tr>
<tr>
<td>CDK6</td>
<td>017_CDK6_001</td>
</tr>
<tr>
<td>CDKN2A</td>
<td>001_CDKN2A_01</td>
</tr>
<tr>
<td>CEPPA</td>
<td>CEPPA_04</td>
</tr>
<tr>
<td>CLIC</td>
<td>020_CLIC_001</td>
</tr>
<tr>
<td>COL1A1</td>
<td>023_COL1A1_001</td>
</tr>
<tr>
<td>CTNNB1</td>
<td>262_CTNNB1</td>
</tr>
<tr>
<td>DAPK1</td>
<td>DAPK1_02</td>
</tr>
<tr>
<td>BFGF</td>
<td>270_BFGF</td>
</tr>
<tr>
<td>EP300</td>
<td>274_EP300</td>
</tr>
<tr>
<td>EPS15</td>
<td>275_EPS15_01</td>
</tr>
<tr>
<td>ERBB2</td>
<td>277_ERBB2_01</td>
</tr>
</tbody>
</table>
[図6]

(A)

h-DFAT 29yM

h-DFAT 2yM

Control

h-DFAT 82yF

h-DFAT 75yF

h-DFAT 59yF
[図9]

CD34陽性率(%)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
A61K35/35(2015.01)i, A61P9/00(2006.01)i, A61P9/04(2006.01)i, A61P9/10(2006.01)i, C12N5/077(2010.01)n

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
JSTPlus/JMEDPlus/JST7580(JDreamIII), CAplus/MEDLINE/EMBASE/BIOSIS(STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>SONG N. et al., The perivascular phenotype and behaviors of dedifferentiated cells derived from human mature adipocytes, Biochemical and Biophysical Research Communications, 2015.02. 13, Vol.457, No.3, p.479-484, Abstract, 1., 2.1, 3.1, 3.3, 3.4, 4. Fig. 1, 3, 4</td>
<td>1-5</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C. [] See patent family annex.

* **A** document defining the general state of the art which is not considered to be of particular relevance
* **E** earlier application or patent but published on or after the international filing date
* **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
* **O** document referring to an oral disclosure, use, exhibition or other means
* **P** document published prior to the international filing date but later than the priority date claimed
* **T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
* **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
* **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
* **&** document member of the same patent family

Date of the actual completion of the international search
27 May 2016 (27.05.16)

Date of mailing of the international search report
07 June 2016 (07.06.16)

Name and mailing address of the ISA/
Japan Patent Office
3-4-3, Kasumigaseki, Chiyoda-ku,
Tokyo 100-8915, Japan

Authorized officer

Telephone No:
INTERNATIONAL SEARCH REPORT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>KOU L. et al., The phenotype and tissue-specific nature of multipotent cells derived from human mature adipocytes, Biochemical and Biophysical Research Communications, 2014, Vol.444, p.543-548, Abstract, 1., 2.1, 3.1, 3.4, 4., Fig. 4</td>
<td>1-5</td>
</tr>
<tr>
<td>X</td>
<td>JUMABAY M. et al., Endothelial differentiation in multipotent cells derived from mouse and human white mature adipocytes, J. Mol. Cell. Cardiol., 2012, Vol.53, No.6, p.790-800, Abstract, 3.1, 3.5, 4., Fig. 6</td>
<td>1-5</td>
</tr>
<tr>
<td>X</td>
<td>CASTEILLA L. et al., Plasticity of human adipose lineage cellstoward endothelial cells: physiological and therapeutic perspectives, Circulation, 2004, Vol.109, p.656-663, Abstract, page 660, right column, 2nd paragraph to page 662, right column, 2nd paragraph, Fig.5</td>
<td>1-5</td>
</tr>
<tr>
<td>X</td>
<td>Taro MATSUMOTO, "Shibo Yurai Kansaibo no Rinsho Oyo eno Tenkai Biological characterization and potential clinical applications of dedifferentiated fat (DFAT) cells", Journal of Clinical and Experimental Medicine, 2012, vol. 242, no.4, pages 326 to 331, page 328, right column, the last line to page 330, left column, 2nd paragraph</td>
<td>1-5</td>
</tr>
</tbody>
</table>
国際調査報告
国際出願番号 PCT/JP2016/059386

A. 発明の属する分野の分類（国際特許分類（IPC））
 Int.Cl. A61K35/35 (2015.01)i, A61P9/00 (2006.01)i, A61P9/04 (2006.01)i, A61P9/10 (2006.01)i, C12N5/077 (2010.01)n

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））

最小限資料以外の資料で調査を行った分野に含まれるもの
 日本国実用新案公報 1922-1996年
 日本国公開実用新案公報 1971-2016年
 日本国実用新案登録公報 1996-2016年
 日本国登録実用新案公報 1994-2016年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）
 JSTPlus/JMEDPlus/JST7580 (JDreamIII), CAplus/MEDLINE/EMBASE/BIOSIS (STN)

C. 関連すると認められる文献
 引用文献のカテゴリ※ 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 関連する請求項の番号
 X SONG N. et al., The perivascular phenotype and behaviors of dedifferentiated cells derived from human mature adipocytes, Biochemical and Biophysical Research Communications, 1－5

☑ C欄の続きにも文献が列挙されている。

※ 引用文献のカテゴリ
 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
 「E」国際出願前の出願または特許であるが、国際出願日以後に公表されたもの
 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）
 「O」口頭による開示、使用、展示等に言及する文献
 「P」国際出願日前でかつ優先権の主張の基礎となる出願

国際調査を完了した日 27.05.2016 国際調査報告の発送日 07.06.2016

国際調査機関の名称及びあて先
日本国特許庁（1SA／JP）
郵便番号100－8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員） 4U 9454
上條 のぶよ
電話番号 03－3581－1101 内線 3439

様式PCT／1SA／210（第2ページ）（2015年1月）
<table>
<thead>
<tr>
<th>カテゴリー*</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する 請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>KOU L. et al., The phenotype and tissue-specific nature of multipotent cells derived from human mature adipocytes, Biochemical and Biophysical Research Communications, 2014, Vol.444, p.543-548, Abstract, 1., 2.1, 3.1, 3.4, 4. Fig. 1, 3, 4</td>
<td>1－5</td>
</tr>
<tr>
<td>X</td>
<td>JUMABAY M. et al., Endothelial differentiation in multipotent cells derived from mouse and human white mature adipocytes, J. Mol. Cell. Cardiol., 2012, Vol.53, No.6, p.790-800, Abstract, 3.1, 3.5, 4., Fig.6</td>
<td>1－5</td>
</tr>
<tr>
<td>X</td>
<td>CASTEILLA L. et al., Plasticity of human adipose lineage cellstoward endothelial cells: physiological and therapeutic perspectives, Circulation, 2004, Vol.109, p.656-663, Abstract, 660 頁右欄２段落～662 頁右欄２段落, Fig.5</td>
<td>1－5</td>
</tr>
<tr>
<td>X</td>
<td>河内秀臣, 他, 血管外科と基礎研究 脱分化脂肪細胞を用いたプタ虚血肢に対する自家細胞移植治療の検討, 血管外科, 2013, Vol.32, No.1, p.18-24, 末梢動脈疾患 (P A D) の治療戦略, 脱分化脂肪細胞、結果、おわりに</td>
<td>1－5</td>
</tr>
<tr>
<td>X</td>
<td>松本太郎, 脂肪組織由来幹細胞療法の基礎 脱分化脂肪細胞(DFAT), 臨床評価, 2011, Vol.38, No.4, p.761-765, 3.</td>
<td>1－5</td>
</tr>
<tr>
<td>X</td>
<td>松本太郎, 脂肪由来幹細胞の臨床応用への展開 脱分化脂肪細胞(DFAT)の特性と細胞治療への応用, 医学のあゆみ, 2012, Vol.242, No.4, p.326-331, 328 頁右欄最下行～330 頁左欄２段落</td>
<td>1－5</td>
</tr>
</tbody>
</table>