特許協力条約に基づいて公開された国際出願

(19) 世界知的財産機関
国際事務局

(43) 国際公開日
2016 年 10 月 6 日 (06.10.2016)

(51) 国際特許分類:
A61K 45/00 (2006.01) A61K 31/5025 (2006.01)
A61K 31/437 (2006.01) A61K 31/506 (2006.01)
A61K 31/4418 (2006.01) A61K 31/5377 (2006.01)
A61K 31/455 (2006.01) A61K 45/06 (2006.01)
A61K 31/496 (2006.01) A61P 35/02 (2006.01)
A61K 31/4985 (2006.01) A61P 43/00 (2006.01)

(21) 国際出願番号: PCT/JP2016/060803
(22) 国際出願日: 2016 年 3 月 31 日 (31.03.2016)
(25) 国際出願の言語: 日本語
(26) 国際公開の言語: 日本語
(30) 優先権データ:
特願 2015-075195 2015 年 4 月 1 日 (01.04.2015) JP
(71) 出願人: 国立大学法人広島大学 (Hiroshima University) [JP]; 〒739851 広島県東広島市鏡山 1 丁目 3 番 2 号 国立大学法人広島大学 原爆原子書き医学研究所内 Hiroshima (JP).

(72) 発明者: 鈴木一仁 (NAKA, Kazuhito); 〒739-0373 広島県広島市南区霞一丁目 2 番 3 号 国立大学法人広島大学 原爆原子書き医学研究所内 Hiroshima (JP).

(54) Title: THERAPEUTIC AGENT FOR CHRONIC MYELOID LEUKEMIA

(54) 発明の名称: 慢性骨髄性白血病治療剤

AA Number of colonies per 1000 cells
BB Control
CC Imatinib

(57) Abstract: A safe and effective CML stem cell remover, a TKI-resistant suppressant, and a multi-kinase inhibitor-resistant suppressant are provided as a result of revealing this novel signal transduction pathway involved in maintaining chronic myeloid leukemia stem cells and selectively inhibiting the signal. With this, a therapeutic drug for relapse of CML and Ph+ALL and a preventative drug for relapse of CML and Ph+ALL are provided. The therapeutic agent for chronic myeloid leukemia contains a selective inhibitor of the p38 MAPK signal. The therapeutic agent is combined with a tyrosine kinase inhibitor or a multi kinase inhibitor.

(57) 要約:
慢性骨髄性白血病幹細胞の維持に関与する新規シグナル伝達経路を明らかにし、当該シグナルを選択的に阻害することにより、安全かつ有効な CML 幹細胞除去薬、TKI 抗性抑制薬ならびにマルチキナーゼ阻害薬抵抗性抑制薬を提供する。これによって、再発 CML 及び Ph'ALL の治療薬と CML 及び Ph'ALL の再発予防薬を提供する。p38 MAPK シグナルの選択的阻害薬を含有してなる、慢性骨髄性白血病治療剤。チロシンキナーゼ阻害薬またはマルチキナーゼ阻害薬と組み合わせてなる、上記治療剤。
明細書

発明の名称：慢性骨髄性白血病治療剤

技術分野

【0001】本発明は、慢性骨髄性白血病（以下、「CML」ともいう。）治療剤に関するもので、より詳細には、本発明は、p38MAPK（以下、「p38」ともいう。）阻害薬を含有してなるCML治療剤、特にCML幹細胞除去剤、チロシンキナーゼ阻害薬（以下、「TKI」ともいう。）抵抗性抑制剤およびマルチキナーゼ阻害薬抵抗性抑制剤；並びに、p38阻害薬をTKIまたはマルチキナーゼ阻害薬と組み合わせてなるCML治療剤、特に、再発CML治療剤、CMLとフィラデルフィア染色体陽性急性リンパ性白血病（以下、「Ph+ALL」ともいう。）の再発予防剤に関する。

背景技術

【0002】慢性骨髄性白血病（CML）は、造血幹細胞を発症起源とする骨髄増殖性疾患であり、数年の慢性期の後、移行期を経て重篤な病態を呈する急性転化期へと進行する。CMLの治療においては、慢性期に徹底した治療を行って急性転化期への移行を防ぐことが重要となる。CML患者ではフィラデルフィア染色体とよばれる染色体転座t(9;22)(q34;q22)がみられ、この転座により、恒常的に活性化されたチロシンキナーゼBCR-ABL融合蛋白質が発現することが、CMLの発症の原因として知られている。BCR-ABLチロシンキナーゼは細胞内基質や自己をリン酸化し、細胞増殖、形質転換、アポトーシス抑制に関わる様々な細胞内シグナル伝達を活性化することにより、CML発症に深く関与する。

【0003】CMLの治療薬としてABLに対するチロシンキナーゼ阻害薬（TKI）イマチニブ（上市薬はメシル酸塩）が開発され、CML患者の治療成績を著しく改善した。イマチニブは、チロシンキナーゼのATP結合部位に競合的に結合し、基質リン酸化に続くシグナル伝達を阻害することにより、細胞増殖を抑制し、アポトーシスを誘導してCML細胞を選択的に傷害する。このイマチニブや、さらに治療効果の高い、第二世代TKIのニロチニブ、ダサチニブ、ポスチニブ、ラドチニブ（IY5511）がCML患者の治療に用いられている。
しかし、イマチニブなどのTKI治療後のCML患者において、TKIが効かなくなかったCML（治療抵抗性の再発CML）が臨床上の重大な問題となっている。近年、この再発のメカニズムとして、T315I（イマチニブ結合部位である315番目のスレオニン残基がイソロイシンに置換されている）に代表されるTKI抵抗性のBCR–ABLの点突然変異が出現することが明らかとなった。TKI耐性BCR–ABL1を発現するCML患者の治療薬として、マルチキナーゼ阻害薬ボナチニブが開発され、米国及びEUにおいて、前治療のTKIに抵抗性又は不耐容となったCMLを対象に承認されている。しかし、TKI抵抗性CML細胞の増殖源となるCML幹細胞を完全には排除できないため、ボナチニブ治療を中止すると再発の懸念がある。そのため、患者はボナチニブ治療を継続し続けなければならない。また、TKI抵抗性CML幹細胞を発生起源として、さらに複数の遺伝子変異（コンパウンド変異）を持つCML幹細胞が発生すると、さらなるボナチニブ抵抗性を引き起こす原因ともなる。したがって、CMLを根治するためには、CML幹細胞を根絶する治療方法の開発が必要である。

[0004] CML幹細胞を抑制するいくつかの薬剤が報告され、TKIとの併用によるCML治療が提案されている。例えば、本発明者は以前、TGF–β–FOXOシグナル（特許文献１）やTGF–β–Smadシグナル（特許文献２）を阻害することにより、CML幹細胞を効率よく除去することができ、TKI抵抗性を抑制し得ること、さらにTKIとの併用により、分化したCML細胞とCML幹細胞とを同時に排除し得ることを見出し、寛解後の再発やTKI抵抗性獲得のリスクの低減された新規なCMLの治療手段を開発した。

[0005] ところで、p38 MAPK（mitogen-activated protein kinase）シグナル伝達経路は、環境ストレスや紫外線、アポトーシス、炎症反応に関与することが知られている。また、近年、種々のがんにおいてp38の活性化が報告され（非特許文献１）、p38の選択性阻害剤LY2228820が複数のがんモデル（黑色腫、非小細胞肺癌、卵巣癌、神経膠腫、骨髄腫、乳癌）で腫瘍の増殖を遅延させたとの報告もある（非特許文献２）。しかし、がんにおけるp38の作用は、腫瘍とその微小環境との相互作用と深く関わっており、がん種によって大きく
異なると考えられている。特にCMLとの関連では、p38の活性化はCML細胞にアポトーシスを誘導し（非特許文献3、4）、CML細胞株K562細胞においてp38を阻害するとアポトーシスが抑制される（非特許文献5、6）ことが報告されている。また、ダサチニブの白血病治療効果にはp38の活性化が必須であるとの報告もある（非特許文献7）。

先行技術文献

特許文献

[0006] 特許文献1：特開2010-281656号公報
特許文献2：特開2013-253065号公報

非特許文献

非特許文献3：Nakamura, S. et al., Carcinogenesis, 32: 1758-72 (2011)
doi: 10.3109/10428190903147637

発明の概要

発明が解決しようとする課題

[0008] 本発明の目的は、CML幹細胞の維持に関与する新規シグナル伝達経路を明らかにし、当該シグナルを選択的に阻害することにより安全かつ有効なCML幹細胞除去薬、TKI抵抗性抑制薬を提供することである。また、TKI等との併用に
より、分化したCML細胞とCML幹細胞とを同時に排除し得る、覚解後の再発やTKI抵抗性獲得のリスクの低減されたCMLの治療手段を提供することである。また、T315Iに代表されるTKIが効かなくなった変異型BCR-ABLを発現するCML患者に対して、第三世代マルチキナーゼ阻害薬とCML幹細胞除去薬を併用することで、CML及びPh+ALLの再発予防並びに治療手段を提供することである。

課題を解決するための手段

[0009] 本発明者は、上記の目的を達成すべく鋭意検討を重ねる中で、CML幹細胞においてp38シグナル伝達経路が顕著に活性化されていることを見出した。そこで、本発明者は、p38阻害の効果を調べるため、様々なp38の選択的阻害薬の存在下で、マウスCML幹細胞をフィーダー細胞と共培養した（この共培養は、インピボでのがん微小環境を模倣する）。その結果、いずれのp38阻害薬もマウスCML幹細胞の増殖を抑制した。

[0010] さらに、イマチニブとp38阻害薬の併用効果を調べたところ、いずれのp38阻害薬も、イマチニブ単独の場合と比較して、マウスCML幹細胞のインヒトロでの増殖をさらに抑制した。特にLY228820において併用効果は顕著であった。

[0011] CML患者から採取したヒトCML幹細胞についても、同様の方法で、p38阻害薬の単独投与及びダサチニブとの併用投与の効果を調べたところ、同様に、p38の選択的阻害は、インヒトロでのヒトCML幹細胞の増殖を顕著に抑制した。

[0012] さらに、マウスCML幹細胞を移植したマウスを用いた実験から、p38阻害薬は単独で、インピボでCML幹細胞に対して優れた抑制効果を有することが示された。

[0013] さらに重要なものに、ドキシサイクリン誘導型のCMLモデルマウスを用いた実験から、p38阻害薬とダサチニブを併用すると、ダサチニブ単独投与に比べてマウスの生存率を顕著に改善することができた。

本発明者らは、以上の知見より、p38 MAPKシグナル伝達経路を阻害することにより、効率よくCML幹細胞を排除し、TKI抵抗性的CML幹細胞を抑制し得ること、さらにTKIと併用することにより、極めて優れたCML治療効果を奏する
ことを見出して、本発明を完成するに至った。

[0014] すなわち本発明は、以下の通りである。

[1] p38 MAPKシグナルの選択的阻害薬を含有してなる、慢性骨髄性白血病治療剤。

[8] チロシンキナーゼ阻害薬がイマチニブ、ダサチニブ、ボスチニブ、ラドチニブ又はニロチニブであり、マルチキナーゼ阻害薬がKW2449又はボナチニブである、上記[7]記載の剤。

発明の効果

[0015] 本発明によれば、p38阻害薬の投与により、TKI治療によれば根絶を免れる可能性のあるCML幹細胞、特に従来のいずれのTKIに対しても抵抗性を示すCML幹細胞を、効率よく排除することができる。また、p38阻害薬とTKI又はマルチキナーゼ阻害薬との併用により、CMLの治療効果性をより高めることができ、さらに、p38阻害薬との併用により、TKI又はマルチキナーゼ阻害薬の投与量の低減及び、又は投与期間の短縮を図ることができ、副作用を軽減させることができる。また、現在有効な治療がないBlast crisisやPh'ALL等のより悪性度の高い病態への進行を予防することができる。

図面の簡単な説明
[0016] [図1]LY2228820（ニメタンスルホン酸塩）、VX-702およびBIRB 796の構造式を示す図である。
[図2]マウスCML幹細胞において、p38 MAPKシグナル伝達経路が活性化していることを示す図である。（上段）マウスCML幹細胞（左）及びマウス正常造血幹細胞（右）において、p38タンパク質の180位と221位のセリン残基のリン酸化状態を解析した。図中のドットがp38がリン酸化（活性化）していることを示す。（下段）比較のため、既に報告されている、マウスCML幹細胞（左）及びマウス正常造血幹細胞（右）におけるSmad3の423位及び425位のセリン残基のリン酸化を示す。
[図3]インピトロでのマウスCML幹細胞に対する各種p38阻害薬の抑制効果を示す図である。（A）p38阻害薬を単独で培地に添加した。（B）p38阻害薬とイマチニブを培地に添加した。
[図4]マウスCML幹細胞移植モデルにおけるp38阻害薬の単独投与の治療効果を示す図である。
[図5]誘導型CMLマウスモデルにおけるダサチニブとp38阻害薬の併用効果（同時に投与開始、LY2228820連日投与）を示す図である。
[図6]誘導型CMLマウスモデルにおけるダサチニブとp38阻害薬の併用効果（ダサチニブ投与開始から1週間後にLY2228820投与開始、LY2228820を2日又は3日に1回投与）を示す図である。
[図7]インピトロでのヒトCML幹細胞に対するp38阻害薬の抑制効果を示す図である。（コントロール）LY2228820を単独で培地に添加した。「Cont」は薬剤非添加を示す。（ダサチニブ）LY2228820とダサチニブとを培地に添加した。「Cont」はダサチニブ単独添加を示す。
発明を実施するための形態
[0017] 本発明は、p38 MAPKシグナルの選択的阻害薬（本明細書においては、単に「p38阻害薬」ともいう）を含有してなる、慢性骨髄性白血病（CML）治療剤を提供する。
ここで「CML治療剤」とは、慢性期のCMLの治療のみならず、急性転化期や
移行期のCMLの治療、急性転化の予防、CMLとPh'ALLの再発予防、再発CMLとPh'ALLの治療をも目的とする意味で用いられる。

また、ここで「p38 MAPKシグナル」とは、DNA損傷、酸化ストレス、紫外線、炎症性サイトカイン等の刺激により活性化されるMAPKKK（MEKK1-4, MLK2/3, ASK1, TA01/2, TAK1）がMAPKK（MKK3/6, MKK4）を活性化し、活性化されたMAPKKがp38を活性化し、さらに活性化されたp38が種々の転写因子（Ets1, Nfat, Sap1, Stat1, Max, Myc, Elk1, p53, Chop, MEF2, ATF2等）及びMAPKAPK（MK2/3, MSK1, MNK1/2）を活性化する、という一連のシグナル伝達カスケードを意味する。

[0018] したがって、「p38 MAPKシグナルの選択的阻害薬（p38阻害薬）」とは、上記シグナル伝達経路のいずれかの段階を阻害するか、あるいは該シグナル伝達経路に動員される分子の発現自体を阻害することで、結果的に該シグナル伝達経路を選択的に阻害する薬剤であって、なおかつMAPKKKのさらに上流（例えば、TGF-β受容体、IL-1受容体、受容体チロシンキナーゼ（RTK）等）及びp38 MAPKシグナル以外のそれらの下流シグナル（例えば、TGF-βシグナルであれば、Smad経路、Ras経路、P13K-Akt経路、ROCK経路等）を実質的に阻害しない薬剤を意味する。ここで「実質的に阻害しない」とは、全く阻害しない場合でなく、CMLの治療上有効な量において投与対象に対して悪影響を及ぼさない程度にしか阻害しないことを意味し、例えば、p38 MAPKシグナルの標的分子に対するIC₅₀値が他の生体分子に対するIC₅₀値の1/10以下であり、好ましくは1/20以下、より好ましくは1/50以下、特に好ましくは1/100以下である。

[0019] p38 MAPKシグナルの選択的阻害薬（p38阻害薬）としては、例えば、上記シグナル伝達経路のいずれかの段階を阻害する薬剤として、p38タンパク質に直接作用してその活性化（リン酸化）を阻害する物質、p38の上流のMAPKK（MKK3/6又はMKK4、好ましくはMKK3/6）に作用してp38の活性化（リン酸化）を阻害する物質、あるいはp38の基質（転写因子、MAPKAPK）に該基質の活性化（リン酸化）を阻害する物質等が挙げられるが、これらに限定されない。尚、p
38にはα, β, γ及びδの4種のアイソフォームが存在するが、本発明のp38阻害薬は、それらの少なくとも1つのアイソフォームを阻害するものであればよく、例えば、少なくともp38αを阻害する薬剤が挙げられる。好ましくは、少なくともp38α及びp38βを阻害する薬剤である。好ましい一実施態様においては、本発明のp38阻害薬は、p38α及びp38βを選択的に阻害する薬剤である。

[0020] 本発明のp38阻害薬としては、例えば、米国特許第7,582,652号明細書にATP競合阻害薬として作用するp38阻害薬として開示される、下記式（I）：

[0021] [化1]

[0022] 式中、Wは、下記式(i)～(vii)のいずれかで表され；

[0023]
[0024] Xは、窒素原子又はC－Rの1であり；
Rは、C_1～C_7アルキル、C_3～C_7シクロアルキル、（C_1～C_7アルキレン）－（C_3～C_7シクロアルキル）、－SO_2－（C_1～C_7アルキル）、又は－SO_2－NR_5NR_6であり；
R^1は、水素原子、アミノ、メチル又は－N＝C＝NH（CH_3）_2であり；
R^2は、独立して選ばれる1又は2個のハロゲン原子で置換されていてもよいフェニルであり；
R^3は、水素原子、C_1～C_7アルキル、C_3～C_7シクロアルキル、又はハロゲン原子及びトリフルオロメチルから独立して選ばれる1もしくは2個の置換基で置換していてもよいフェニルであり；
R^4は、水素原子又はC_1～C_7アルキルであり；
R^5及びR^6は、それぞれ独立してC_1～C_7アルキルである。）
で表される化合物又はその塩、
（ここで「C_1～C_7アルキル」はメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s e c－ブチル、t e r t－ブチル、ペンチル、ヘキシル、ヘプチルを含み、「C_1～C_7アルキレン」はメチレン、エチレン、プロピレン、イソプロピレン、ブチレン、イソブチレン、s e c－ブチレン、t e r t－ブチレン、ペンチレン、ヘキシレン、ヘプチレンを含み、「C_3～C_7シクロアルキル」はシクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチルを含み、「（C_1～C_7アルキレン）－（C_3～C_7シクロアルキル）」はC_1～C_7アルキレンリンカーを介して結合するC_3～C_7シクロアルキルを意味し、「ハロゲン原子」はフッ素原子、塩素原子、臭素原子及びヨウ素原子を含む。）

[0025] 好ましくは、下記式(I′)：

[0026]
[化3]

[0027]（式中、R’は、2, 2-ジメチルプロピル又は1, 2, 2-トリメチルプロピルであり；
R’は、フェニル、4-フルオロフェニル又は2, 4-ジフルオロフェニルであり；
R’は、t e r t-ブチル、2-クロロ-6-フルオロフェニル、2-フルオロ-6-トリフルオロメチルフェニル、2, 6-ジクロロフェニル又は2, 6-ジフルオロフェニルである。）
で表される化合物又はその塩、

[0028] より好ましくは、上記式(I)中：
(a) R’は2, 2-ジメチルプロピル、R’は4-フルオロフェニル及びR
3’は2-フルオロ-6-トリフルオロメチルフェニル；
(b) R’は2, 2-ジメチルプロピル、R’は4-フルオロフェニル及びR
3’は2, 6-ジクロロフェニル；
(c) R’は2, 2-ジメチルプロピル、R’は4-フルオロフェニル及びR
3’はt e r t-ブチル；
(d) R’は2, 2-ジメチルプロピル、R’はフェニル及びR’は2-クロロ-6-フルオロフェニル；
(e) R’は2, 2-ジメチルプロピル、R’は2, 4-ジフルオロフェニル；
(f) R’は1, 2, 2-トリメチルプロピル、R’は4-フルオロフェニル
及びR’はt e r t-ブチル；又は
(g) R’は1, 2, 2-トリメチルプロピル、R’は4-フルオロフェニル
及びR’は2, 6-ジフルオロフェニル
ある化合物又はその塩、

[0029] 特に好ましくは、上記式(I’)中、R' は 2, 2−ジメチルブロピル、R²’ は 4−フルオロフェニル及び R³’ は tert−ブチルである化合物 [5−（2−tert−ブチル−5−（4−フルオロフェニル）−1 H−イミダゾール−4−イル）−3−ネオペンチル−3 H−イミダゾ [4, 5−b] ピリジン−2−アミン（ラリメチニブ (LY2228820) ; 図 1)] 本明細書においては、「LY2228820」と称する場合がある。] 又はその塩が挙げられる。LY2228820 は p38α 及び p38β に選択的な p38 阻害剤である。

上記式(I)又は(I’)で表される化合物の塩としては、医薬上許容される塩であれば特に制限はないが、例えば、トリフルオロ酢酸、酢酸、乳酸、コハク酸、マレイン酸、酒石酸、クエン酸、グルコン酸、アスコルビン酸、安息香酸、メタンスルホン酸、p−トルエンスルホン酸、ケイ皮酸、フマル酸、ホスホン酸、塩酸、硝酸、臭化水素酸、ヨウ化水素酸、スルファミン酸、硫酸等の酸との酸付加塩、好ましくはメタンスルホン酸塩、コハク酸塩、フマル酸塩、ニマレイン酸塩、二塩酸塩、ニメタンスルホン酸塩等、より好ましくはニメタンスルホン酸塩が挙げられる。

[0031] 上記の化合物の塩としては、医薬品に許容される塩であれば特に制限はないが、例えば、トリフルオロ酢酸、酢酸、乳酸、コハク酸、マレイン酸、酒石酸、クエン酸、グルコン酸、アスコルビン酸、安息香酸、メタンスルホン酸、p-トルエンスルホン酸、ケイ皮酸、フマル酸、ホスホン酸、塩酸、硝酸、臭化水素酸、ヨウ化水素酸、スルファミン酸、硫酸等の酸と塩酸塩を混合する。例えば、ナトリウム、カリウム、マグネシウム、カルシウム、鉄等の金属塩；例えば、トリメチルアミン、トリエチルアミン、ピリジン、ビコリン、N-メチルピロリジン、N-メチルピペリジン、N-メチルモルホリン等の有機塩基との塩等が挙げられる。

[0032] 上記した本発明の低分子p38阻害薬が、光学異性体、立体異性体、位置異性体、回転異性体等の異性体を有する場合には、いずれか一方の異性体も、異性体の混合物も、阻害活性を有する限り本発明のp38阻害薬に包含される。例えば、本発明のp38阻害薬に光学異性体が存在する場合には、ラセミ体から分割された光学異性体も本発明のp38阻害薬に包含される。これらの異性体は、自体公知の合成手法、分離手法（濃縮、溶媒抽出、カラムクロマトグラフィー、再結晶等）によりそれぞれを単品として得ることができる。

上記した本発明の低分子p38阻害薬は、結晶であっても無晶形であってもよい。該p38阻害薬が結晶である場合、結晶形が単一であっても結晶形混合物であっても、本発明のp38阻害薬に包含される。結晶は、自体公知の結晶化法を適用して、結晶化することによって製造することができる。

本発明の低分子p38阻害薬は、溶媒和物（例えば、水和物等）であっても、無溶媒和物であってもよく、いずれも本発明のp38阻害薬に包含される。

本発明の低分子p38阻害薬は、同位素元素（例、3H, 14C, 35S, 125I等）等で標識されていてもよい。
また、本発明のp38低分子阻害薬が酸に不安定な場合、経口投与する場合に
は胃酸による分解を防ぐために、自体公知の方法により酸に安定なプロドラ
ッグの形態で提供され得る。

[0033] 上記した本発明の低分子p38阻害薬はいずれも公知化合物であり、それぞれ
自体公知の方法により製造することができる。また、これらのp38阻害薬の多
くは市販されている。

[0034] その他、p38のリン酸化を阻害する物質としては、p38を模倣するMKK3/6、MK
KK4の基質ペプチド、該MAPKKのドミナントネガティブ体、p38のリン酸化を立
体的に妨害する抗体やアプタマー等が挙げられる。p38による下流因子（転写
因子、MAPAPK）のリン酸化を阻害する物質としては、該下流因子を模倣するp
38の基質ペプチド、p38のドミナントネガティブ体等が挙げられる。p38やそ
の下流因子を模倣する基質ペプチドは、各タンパク質のリン酸化部位を含む
部分アミノ酸配列からなるペプチドを、自体公知の方法により化学合成す
ることにより製造することができる。p38に対する抗体やアプタマーも自体公知
の方法により取得することができる。

p38のドミナントネガティブ体としては、基質結合能を有するものの、基質
をリン酸化させることなく、野生型p38タンパク質と競合的に作用して、その
機能を阻害する限り、いかなる物質であってもよい。例えば、ヒトおよびマ
ウスにおけるp38のDNA結合領域に位置する180位のスレオニンをアラニンに点
変異させたp38T180A、ヒトおよびマウスにおけるp38の182位のチロシンをフ
ェニルアラニンに点変異させたp38Y182Fなどが挙げられる（Raingeaud J., J

p38のドミナントネガティブ体は、例えば、以下の手法により得ることができる。ヒトp38においては、p38αの場合はNCBIデータベースのNM_001315、p3
8βの場合はNM_002751として登録されている配列に基づいて適当なオリゴヌ
クレオチドをプローブもしくはプライマーとして合成し、ヒトの細胞・組織
由来のmRNA、cDNAもしくはcDNAライブラリーカー、ハイブリダイゼーション
法や(RT-)PCR法を用いてマウスまたはヒトp38 cDNAをクローニングし、適当
なプラスミドにサブクローニングする。変異を導入しようとする部位のコードンを所望の他のアミノ酸をコードするコードに置換した形で、当該部位を含むプライマーを合成し、これを用いてp38cDNAを挿入したプラスミドを製型とするインバースPCRを行うことにより、目的のドミナントネガティブ体をコードする核酸を取得する。p38DDのような欠失変異体の場合には、欠失させる部位の外側にプライマーを設計して、同様にインバースPCRを行えばよい。

MAPKKのドミナントネガティブ体についても同様である。

ipts/newsearchhairpin.cgi）がこれらに限定されず、QIAGEN、タカラバイオ、SiSearch、Dharmacon、Whitehead Institute、Invitrogen、Promega等のウェブサイト上でも同様に検索が可能である。

[0037] p38に対するsiRNAは、上記のようにして設計されたセンス鎖及びアンチセンス鎖オリゴヌクレオチドをDNA/RNA自動合成機でそれぞれ合成し、例えば、適当なアニーリング緩衝液中、約90～約95℃で約1分程度変性させた後、約30～約70℃で約1～約8時間アニーリングさせることにより調製することができる。また、p38に対するshRNAは、上記のようにして設計されたshRNA配列を有するオリゴヌクレオチドをDNA/RNA自動合成機で合成し、上記と同様にしてセルフアニーリングさせることによって調製することができる。

[0038] siRNA及びshRNAを構成するヌクレオチド分子は、天然型のRNAでもよいが、安定性（化学的および/または対酵素）や比活性（mRNAとの親和性）向上させるために、種々の化学修飾を含むことができる。例えば、ヌクレアーゼなどの加水分解酵素による分解を防ぐために、アンチセンス核酸を構成する各ヌクレオチドのリン酸残基（ホスフェート）を、例えば、ホスホロチオエート（PS）、メチルホスホネート、ホスホジチオネートなどの化学修飾リン酸残基に置換することができる。また、各ヌクレオチドの糖（リポース）の2’位の水酸基を、-OR（Rは、例えばCH₃（2’-O-Me）、CH₃CH₂OCH₃（2’-0-MOE）、CH₃CH₂NHC(NH)₃H₂、CH₃CONHCH₃、CH₃CH₂CN等を示す）に置換してもよい。さらに、塩基部分（ピリミジン、プリン）に化学修飾を施してもよく、例えば、ピリミジン塩基の5位へのメチル基やカチオン性官能基の構入、あるいは2位のカルボニル基のチオカルボニルへの置換などが挙げられる。

[0039] RNAの糖部のコンフォーメーションはC2’-endo（S型）とC3’-endo（N型）の2つが支配的であり、一本鎖RNAではこの両者の平衡として存在するが、二本鎖を形成するとN型に固定される。したがって、標的RNAに対して強い結合能を付与するために、2’酸素と4’炭素を架橋することにより、糖部のコンフォーメーションをN型に固定したRNA誘導体であるBNA(LNA)（Imanishi, T. et al., Chem. Commun., 1653-9, 2002; Jepsen, J.S. et al., Oligonucleotide
s, 14, 130-46, 2004) や ENA (Morita, K. et al., Nucleosides Nucleotides Nucleic Acids, 22, 1619-21, 2003) もまた、好ましく用いられ得る。

[0040] 但し、天然型RNA中のすべてのリポヌクレオリシド分子を修飾型で置換すると、RNAi活性が失われる場合があるので、RISC複合体が機能できる最小限の修飾ヌクレオリシドの導入が必要である。

[0041] p38に対するsiRNAは、例えば、Santa Cruz（例、Santa Cruz Cat# sc-29433, sc-29434, sc-44216）、SigmaAldrich（例、SHGLY-NM_011951）等から購入することもできる。

[0042] 本発明のp38阻害薬は、CML幹細胞、特にTKIに抵抗性を示すCML幹細胞を、効率よく排除することができるの、CMLの治療、並びに、現在有効な治療がないBlast crisisやPh+ALL等のより悪性度の高い病態への進展抑制に有効である。

[0043] 近年、種々のがんにおいてp38が活性化されていること、p38阻害薬は黑色腫、非小細胞肺癌、卵巣癌、神経膠腫、骨髄腫、乳癌など複数の腫瘍モデルで腫瘍の増殖を抑制したことが報告され、LY2228820、LY3007113、ARRY-614の3剤について第1相又は第2相試験が米仏で実施されている。しかしながら、CMLに対しては、p38の活性化はCML細胞にアポトーシスを誘導し、逆にCML細胞株K562細胞においてp38を阻害するとアポトーシスが抑制されることや、ダサチニブのCML治療効果にはp38の活性化が必須であること等が報告されており、p38を阻害するとCMLをむしろ悪化させる可能性が示唆されていた。従って、本発明において、p38を阻害することによりin vivoでCML治療効果が認められたことは驚くべき発見である。

[0044] 本発明の低分子p38阻害薬、MAPKK (M KK3/6、M KK4) の基質ペプチド、該MAPKKのドミナントネガティブ体、p38のリン酸化を立体的に妨害する抗体、p38の基質ペプチド、p38のドミナントネガティブ体等を医薬品（即ち、CML治療剤）として用いるにあたり、そのまま、もしくは公知の薬理学的に許容される担体などと混合して医薬品製造として調製することができる。当該医薬品製造物は、調製する形態（錠剤、丸剤、カプセル剤、散剤、顆粒剤、シロップ
剤、乳剤、懸濁液などの経口投与剤；注射剤、点滴剤、外用剤、坐剤などの非経口投与剤）等に応じて、全身的にまたは局所的に、経口投与または非経口投与することができる。非経口投与する場合には、静脈内投与、皮内投与、皮下投与、直腸投与、経皮投与すること等が可能である。

[0045] 本発明のCML治療剤中の、上記p38阻害薬の含有量は、組成物全体の約0.01重量%～100重量%である。

[0046] 前記の適当な投与剤型は薬理学的に許容される担体等に有効成分を配合することにより製造することができる。薬理学的に許容される担体としては、製剤素材として慣用の各種有機あるいは無機担体物質が挙げられ、例えば、固形製剤における賦形剤、滑沢剤、結合剤、崩壊剤、水溶性高分子、塩基性無機塩；液状製剤における溶剤、溶解補助剤、懸濁化剤、等張化剤、緩衝剤、無痛化剤等があげられる。また、必要に応じて、通常の防腐剤、抗酸化剤、着色剤、甘味剤、酸味剤、発泡剤、香料等の添加物を用いることもできる。

[0047] 該「賦形剤」としては、例えば、乳糖、白糖、D-マンニトール、でんぶん、コーンスターチ、結晶セルロース、軽質無水ケイ酸、酸化チタン等が挙げられる。

[0048] 該「滑沢剤」としては、例えば、ステアリン酸マグネシウム、ショ糖脂肪酸エステル、ポリエチレングリコール、タルク、ステアリン酸等が挙げられる。

[0049] 該「結合剤」としては、例えば、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、結晶セルロース、デンプン、ポリビニルピロリドン、アラビアゴム末、ゼラチン、プルラン、低置換度ヒドロキシプロピルセルロース等が挙げられる。

[0050] 該「崩壊剤」としては、（1）クロスポリビドン、（2）クロスカルメロースナトリウム（FMC－旭化成）、カルメロースカルシウム（五徳薬品）等スーパー崩壊剤と称される崩壊剤、（3）カルボキシメチルスターチナトリウム（例、松谷化学（株）製）、（4）低置換度ヒドロキシプロピルセルロ
ース（例、信越化学（株）製）、（5）コーンスターチ等が挙げられる。該「クロスポリビドン」としては、ポリビニルポリビリドン（PVP）、1－ビニル－2－ピロリジノンホモポリマーと称されているものも含め、1－エテニル－2－ピロリジノンホモポリマーという化学名を有し架橋されている重合物のいずれであってもよく、具体例としては、コリドンCL（BASF社製）、ポリプラストドンXL（ISP社製）、ポリプラストドンXL－10（ISP社製）、ポリプラストドンINF－10（ISP社製）等である。

[0051] 該「水溶性高分子」としては、例えば、エタノール可溶性水溶性高分子（例えば、ヒドロキシプロピルセルロース（以下、HPMと記載することがある）等のセルロース誘導体、ポリビニルビリドン等）、エタノール不溶性水溶性高分子（例えば、ヒドロキシプロピルメチルセルロース（以下、HPMCと記載することがある）、メチルセルロース、カルボキシメチルセルロースナトリウム等のセルロース誘導体、ポリアクリル酸ナトリウム、ポリビニルアルコール、アルギン酸ナトリウム、グアーガム等）等が挙げられる。

[0052] 該「塩基性無機塩」としては、例えば、ナトリウム、カリウム、マグネシウムおよび／またはカルシウムの塩基性無機塩が挙げられる。好ましくはマグネシウムおよび／またはカルシウムの塩基性無機塩である。さらに好ましくはマグネシウムの塩基性無機塩である。該ナトリウムの塩基性無機塩としては、例えば、炭酸ナトリウム、炭酸水素ナトリウム、リン酸水素ニトリウム等が挙げられる。該カリウムの塩基性無機塩としては、例えば、炭酸カリウム、炭酸水素カリウム等が挙げられる。該マグネシウムの塩基性無機塩としては、例えば、重質炭酸マグネシウム、炭酸マグネシウム、酸化マグネシウム、水酸化マグネシウム、メタ珪酸アルミン酸マグネシウム、珪酸マグネシウム、アルミン酸マグネシウム、合成ヒドロタルサイト（Mg₆Al₂（OH）₁₆·CO₃·4H₂O）および水酸化アルミナ・マグネシウム、好ましくは、重質炭酸マグネシウム、炭酸マグネシウム、酸化マグネシウム、水酸化マグネシウム等が挙げられる。該カルシウムの塩基性無機塩としては、例えば、沈降炭酸カルシウム、水酸化カルシウム等が挙げられる。
[0053] 該「溶剤」としては、例えば、注射用水、アルコール、プロピレングリコール、マクロゴール、ゴマ油、トウモロコシ油、オリーブ油等が挙げられる。

[0054] 該「溶解補助剤」としては、例えば、ポリエチレングリコール、プロピレングリコール、D－マンニトール、安息香酸ペンジル、エタノール、トリスアミノメタン、コレステロール、トリエタノールアミン、炭酸ナトリウム、クエン酸ナトリウム等が挙げられる。

[0055] 該「懸濁剤」としては、例えば、ステアリルトリエタノールアミン、ラウリル硫酸ナトリウム、ラウリルアミノプロピオン酸、レシチン、塩化ベンザルコニウム、塩化ペンゼントリウム、モノステアリン酸グリセリン等の界面活性剤；例えば、ポリビニルアルコール、ポリビニルピロリドン、カルボキシメチルセルロースナトリウム、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルセルロース等の親水性高分子等が挙げられる。

[0056] 該「等張化剤」としては、例えば、ブドウ糖、D－ソルビトール、塩化ナトリウム、グリセリン、D－マンニトール等が挙げられる。

[0057] 該「緩衝剤」としては、例えば、リン酸塩、酢酸塩、炭酸塩、クエン酸塩等の緩衝液等が挙げられる。

[0058] 該「無痛化剤」としては、例えばベンジルアルコール等が挙げられる。

[0059] 該「防腐剤」としては、例えば、パラオキシ安息香酸エステル類、クロプタノール、ベンジルアルコール、フェネチルアルコール、テヒドロ酢酸、ソルビン酸等が挙げられる。

[0060] 該「抗酸化剤」としては、例えば、亜硫酸塩、アスコルビン酸、α－トコフェロール等が挙げられる。

[0061] 該「着色剤」としては、例えば、食用黄色5号、食用赤色2号、食用青色2号等の食用色素；食用レーキ色素、ベンガラ等が挙げられる。

[0062] 該「甘味剤」としては、例えば、サッカリンナトリウム、グリチルリチンニカリウム、アスパラゲーム、ステビア、ソーマチン等が挙げられる。
[0063] 該「酸味剤」としては、例えば、クエン酸（無水クエン酸）、酒石酸、リンゴ酸等が挙げられる。

[0064] 該「発泡剤」としては、例えば重曹等が挙げられる。

[0065] 該「香料」としては、合成物および天然物のいずれでもよく、例えば、レモングラス、ライム、オレンジ、メントール、ストロベリー等が挙げられる。

[0066] 本発明の低分子p38阻害薬は、自体公知の方法に従い、例えば、賦形剤、崩壊剤、結合剤または滑沢剤等の担体を添加して圧縮成形して、次いで必要により、味のマスキング、腸溶性あるいは持続性の目的のため自体公知の方法でコーティングすることにより経口投与製剤とすることができる。腸溶性製剤とする場合、腸溶層と薬剤含有層との間に両層の分離を目的として、自体公知の方法により中間層を設けることもできる。

[0067] 本発明の低分子p38阻害薬を例えば口腔内崩壊錠とする場合、例えば、結晶セルロースおよび乳糖を含有する核を、本発明の低分子p38阻害薬および必要により塩基性無機塩で被覆し、さらに水溶性高分子含有被覆層で被覆して組成物を得、得られた組成物をポリエチレングルコール含有腸溶性被覆層で被覆し、次にクエン酸トリエチル含有腸溶性被覆層で被覆し、さらにポリオキシレングリコール含有腸溶性被覆層で被覆し、最後にマンニトールで被覆して細粒を得、得られた細粒と添加剤をとを混合し、成形する方法によって製造することができる。

[0068] 上記「腸溶性被覆層」としては、例えば、セルロースアセテートフタレート（CAP）、ヒドロキシプロピルメチルセルロースフタレート、ヒドロキシメチルセルロースアセテートサクシメチル、メタクリル酸共重合体（例えば、オイドラギット（Eudragit）L30D−55（商品名；レーム社製）、コリコートMAE30DP（商品名；BASF社製）、ポリキッドPA30（商品名；三洋化成社製）等）、カルボキシメチルエチルセルロース、セラック等の水系腸溶性高分子基剤；メタクリル酸共重合体（例えば、オイドラギットNE30D（商品名）、オイドラギットRL30D（商品名）、オイドラギットRS30D（商品名）等等の徐放性基剤；水溶性高分子；クエン酸
トリエチル、ポリエチレングリコール、アセチル化モノグリセリド、トリアセチン、ヒマシ油等の可塑剤等の一種または二種以上混合したもの等からなる層が挙げられる。

[0069] 上記「添加剤」としては、例えば、水溶性糖アルコール（例、ソルビトール、マンニトール、マルチトール、還元澱粉糖化物、キシリトール、還元パラチノース、エリスリトール等）、結晶セルロース（例、セオラス KG 801、アピセル PH 101、アピセル PH 102、アピセル PH 301、アピセル PH 302、アピセル RC-591（結晶セルロース・カルメロースナトリウム）等）、低置換度ヒドロキシプロピルセルロース（例、LH-22、LH-32、LH-23、LH-33（信越化学（株））およびこれらの混合物等）等が挙げられ、さらに結合剤、酸味料、発泡剤、甘味剤、香料、滑沢剤、着色剤、安定化剤、賦形剤、崩壊剤も用いる。

[0070] 本発明の低分子p38阻害薬を有効成分とするCML治療剤の投与量は、化合物の種類、投与対象、投与ルート、CMLの重篤度等によっても異なるが、例えば、LY228820を経口的に投与する場合、1回あたりのLY228820量として0.5～10 mg/kg、好ましくは1～5 mg/kgを、1日3回～5日に1回、好ましくは1日1回～3日に1回、より好ましくは2日～3日に1回の頻度で投与することができる。例えば「2日に1回」の頻度という場合、2日おきに投与する場合だけでなく、2日間連日投与して2日間休薬する場合も含むこととする。進行がん（図形癌）に対する第1相試験でのLY228820の最大耐用量（MTD）は420 mg、副作用と治療有効性に基づく推奨量は300 mg（14日間1日2回投与後、14日間休薬のサイクル）（体重60 kgとして、それぞれ14 mg/kg/日及び10 mg/kg/日に相当）であり、各種図形癌の移植モデルを用いた動物実験では10～30 mg/kgを1日2～3回経口投与していることを考慮すると、後記実施例に示されるようにLY228820、2.5 mg/kgを3日に1回投与することで有意な生存期間の延長が認められたことは、意外であるとともに、患者的薬剤耐容性を考慮するときわめて有利な効果といえる。P38 MAPKはユビキタスに発現して
いることもあり、p38阻害薬の臨床試験（例えば、BIRB 796の関節リウマチに対する臨床試験等）では、各種の副作用が報告され、安全面での問題が指摘されているが、CMLに関しては、低用量で治療効果性を示すので、副作用の問題を回避し得ると期待できる。

一方、p38に対するアンチセンス核酸、siRNA（shRNA）、リポサーム、アプダマー等の核酸性p38阻害薬をCML治療剤として使用する場合も、自体公知の方法に従って製剤化し、投与することができる。即ち、当該核酸を、単独あるいはレトロウイルスベクター、アデノウイルスベクター、アデノウイルスアソシエーテッドウイルスベクターなどの適当な哺乳動物細胞用の発現ベクターに機能可能な標的で挿入した後、常套手段に従って製剤化することができる。該核酸は、そのままでも、あるいは摂取促進のための補助剤とともに、遺伝子錠やハイドロゲルカテーテルのようなカテーテルによって投与することができる。あるいは、エアロゾル化して吸入剤として気管内に局所投与することもできる。

さらに、体内動態の改良、半減期の長期化、細胞内取り込み効率の改善を目的に、前記核酸を単独またはリポソームなどの担体とともに製剤（注射剤）化し、静脈、皮下等に投与してもよい。

本発明の核酸性p38阻害薬は、それ自体を投与してもよいし、または適当な医薬組成物として投与してもよい。投与に用いられる医薬組成物としては、当該核酸と薬理学的に許容され得る担体、希釈剤もしくは賦形剤を含むものであってよい。このような医薬組成物は、経口または非経口投与に適する剤形として提供される。

非経口投与のための組成物としては、例えば、注射剤、坐剤等が用いられ、注射剤は静脈注射剤、皮下注射剤、皮内注射剤、筋肉注射剤、点滴注射剤等の剤形を含めても良い。このような注射剤は、公知の方法に従って調製できる。注射剤の調製方法としては、例えば、上記本発明の核酸を通常注射剤に用いる無菌の水性液、または油性液に溶解、懸濁または乳化することによって調製できる。注射用の水性液としては、例えば、生理食塩水、プ
ドウ糖やその他の補助薬を含む等張液等が用いられ、適当な溶解補助剤、例えば、アルコール（例、エタノール）、ポリアルコール（例、プロピレングリコール、ポリエチレングリコール）、非イオン界面活性剤（例、ポリソルベート80、HCO-50（polyoxyethylene (50mol) adduct of hydrogenated castor oil））等と併用してもよい。油性液としては、例えば、ゴマ油、大豆油等が用いられ、溶解補助剤として安息香酸ベンジル、ペンジルアルコール等を併用してもよい。調製された注射液は、適当なアンプルに充填されることが好ましい。直腸投与に用いられる坐剤は、上記核酸を通常の坐薬用基剤に混合することによって調製されてもよい。

【0074】経口投与のための組成物としては、固体または液体の剤形、具体的には錠剤（糖衣錠、フィルムコーティング錠を含む）、丸剤、顆粒剤、散剤、カプセル剤（ソフトカプセル剤を含む）、シロップ剤、乳剤、懸濁剤等が挙げられる。このような組成物は公知の方法によって製造され、製剤分野において通常用いられる担体、希釈剤もしくは賦形剤を含有していても良い。錠剤用の担体、賦形剤としては、例えば、乳糖、でんぶん、蔗糖、ステアリン酸マグネシウムが用いられる。

【0075】上記の非経口用または経口用医薬組成物は、活性成分の投与量に適合するような投薬単位の剤形に調製されることが好都合である。このような投薬単位の剤形としては、例えば、錠剤、丸剤、カプセル剤、注射剤（アンプル）、坐剤が挙げられる。本発明の核酸性p38阻害薬は、例えば、投薬単位剤形当たり通常5〜500mg、とりわけ注射剤では5〜100mg、その他の剤形では10〜250mg含有されていることが好ましい。

【0076】本発明の核酸性p38阻害薬を含有するCML治療剤の投与量は、投与対象、症状、投与ルートなどによっても異なるが、当該核酸を1回量として、通常0.01〜20mg/kg体重程度、好ましくは0.1〜10mg/kg体重程度、さらに好ましくは0.1〜5mg/kg体重程度を、1日1〜3回、5日1回程度、静脈注射により投与するのが好都合である。他の非経口投与および経口投与の場合もこれに準ずる量を投与することができる。
[0077] 本発明のp38阻害薬の投与対象となるCML患者は、特に限定されないが、望ましくは、急性転化期や移行期へと経過する前の慢性期のCML患者である。本発明のp38阻害薬はCML幹細胞の除去に特に有用であるので、該当阻害薬を含有する本発明のCML治療剤は、特にイマチニブ等のTKIに対して抵抗性となったり、初期不応のCML患者、TKI治療後にCML幹細胞が残存した再発患者等に対して有効である。本明細書においては、特にことわらない限り、「TKIに対して抵抗性である」とは、治療中にTKIに対して抵抗性となった場合だけでなく、初期不応性の場合をも含む意味で用いることとする。

[0078] イマチニブ抵抗性はBCR-ABL依存性と非依存性の機序が考えられている。前者としてはBCR-ABL遺伝子の増幅、点突然変異（例、キナーゼドメイン中のリン酸結合ループ(p-ループ)（例、G250E、Q252H、Y253F、Y253H、E255K、E255V等）、イマチニブ結合部位（例、T315I、T315A、F317L、F317V等）、活性化ループ、触媒ループ）が挙げられ、一方、後者としては、BCR-ABLシグナル下流の活性亢進、BCR-ABLに関与しないシグナル伝達経路の活性亢進、多剤耐性（MD）タンパク質によるイマチニブの排出亢進、イマチニブ結合タンパク質（α1-酸性糖タンパク質）の増加等が挙げられる。これらのうち、キナーゼドメインの点突然変異によるものが主であると報告されているが（Cancer Cell, 2: 117-125 (2002)）、本発明のp38阻害薬は、CML幹細胞を抑制できるため、変異BCR-ABL発現CMLだけでなく、いかなる機序による治療抵抗性CMLに対しても有効であり得る。

[0079] BCR-ABLの点突然変異のうち、キナーゼドメインのN末端側であるp-ループにおける変異は、急性転化期や移行期の患者に多く見られ、予後を悪化させるとの報告があるので（Blood, 102(1): 276-283 (2003)）、本発明のCML治療剤は、p-ループ中に変異を有するBCR-ABL発現CMLに対する治療剤、急性転化阻止剤、予後改善剤として、特に有用である。

[0080] ABLに対する親和性がイマチニブより向上したマルチキナーゼ阻害剤であるニクロチニブ、イマチニブの約260倍のABLチロシンキナーゼ阻害作用を有するダサチニブといった第2世代TKIは、多くBCR-ABL点突然変異発現細胞の増殖を
抑制し得るが、イマチニブ結合部位である315番目のスレオニン残基がイソロイシンに置換されたT315I変異BCR-ABL発現細胞に対しては無効である。KW2449（Blood, 114: 1607-1617 (2009))やボナチニブ（Cancer Cell, 16: 401-412 (2009))といった第三世代マルチキナーゼ阻害薬は、T315I変異BCR-ABL発現細胞に対しても有効であることが第I相試験で示されているが、細胞遺伝学的な完全寛解に至る症例は限定的であり、T315I変異BCR-ABL発現CML細胞に対するより強力な治療薬、KW2449やボナチニブの治療効果を補完し得る併用薬の開発が望まれる。本発明のp38阻害薬は、T315I変異BCR-ABLを発現するイマチニブ抵抗性CML幹細胞に対して、単独で顕著な増殖抑制効果を示し、かつKW2449やボナチニブと併用することにより、それらマルチキナーゼ阻害薬を単独投与した場合よりも、さらにCML幹細胞の増殖を抑制し得るので、従来極めて難治性であったT315I変異BCR-ABL発現CMLに対して、本発明のp38阻害薬は特に有効な治療薬となり得る。

[0081] また、本発明のp38阻害薬は、がん微小環境を模倣した培養条件下で、単独投与及びTKIとの併用投与のいずれにおいても優れたCML幹細胞の増殖抑制効果を奏する。がん微小環境（ニッチ細胞）から産生される様々なシグナルは、CML幹細胞の生存及びイマチニブ抵抗性の獲得に寄与していると考えられるので、TKIやマルチキナーゼ阻害薬と併用することで、CML幹細胞でのBCR-ABLに関与しないシグナル伝達経路の活性亢進に基づくイマチニブ抵抗性CMLに対しても有効であり得る。

[0082] 従って、本発明はまた、本発明のp38阻害薬とTKI又はマルチキナーゼ阻害薬とを組み合わせてなる、CML治療剤（併用剤）を提供する。現在承認されているチロシンキナーゼ阻害薬としてはイマチニブ、ダサチニブ、ニロチニブ、ボスチニブ、ラドチニブがあり、また、現在臨床試験中の第2世代TKIとしてパフェチニブ等がある。一方、マルチキナーゼ阻害薬としては、KW2449、ボナチニブ、AT9283等があるが、BCR-ABLに対する分子標的薬として作用するTKIとマルチキナーゼ阻害薬であれば、いかなるものであっても使用できる。

[0083] 本発明の併用剤において用いられるTKIやマルチキナーゼ阻害薬の剤形、投
与経路および投与量などは、それを適用するCML患者に対して通常使用されるものであればよい。例えば、イマチニブの場合、慢性期CML患者に対しては400－600 mg／日、移行期又は急性転化期の患者に対しては600－800 mg／日を、1回もしくは2回に分けて経口投与することができる。ニロチニブの場合、慢性期又は移行期のCML患者に対し、1回あたり400 mgを1日2回経口投与することができる。ダサチニブの場合、慢性期のCML患者に対しては1日1回100－140 mg、移行期又は急性転化期の患者に対しては1回あたり70－90 mgを1日2回、経口投与することができる。K2449の場合、1日あたり50－500 mgを1回もしくは2回に分けて経口投与することができる。ボナチニブの場合、1日1回45 mgを経口投与することができる。

【0084】本発明の併用剤は、TKIやマルチキナーゼ阻害薬の単独投与と比較して顕著な併用効果を奏するので、併用剤において用いられるTKIやマルチキナーゼ阻害薬の投与量は、単独投与において通常使用されている量よりも減量することができる。イマチニブやダサチニブでは血液毒性（血小板、好中球、白血球の減少等）が髄線度に発現する他、皮膚症候（皮疹等）、消化器症候（悪心、下痢等）、体液貯留（腫水貯留、眼瞼浮腫等）、肝障害、急性期炎等の副作用が報告されており、TKIの減量によりこれらの副作用の軽減が期待される。また、マルチキナーゼ阻害薬は、BCR-ABLだけでなくAuroraキナーゼやFLT3など他のキナーゼによるシグナル伝達をも阻害するので、潜在的に副作用のリスクが高く、実際、血栓性イベントの蓄積のため、新規診断慢性期CMLに対する第III相試験は中止となった。そのため、本発明のp38阻害薬との併用により、マルチキナーゼ阻害薬の投与量を減量できれば、副作用が低減された、より安全なCML治療剤を提供することができる。

【0085】本発明のp38阻害薬とTKI又はマルチキナーゼ阻害薬とは、合剤として、別個に同時に、もしくは経時的に投与されてよい。但し、後述の実施例の結果より、TKI又はマルチキナーゼ阻害薬と同時もしくはTKI又はマルチキナーゼ阻害薬の投与に先だって本発明のp38阻害薬の投与を開始すると、却ってCML
の増悪を招くおそれがある。いかなる理論にも拘泥されるわけではないが、本発明のp38阻害薬はCML幹細胞を抑制するが、分化した成熟CML細胞を抑制しない可能性を否定できないため、先ずTKI又はマルチキナーゼ阻害薬の投与を開始し、成熟CML細胞をある程度抑制して病態を改善した後に、本発明のp38阻害薬の投与を開始することが好ましい。例えば、TKI又はマルチキナーゼ阻害薬投与開始から3〜14日後、好ましくは5〜10日後、より好ましくは約7日後に本発明のp38阻害薬の投与を開始することができる。

[0086] 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。

参考例1

[0087] マウスCML幹細胞におけるp38 MAPKシグナル経路の活性化

本参考例では、テトラサイクリン誘導型CMLマウスモデルから純化したCML幹細胞を用いて、p38MAPKスレオニン180残基、並びにチロシン182残基のリン酸化状態を解析した。

[0088] (1) セルソーターを用いたマウス慢性骨髄性白血病(CML)幹細胞、及びマウス正常造血幹細胞の純化

(1-1) テトラサイクリン誘導型マウスCMLモデル

本CMLマウスモデルは、造血幹細胞特異的にテトラサイクリン制御性転写活性化因子(tTA)を発現するトランスジェニックマウスScl-tTAマウス（ジャクソン研究所より購入：#6209）と、tTAによって発現制御が可能なBCR-ABL1トランスジェニックマウストet0-BCR-ABL1マウス（ジャクソン研究所より購入：#6202）を交配させたダブルトランスジェニックマウスである（Blood 113, 1613-1630 (2009)）。2つのトランスジェーンを有するScl-tTA: tet0-BCR-ABL1マウスは、テトラサイクリン誘導体であるドキシサイクリン(Dox) (20mg/l; Sigma社製)の投与によりBCR-ABL1の発現を抑制し、Dox投与中止によりBCR-ABL1の発現を誘導することができる。このScl-tTA: tet0-BCR-ABL1ダブルトランスジェニックマウスのDox投与を中止してBCR-ABL1の発現を誘導し、5週間後、CML発症マウスを得た。
（1－2）マウス造血幹細胞及びマウスCML幹細胞の純化

上記のごとく、CMLマウスモデルとしてScl-tTA・tetO-BCR-ABL1ダブルトランスジェニックマウスを用い、一方で、比較対照として、同属仮のScl-tTA単独マウストランスジェニックを健常マウスとして用いた。

これらマウスのDox投与を中止し、5週間後、CML発症マウス、並びに正常マウスから骨髄単核球を取得した。この骨髄単核細胞を、抗CD4（L3T4）、抗CD8（53-6.7）、抗B220（RA3-6B2）、抗TER119（Ly-76）、抗Gr-1（RB6-8C5）、抗Mac1（M1/70）、抗Sca-1（E13-161.7）、並びに抗c-Kit（2B8）抗体（以上、BD bioscience社製）、抗CD150/SLAM（TC15-12F12.2）-Pacific blue、抗CD48（HM48-1）-APC-Cy7抗体（以上、BioLegend社製）、抗CD135/Flk2/Flt3（A2F10）-biotin抗体（eBioscience社製）、ストレプトアビジン-PE-Cy7（BD Biosciences社製）を用いて染色した。これらの染色を行ったマウスCML細胞、並びに正常骨髄細胞から、セルソーター（FACS Aria III BD社製）を用いて、それぞれ、マウス長期CML幹細胞 {CD150陽性、CD135陰性、CD48陰性、cKit陽性、分化マーカー（CD4、CD8、B220、TER119、Mac1、Gr-1）陰性、Sca-1陽性細胞、（以下、「CD150・KLS細胞」と称する）}、並びに長期造血幹細胞（CD150+KLS細胞）の純化を行った。

（2）CML幹細胞におけるp38 MAPKシグナル経路の活性化

（1－2）で純化したマウスCML幹細胞、並びにマウス正常造血幹細胞を用いてp38 MAPKのリン酸化状態をDuolink PLA法（Olink社製）により解析した。p38 MAPKシグナル伝達経路の活性化を、p38 MAPKの180位のスレオニン、並びに182位のチロシンの残基のリン酸化を特異的に検出するラビット抗リン酸化p38 MAPK抗体（Cell Signaling社製、D13E1 #8690）と、マウス抗p38 MAPK抗体（Cell Signaling社製、28D10 #9216）の組み合わせ、また、対照として、CML幹細胞、並びに正常造血幹細胞において活性化が報告されているTGF-βシグナル経路の活性化を、Smad3の423位のセリン、並びに425位のセリンのリン酸化を特異的に検出するラビット抗リン酸化Smad3抗体（Abcam社製、ab51451）と、マウス抗Smad3抗体（Abcam社製、ab75512）との組み合わせを、それぞれ
用いて解析した。

まず、正常造血幹細胞、並びにCML幹細胞においてTGF-βシグナルの活性化を示すSmad3のリン酸化を確認した（図2下段）。次いで、p38 MAPKのリン酸化状態を解析した結果、CML幹細胞においてp38 MAPKシグナル経路の活性化を示すリン酸化スレオニン180並びにチロシン182を検出した（図2左上）。従って、正常造血幹細胞とは異なり、CML幹細胞ではp38 MAPKシグナル伝達経路が活性化されていることが明らかとなった。

実施例1

[0091] インビトロでのマウスCML幹細胞に対するp38 MAPK阻害薬の抑制効果

上記のごとく、CML幹細胞においてp38 MAPK経路が活性化していることが明らかとなったため、インビトロでのp38 MAPK阻害薬によるCML幹細胞の抑制効果を解析した。

インビトロにおいてCML幹細胞の維持を解析するため、生体内でCML幹細胞を支持する微小環境を模倣したマウス間葉系細胞株OP-9細胞との共培養系を用いた。この、OP-9細胞との共培養系により、p38 MAPK阻害薬で処理したマウスCML幹細胞のコロニー形成能力を解析して、CML幹細胞の維持に及ぼすp38 MAPK阻害薬の抑制効果を解析した。

まず、マウス間葉系細胞株OP-9細胞100,000細胞を24ウェルプレートで1日間単層培養した。この細胞上に上記により純化したマウス長期CML幹細胞（CD150+KLS）細胞1,000細胞を加えた。この培養液に複数の公知のp38 MAPK阻害薬Ly2228820 (Santacruz社より購入、最終濃度5μM)、VX-702 (Santacruz社より購入、最終濃度5μM)、BIRB 796 (Calbiochem社より購入、最終濃度5μM)（各化合物の構造式を図1に示す。）を添加し、5日間、3%酸素濃度条件下、37℃で培養を行った。

これらのp38 MAPK阻害薬で処理したCML細胞を回収し、リン酸緩衝液を用いて残存する阻害薬を洗浄後、メチルセルロース半固形培地（GFM3434; Stem cell technology社製）中で、3%酸素濃度条件下、37℃で一週間培養して、コロニー形成能を評価した。
その結果、p38 MAPK阻害薬との処理によってマウス長期CML幹細胞のコロニー形成能を抑制できることが明らかとなった（図3 A）。

実施例 2

[0092] インビトロでのマウスCML幹細胞に対するp38阻害剤とTKIとの併用効果

さらに、TKI抵抗性CML幹細胞に対する治療効果を検証するため、上述のp38 MAPK阻害薬（Ly2228820、VX-702、並びにBIRB 796）、及びメシル酸イマチニブとの共処理後のCML幹細胞のコロニー形成能を解析した。

マウス間葉系細胞株OP-9細胞100,000細胞を24ウェルプレートで1日間単層培養した。このOP-9間葉系細胞上に、マウス長期CML幹細胞（CD150+KLS）3,000細胞を加えた。培養液に上記のp38 MAPK阻害薬Ly2228820（5 μM）、VX-702（5 μM）、及びBIRB 796（5 μM）を添加し、1日間、3%酸素濃度条件下、37℃で培養を行った。さらに、この培養液にメシル酸イマチニブ（Axon Medchem社より購入、最終濃度1 μM）を添加し、4日間、（全体で5日間）、3%酸素濃度条件下、37℃で培養を行った。

p38 MAPK阻害薬とメシル酸イマチニブとの共処理を行ったCML細胞を回収し、リン酸緩衝液を用いて残存する阻害薬を洗浄後、メチルセルロース半固形培地（GFM3434；Stem cell technology社製）中で、3%酸素濃度条件下、37℃で1週間培養して、コロニー形成能を評価した。

その結果、イマチニブ存在条件下で、p38 MAPK阻害薬はマウスCML幹細胞に対する抑制効果を有することが明らかとなった（図3 B）。則ち、p38 MAPK阻害剤はTKI抵抗性CML幹細胞に対して抑制効果を有していると考えられる。

実施例 3

[0093] マウスCML幹細胞移植マウスに対するp38 MAPK阻害薬の単剤投与による治療効果

マウス生体内での、p38 MAPK阻害薬のCML幹細胞に対する治療効果を解析するため、CML幹細胞を移植してCMLを発症したマウスに対して、p38 MAPK阻害薬Ly2228820の単独投与を行い、マウスの生存期間の解析を行った。

[0094] （1）BCRABL1-GFP遺伝子導入によるマウスCML幹細胞移植モデルの樹立
正常マウス（C57BL/6）から骨髄単核細胞を取得し、抗CD4（L3T4）、抗CD8（5–6.7）、抗B220（RA3–6B2）、抗TER119（Ly-76）、抗Gr-1（RB6–8C5）、抗Mac1（M1/70）、抗Sca-1（E13–161.7）、並びに抗c–Kit（2B8）抗体を用いて染色を行った。このマウス骨髄単核細胞から、セルソーター（FACS Aria III、BD社製）を用いて、マウスの正常造血幹細胞を含む分化マーカー（CD4、CD8、B20、TER119、Gr-1、Mac1）陰性・c–Kit陽性・Sca-1陽性細胞集団（以下、「KLSS細胞」と称する）を純化した。この細胞集団を100 ng/ml ヒトTPO（Thrombopoietin; PeproTech社製）、並びに100 ng/ml マウスSCF（Stem cell factor; 和光純薬社製）を含む有無血清培地S–Clone（SF–03三光純薬社製）で1日間培養した。このKLSS細胞に、レトロウイルスペクターを用いてBCRABL1–GFP遺伝子を導入した。1日間サイトカイン含有S–Clone培地で培養後、別途取得したマウス（C57BL/6）の骨髄単核細胞（レシピエントマウス＝匹当たり5×10⁵細胞）と共に、放射線照射（9.0 Gy）したレシピエントマウス（C57BL/6）に移植（尾静脈より注射）した（一次移植）。放射線照射は日立メディコ社製MBR–1520R–3を用い、0.5 mmアルミニウム・0.5 mm銅板で放射線にfilterをかけ、0.45から0.55 Gy/分で照射を行った。

[0095]（2）CML幹細胞移植マウスに対するp38 MAPK阻害薬の治療効果

BCR–ABL1–GFP遺伝子を導入した造血幹細胞を移植してCMLを発症したマウスに対して、移植8日後から50日後まで、コントロール投与（人工胃液；900 ml二回蒸留水、2.0 g NaCl、7 ml conc. HCl、3.2 g pepsin含有）、またはLy2228820（25 mg/ml DMSO溶液を上記の人工胃液で1/100希釈して調製。最終濃度0.25 mg/ml）を含む200 μl人工胃液を、Ly2228820を最終濃度2.5 mg/kgで、3日毎に経口投与した。これらCML発症マウスの生存期間を解析した。

その結果、Ly2228820の投与群では、コントロール群と比較して、CMLの発症を改善した（図4）。従って、p38 MAPK阻害薬はインビボにおいてCML幹細胞に対する治療効果を有していると考えられる。

実施例 4

[0096]誘導型CMLマウスに対するp38 MAPK阻害薬とダサチニブとの併用効果
(1) 投与プロトコル1 (Ly2228820同時投与開始、連日投与)

参考例1で用いた誘導型CMLマウスモデルを用いて、ダサチニブの単独投与、並びにp38MAPK阻害剤とダサチニブの併用投与による治療効果の評価を行った。

記のScl-tTA・tetO-BCR-ABL1ダブルトランスジェニックマウスを用い、ドキシサイクリン投与中止して、0日目から30日後まで、ダサチニブ（商品名スプリセル、5 mg/kg/日、ブリストルマイヤーズ社製）の経口投与を行った。このスプリセル投与マウスを2群に分け、1群には200 μlの人工胃液（900 ml二回蒸留水、2.0 g NaCl、7 ml conc. HCl、3.2 g pepsin含有）、もう1群にはLy2228820（0.25 mg/ml）を含む200 μl人工胃液を、Ly2228820最終濃度2.5 mg/kg/日で、CML誘導後0日目から30日まで連日経口投与した。
その結果、ダサチニブ単独投与群と比較して、ダサチニブとLy2228820の併用投与群ではCML誘導マウスの明らかな延命効果は見られなかった（図5）。

(2) 投与プロトコル2 (Ly2228820 1週間後投与開始、2-3日おきに投与)

p38 MAPKはユビキタスで発現していることもあり、p38 MAPK阻害薬の各種臨床試験においても多くの副作用が報告されていることから、p38 MAPK阻害薬を連日投与から2日（n=15）又は3日（n=16）に1回投与に、投与間隔をあげてみた。また、p38阻害薬のCML幹細胞に対する抑制効果は実証されたが、分化した成熟CML細胞に対する反発は明らかでないため、まずダサチニブでCML細胞をある程度死滅させた後でp38 MAPK阻害薬を作用させるべく、ダサチニブ投与開始から1週間後に、Ly2228820の投与を開始した。
その結果、ダサチニブ単独投与群と比較して、ダサチニブとLy2228820の併用投与群ではCML誘導マウスの生存率を改善することが明らかとなった（図6）。更に、p38 MAPK阻害剤との併用により、ダサチニブ抵抗性のCML幹細胞の治療効果を高めることができ、CMLの発症を抑制できることが期待される。

実施例 5

[0098] インビトロでのヒトCML幹細胞に対するp38 MAPK阻害薬の抑制効果
ダサチニブ抵抗性のヒトCML幹細胞に対するp38 MAPK阻害薬の治療効果を評価するため、マウス間葉系細胞株OP-9細胞上でCML患者由来のヒトCML幹細胞の共培養を実施した。

まず、マウス間葉系細胞株OP-9細胞100,000細胞を24ウェルプレートで1日間単層培養した。この細胞上にヒトCML幹細胞6,000細胞（ダサチニブで処理しないウェル）または100,000細胞（ダサチニブで処理するウェル）を加えた。この培養液に最終濃度5 μMでLy228820を添加し、1日間5%酸素濃度条件下、37℃で培養した。この培養液に最終濃度500nMでダサチニブを添加し、2日間5%酸素濃度条件下、37℃で培養した（全体で3日間）。細胞を回収し、リン酸緩衝液を用いて残存する阻害剤を洗浄後、メチルセルロース半固形培地（GF4435；Stem cell technology社製）中で、5%酸素濃度条件下、37℃で一週間培養して、コロニー形成能を評価した。

その結果、p38 MAPK阻害薬は、ヒトCML患者由来のCML幹細胞に対して抑制効果を示した（図7左（コントロール）。また、ダサチニブとp38 MAPK阻害薬との併用は、ダサチニブの単独投与に比べてコロニー形成能をさらに抑制した（図7右（ダサチニブ）。）則ち、p38 MAPK阻害薬はTKI抵抗性のヒトCML幹細胞に対して抑制効果を有していると考えられる。従って、p38 MAPK阻害薬はCML患者のヒトCML幹細胞に対する治療薬となる可能性がある。

産業上の利用可能性

[0099] TKI治療によれば根絶を免れる可能性のあるCML幹細胞（特にT315I変異BCR-ABL発現CML幹細胞を含むTKI抵抗性CML幹細胞）を、効率よく排除することができる。またTKIやマルチキナーゼ阻害薬との併用により、より治療効果を高めることができ、CMLとPh'ALLの再発の予防効果をもたらすとともに、TKIやマルチキナーゼ阻害薬の投与量を低減することができ、副作用を軽減させる点で有用である。さらに、これまで有効な治療方法の確立されていない再発CML患者に対する新たな治療方法となる。

[0100] 本出願は、日本で出願された特許出願特願2015－75195（出願日：2015年4月1日）を基礎としており、その内容は本明細書に全
て包含されるものである。
請求の範囲

【請求項1】 p38 MAPKシグナルの選択的阻害薬を含有してなる、慢性骨髄性白血病治療剤。

【請求項2】 阻害薬がp38α及びp38βを阻害するものである、請求項1記載の剤。

【請求項3】 阻害薬がLY2228820、VX-702、BIRB 796及びそれらの塩からなる群より選択される、請求項1又は2記載の剤。

【請求項4】 阻害薬がLY2228820又はその塩である、請求項3記載の剤。

【請求項5】 慢性骨髄性白血病幹細胞の除去剤である、請求項1～4のいずれか1項に記載の剤。

【請求項6】 チロシンキナーゼ阻害薬に対して抵抗性の慢性骨髄性白血病幹細胞の抑制剤である、請求項1～4のいずれか1項に記載の剤。

【請求項7】 チロシンキナーゼ阻害薬又はマルチキナーゼ阻害薬と組み合わせる、請求項1～6のいずれか1項に記載の剤。

【請求項8】 チロシンキナーゼ阻害薬がイマチニブ、ダサチニブ、ポスチニブ、ラドチニブ又はニロチニブであり、マルチキナーゼ阻害薬がKW2449又はポナチニブである、請求項7記載の剤。
（投与同時開始、連日等投与）

ダサチニブ（5mg/Kg/日）と
Ly2228820（2.5 mg/Kg/日）（n=6）

ダサチニブ（5mg/Kg/日）（n=40）

OML誘導後の期間（日）
（1週間後に開始、2日、または3日に一回投与）

ダサチニブ (5mg/Kg/日) と
Ly228820 (2.5 mg/Kg/2-3日) (n=31)

ダサチニブ (5mg/Kg/日) (n=35)

コントロール (n=31)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
A61K45/00(2006.01)i, A61K31/437(2006.01)i, A61K31/4418(2006.01)i, A61K31/455(2006.01)i, A61K31/496(2006.01)i, A61K31/4985(2006.01)i, A61K31/5025(2006.01)i, A61K31/506(2006.01)i, A61K31/5377(2006.01)i, According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
JSTPlus/JMEDPlus/JST7580(JDreamIII), CAplus/MEDLINE/EMBASE/BIOSIS(STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>TODD, A Carter et al., Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases, Proceedings of the National Academy of Sciences, 2005, Vol. 102, No. 31, p. 11011-11016, Abstract, 11012 left column, 2nd paragraph</td>
<td>1-3</td>
</tr>
<tr>
<td>Y</td>
<td>JISHI, Wang et al., Induction of Na+-H+ Ion Exchanger 1 Protein By Heme Oxygenase-1 Plays a Crucial Role in Imatinib-Resistant Chronic Myeloid Leukemia Cells Via p38/MAPK Signaling Pathway, Blood, 2014, Vol. 124, No. 21, p. 5513, entire text</td>
<td>1,2,5-8</td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C. □ See patent family annex.

* Special categories of cited documents:
 "A" earlier document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "O" document referring to an oral disclosure, use, exhibition or other means of publication prior to the international filing date but later than the priority date claimed
 "P" document member of the same patent family

Date of the actual completion of the international search
26 April 2016 (26.04.16)

Date of mailing of the international search report
17 May 2016 (17.05.16)

Name and mailing address of the ISA/
Japan Patent Office
3-4-3, Kasumigaseki, Chiyoda-ku,
Tokyo 100-8915, Japan

Authorized officer

Telephone No.
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>NICK, Giafis et al, Role of the p38 Mitogen-Activated Protein Kinase Pathway in the Generation of Arsenic Trioxide-Dependent Cellular Responses, Cancer research, 2006, Vol. 66, No. 13, p. 6763-6771, Abstract, page 6764, left column, 1st paragraph</td>
<td>1,2 5-8</td>
</tr>
<tr>
<td>X</td>
<td>JP 2005-281183 A (President of National Cancer Center, Pharmaceuticals and Medical Devices Agency), 13 October 2005 (13.10.2005), claims 4, 6; paragraph [0035] (Family: none)</td>
<td>1 5-8</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2014-100139 A (Mie University), 05 June 2014 (05.06.2014), paragraph [0019] (Family: none)</td>
<td>5,6</td>
</tr>
</tbody>
</table>
Continuation of A. CLASSIFICATION OF SUBJECT MATTER
(International Patent Classification (IPC))
A61K45/06(2006.01)i, A61P35/02(2006.01)i, A61P43/00(2006.01)i

(According to International Patent Classification (IPC) or to both national classification and IPC)
国際調査報告

国際出願番号 PCT/JP2016/060803

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. A61K45/00(2006.01)i, A61K31/437(2006.01)i, A61K31/4418(2006.01)i, A61K31/455(2006.01)i, A61K31/496(2006.01)i, A61K31/4985(2006.01)i, A61K31/5025(2006.01)i, A61K31/506(2006.01)i, A61K31/5377(2006.01)i, A61K45/06(2006.01)i, A61P35/02(2006.01)i, A61P43/00(2006.01)i

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>関連する</th>
<th>関連する</th>
</tr>
</thead>
<tbody>
<tr>
<td>請求項の番号</td>
<td>請求項の番号</td>
</tr>
<tr>
<td>X</td>
<td>TOBND, A Carter et al., Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases, Proceedings of the National Academy of Sciences, 2005, Vol. 102, No. 31, p. 11011-11016, Abstract, 11012左欄第2段落</td>
</tr>
<tr>
<td>Y</td>
<td>JISHI, Wang et al., Induction of Na+H+ Ion Exchanger 1 Protein by Heme Oxygenase-1 Plays a Crucial Role in Imatinib-Resistant Chronic Myeloid Leukemia Cells Via p38/MAPK Signaling Pathway, Blood, 2014, Vol. 124, No. 21, p. 5513, 全文</td>
</tr>
</tbody>
</table>

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>項目</th>
<th>関連する文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>TOBND, A Carter et al., Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases, Proceedings of the National Academy of Sciences, 2005, Vol. 102, No. 31, p. 11011-11016, Abstract, 11012左欄第2段落</td>
</tr>
<tr>
<td>Y</td>
<td>JISHI, Wang et al., Induction of Na+H+ Ion Exchanger 1 Protein by Heme Oxygenase-1 Plays a Crucial Role in Imatinib-Resistant Chronic Myeloid Leukemia Cells Via p38/MAPK Signaling Pathway, Blood, 2014, Vol. 124, No. 21, p. 5513, 全文</td>
</tr>
</tbody>
</table>

国際調査を完了した日

国際調査報告の発送日

17.05.2016

国際調査機関の名称及び住所

日本国特許庁（ISA/JP）

郵便番号100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）

菊池 美香

電話番号 03-3581-1101 内線 3439

様式PCT/ISA/210（第2ページ）（2015年1月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリ※</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>NICK, Giafis et al, Role of the p38 Mitogen-Activated Protein Kinase Pathway in the Generation of Arsenic Trioxide-Dependent Cellular Responses, Cancer research, 2006, Vol. 66, No. 13, p. 6763-6771, Abstract, 第 6764 頁左欄第 1 段落</td>
<td>1, 2</td>
</tr>
<tr>
<td>X</td>
<td>JP 2005-281183 A (国立がんセンター総長、独立行政法人医薬品医療機器総合機構) 2005.10.13, 請求項4および6, 【0 0 3 5】 (ファミリーなし)</td>
<td>1</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2014-100139 A (国立大学法人三重大学) 2014.06.05, 【0 0 1 9】 (ファミリーなし)</td>
<td>5, 6</td>
</tr>
</tbody>
</table>