TOP > 国内特許検索 > 磁性微粒子とその製造方法およびそれらを用いた磁石とその製造方法 > 明細書

Specification :磁性微粒子とその製造方法およびそれらを用いた磁石とその製造方法

Country 日本国特許庁(JP)
Gazette 特許公報(B2)
Patent Number 特許第4820988号 (P4820988)
Publication number 特開2007-129079 (P2007-129079A)
Date of registration 平成23年9月16日(2011.9.16)
Date of issue 平成23年11月24日(2011.11.24)
Date of publication of application 平成19年5月24日(2007.5.24)
Title of the invention, or title of the device 磁性微粒子とその製造方法およびそれらを用いた磁石とその製造方法
IPC (International Patent Classification) H01F   1/11        (2006.01)
H01F   1/08        (2006.01)
H01F  41/02        (2006.01)
FI (File Index) H01F 1/11 A
H01F 1/08 A
H01F 41/02 G
Number of claims or invention 5
Total pages 11
Application Number 特願2005-320707 (P2005-320707)
Date of filing 平成17年11月4日(2005.11.4)
Date of request for substantive examination 平成20年9月30日(2008.9.30)
Patentee, or owner of utility model right 【識別番号】304028346
【氏名又は名称】国立大学法人 香川大学
Inventor, or creator of device 【氏名】小川 一文
Representative 【識別番号】100139262、【弁理士】、【氏名又は名称】中嶋 和昭
Examiner 【審査官】山田 倍司
Document or reference 特開2003-168606(JP,A)
特表平10-502494(JP,A)
特開平02-197102(JP,A)
特開平08-337654(JP,A)
特開2005-280020(JP,A)
特開2004-337742(JP,A)
特開平07-037716(JP,A)
特開2005-290582(JP,A)
特開2007-117828(JP,A)
Field of search H01F 1/00- 1/117
1/40
7/00- 7/02
41/00-41/04
Scope of claims 【請求項1】
一端に第1の反応性の官能基を含み、他端でSiを介して表面に共有結合した第1の有機薄膜で被われた第1の反応性磁性微粒子
一端に前記第1の反応性の官能基と反応して共有結合を形成する第2の反応性の官能基を含み、他端でSiを介して表面に共有結合した第2の有機薄膜で被われた第2の反応性磁性微粒子が混合され、互いに前記第1の反応性の官能基と前記第2の反応性の官能基との反応により形成された共有結合を介して共有結合して成形されていることを特徴とする磁石。
【請求項2】
前記第1および第2の反応性の官能基の一方がエポキシ基、他方がイミノ基あることを特徴とする請求項記載の磁石。
【請求項3】
前記第1および第2の有機薄膜が共に単分子膜で構成されていることを特徴とする請求項1または2記載の磁石。
【請求項4】
直鎖アルキレン基の一端に第1の反応性の官能基を含み、他端にアルコキシシリル基を含む第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に磁性微粒子を分散させ、一端に前記第1の反応性の官能基を含み、他端でSiを介して表面に共有結合した第1の有機薄膜で被われた第1の反応性磁性微粒子を製造する工程と、
直鎖アルキレン基の一端に前記第1の反応性の官能基と反応して共有結合を形成する第2の反応性の官能基を含み、他端にアルコキシシリル基を含む第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に磁性微粒子を分散させ、一端に前記第2の反応性の官能基を含み、他端でSiを介して表面に共有結合した第2の有機薄膜で被われた第2の反応性磁性微粒子を製造する工程と、
前記第1の反応性磁性微粒子前記第2の反応性磁性微粒子を混合し鋳型に入れて、磁場中で加圧加温し、前記第1の反応性の官能基と前記第2の反応性の官能基とを反応させ、共有結合を形成させる工程を含むことを特徴とする磁石の製造方法。
【請求項5】
前記第1の反応性磁性微粒子と前記第2の反応性磁性微粒子を鋳型に入れる際、磁場中で超音波を印加しながら行うことを特徴とする請求項記載の磁石の製造方法。
Detailed description of the invention 【技術分野】
【0001】
本発明は、磁性微粒子とその製造方法およびそれらを用いた磁石とその製造方法に関するものである。さらに詳しくは、表面を安定化させるか、表面に熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性を付与した磁性微粒子とその製造方法およびそれらを用いて作製した磁石とその製造方法に関するものである。
【0002】
本発明において、「磁性微粒子」には、磁性金属微粒子や磁性金属酸化物微粒子が含まれる。
【背景技術】
【0003】
従来から、磁性微粒子を焼結した磁石や、樹脂中に磁性微粒子分散固化したプラスチック磁石が数多く知られている。
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、磁性微粒子を焼結した磁石では、高温で焼結するため磁性粒子の磁気特性が劣化して高性能な磁石は得られなかった。また、樹脂中に磁性微粒子分散固化したプラスチック磁石では、樹脂をバインダーにしているため弾力性は持っているが、磁化強度に優れた磁石は得られなかった。
【0005】
本発明は、磁性微粒子を固化した磁石でありながら、従来の焼結磁石に比べて、磁性微粒子の焼結温度を低くすると共にバインダーを用いないで固化することにより、より高性能な磁気特性を有する磁性微粒子固化磁石を提供することを目的とする。
【課題を解決するための手段】
【0006】
(削除)
【0007】
(削除)
【0008】
(削除)
【0009】
(削除)
【0010】
(削除)
【0011】
(削除)
【0012】
(削除)
【0013】
(削除)
【0014】
(削除)
【0015】
(削除)
【0016】
前記課題を解決するための手段として提供される第一の発明は、一端に第1の反応性の官能基を含み、他端でSiを介して表面に共有結合した第1の有機薄膜で被われた第1の反応性磁性微粒子、一端に前記第1の反応性の官能基と反応して共有結合を形成する第2の反応性の官能基を含み、他端でSiを介して表面に共有結合した第2の有機薄膜で被われた第2の反応性磁性微粒子が混合され、互いに前記第1の反応性の官能基と前記第2の反応性の官能基との反応により形成された共有結合を介して共有結合して成形されていることを特徴とする磁石である
【0017】
(削除)
【0018】
(削除)
【0019】
の発明は、第の発明において、前記第1および第2の反応性の官能基の一方がエポキシ基、他方がイミノ基あることを特徴とする磁石である。
【0020】
の発明は、第の発明またはの発明において、前記第1および第2の有機薄膜が共に単分子膜で構成されていることを特徴とする磁石である。
【0021】
の発明は、直鎖アルキレン基の一端に第1の反応性の官能基を含み、他端にアルコキシシリル基を含む第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に磁性微粒子を分散させ、一端に前記第1の反応性の官能基を含み、他端でSiを介して表面に共有結合した第1の有機薄膜で被われた第1の反応性磁性微粒子を製造する工程と、直鎖アルキレン基の一端に前記第1の反応性の官能基と反応して共有結合を形成する第2の反応性の官能基を含み、他端にアルコキシシリル基を含む第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に磁性微粒子を分散させ、一端に前記第2の反応性の官能基を含み、他端でSiを介して表面に共有結合した第2の有機薄膜で被われた第2の反応性磁性微粒子を製造する工程と、前記第1の反応性磁性微粒子前記第2の反応性磁性微粒子を混合し鋳型に入れて、磁場中で加圧加温し、前記第1の反応性の官能基と前記第2の反応性の官能基とを反応させ、共有結合を形成させる工程を含むことを特徴とする磁石の製造方法である。
【0022】
(削除)
【0023】
の発明は、第の発明において、前記第1の反応性磁性微粒子と前記第2の反応性磁性微粒子を鋳型に入れる際、磁場中で超音波を印加しながら行うことを特徴とする磁石の製造方法である。
以下これらの発明についての要旨を説明する。
【0024】
(削除)
【0025】
(削除)
【0026】
(削除)
【0027】
(削除)
【0028】
(削除)
【0029】
本発明は、直鎖アルキレン基の一端に第1の反応性の官能基を含み、他端にアルコキシシリル基を含む第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に磁性微粒子を分散させ、一端に前記第1の反応性の官能基を含み、他端でSiを介して表面に共有結合した第1の有機薄膜で被われた第1の反応性磁性微粒子を製造し、直鎖アルキレン基の一端に前記第1の反応性の官能基と反応して共有結合を形成する第2の反応性の官能基を含み、他端にアルコキシシリル基を含む第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に磁性微粒子を分散させ、一端に前記第2の反応性の官能基を含み、他端でSiを介して表面に共有結合した第2の有機薄膜で被われた第2の反応性磁性微粒子を製造し、次いで、前記第1の反応性磁性微粒子前記第2の反応性磁性微粒子を混合し鋳型に入れて、磁場中で加圧加温し、前記第1の反応性の官能基と前記第2の反応性の官能基とを反応させ、共有結合を形成させることにより、一端に第1の反応性の官能基を含み、他端でSiを介して表面に共有結合した第1の有機薄膜で被われた第1の反応性磁性微粒子、一端に前記第1の反応性の官能基と反応して共有結合を形成する第2の反応性の官能基を含み、他端でSiを介して表面に共有結合した第2の有機薄膜で被われた磁性微粒子が混合され、互いに前記第1の反応性の官能基と前記第2の反応性の官能基との反応により形成された共有結合を介して共有結合して固化成形されている磁石を提供することを要旨とする。
【0030】
このとき、第1の反応性磁性微粒子第2の反応性磁性微粒子を混合し鋳型に入れて、磁場中で加圧加温し、第1の反応性の官能基と第2の反応性の官能基とを反応させ、共有結合を形成させるため、成形が容易である。また、鋳型に入れて加圧加温反応させる際、磁場中で超音波を印加しながら行うと、磁石内での磁性微粒子の結晶方向を揃える上で都合がよい。
【0031】
一方、表面に共有結合した第1および第2の有機薄膜を、直鎖アルキレン基の一端に第1または第2の反応性の官能基を含み、他端にアルコキシシリル基を含む第1のアルコキシシラン化合物で構成しておくと、固化温度を低くできて都合がよい。
【0032】
また、第1および第2の反応性の官能基の組み合わせが、熱反応性のエポキシ基およびイミノ基であると、固化の際収縮が少なくて都合がよい。
さらに、表面に共有結合した第1および第2の有機薄膜を単分子膜で構成しておくと、磁性微粒子密度を高くする上で都合がよい。
【発明の効果】
【0033】
本発明によれば、磁性微粒子を固化した磁石でありながら、従来の焼結磁石に比べてより高性能な磁気特性を有する磁性微粒子固化磁石を提供できる格別な効果がある。
【発明を実施するための最良の形態】
【0034】
本発明は、直鎖アルキレン基の一端に第1の反応性の官能基を含み、他端にアルコキシシリル基を含む第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に磁性微粒子を分散させ、一端に前記第1の反応性の官能基を含み、他端でSiを介して表面に共有結合した第1の有機薄膜で被われた第1の反応性磁性微粒子を製造し、直鎖アルキレン基の一端に前記第1の反応性の官能基と反応して共有結合を形成する第2の反応性の官能基を含み、他端にアルコキシシリル基を含む第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に磁性微粒子を分散させ、一端に前記第2の反応性の官能基を含み、他端でSiを介して表面に共有結合した第2の有機薄膜で被われた第2の反応性磁性微粒子を製造し、次いで、前記第1の反応性磁性微粒子と前記第2の反応性磁性微粒子を混合し鋳型に入れて、磁場中で加圧加温し、前記第1の反応性の官能基と前記第2の反応性の官能基とを反応させ、共有結合を形成させることにより、一端に第1の反応性の官能基を含み、他端でSiを介して表面に共有結合した第1の有機薄膜で被われた第1の反応性磁性微粒子と、一端に前記第1の反応性の官能基と反応して共有結合を形成する第2の反応性の官能基を含み、他端でSiを介して表面に共有結合した第2の有機薄膜で被われた磁性微粒子が混合され、互いに前記第1の反応性の官能基と前記第2の反応性の官能基との反応により形成された共有結合を介して共有結合して固化成形されている磁石を提供するものである。
【0035】
したがって、本発明には、磁性微粒子本来の形状と機能をほぼ完全に保ったままで粒子そのものの表面に反応性を付与した磁性微粒子、さらに、その機能を用いて磁性微粒子を成形固化した高性能磁石を提供できる。
【0036】
以下、本願発明の詳細を実施例を用いて説明するが、本願発明は、これら実施例によって何ら限定されるものではない。
【0037】
なお、本発明に関する磁性微粒子には、鉄、クロム、ニッケルやそれらの合金等よりなる磁性金属微粒子やフェライトやマグネタイト、酸化クロム等よりなる磁性金属酸化物微粒子があるが、まず、代表例としてマグネタイト微粒子を取り上げて説明する。
【実施例1】
【0038】
まず、無水のマグネタイト1を用意し、よく乾燥した。次に、化学吸着剤として機能部位に反応性の官能基、例えば、エポキシ基あるいはイミノ基と他端にアルコキシシリル基を含む薬剤、例えば、下記式(化1)あるいは(化2)に示す薬剤を99重量%、シラノール縮合触媒として、例えば、ジブチルスズジアセチルアセトナート、あるいは有機酸である酢酸を1重量%となるようそれぞれ秤量し、シリコーン溶媒、例えば、ヘキサメチルジシロキサンとジメチルホルムアミド(50:50)混合溶媒に1重量%程度の濃度(好まし化学吸着剤の濃度は、0.5~3%程度)になるように溶かして化学吸着液を調製した。
【0039】
【化1】
JP0004820988B2_000002t.gif

【0040】
【化2】
JP0004820988B2_000003t.gif

【0041】
この吸着液に無水のマグネタイト微粒子を混入撹拌して普通の空気中で(相対湿度45%)で2時間程度反応させた。このとき、無水のマグネタイト微粒子表面には水酸基2が多数含まれているの(図1a)で、前記化学吸着剤の-Si(OCH)基と前記水酸基がシラノール縮合触媒あるいは酢酸等の有機酸の存在下で脱アルコール(この場合は、脱CHOH)反応し、下記式(化3)あるいは(化4)に、示したような結合を形成し、磁性微粒子表面全面に亘り表面と化学結合したエポキシ基を含む化学吸着単分子膜3あるいはアミノ基を含む化学吸着膜4が約1ナノメートル程度の膜厚で形成された(図1b、1c)。なお、ここで、アミノ基を含む吸着剤を使用する場合には、スズ系の触媒では沈殿が生成するので、酢酸等の有機酸を用いた方がよかった。また、アミノ基はイミノ基を含んでいるが、アミノ基以外にイミノ基を含む物質には、ピロール誘導体や、イミダゾール誘導体等がある。さらに、ケチミン誘導体を用いれば、被膜形成後、加水分解により容易にアミノ基を導入できた。
【0042】
その後、トリクレン等の塩素系溶媒を添加して撹拌洗浄すると、表面に反応性の官能基、例えばエポキシ基、あるいは、アミノ基を有する化学吸着単分子膜で被われたマグネタイト微粒子をそれぞれ作製できた。
【0043】
【化3】
JP0004820988B2_000004t.gif

【0044】
【化4】
JP0004820988B2_000005t.gif

【0045】
この処理部は、被膜がナノメートルレベルの膜厚で極めて薄いため、粒子形状を損なうことはなかった。
なお、洗浄せずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発し粒子表面に残った化学吸着剤が粒子表面で空気中の水分と反応して、粒子表面に前記化学吸着剤よりなる極薄のポリマー膜が形成されたマグネタイト微粒子が得られた。
【0046】
この方法の特徴は脱アルコール反応であるため、マグネタイト微粒子のような酸で破壊されるような物でも使用可能である。
【0047】
次に、前記エポキシ基、あるいは、アミノ基を有する化学吸着単分子膜で被われたマグネタイト微粒子をそれぞれ同量採取り十分混合し、金型中に入れて加圧し、さらに50~100℃程度に加熱すると、下記式(化)に示したような反応でエポキシ基とアミノ基が付加して磁性微粒子は結合固化し、さらに着磁させると、バインダーを含まない磁石を製造できた。
【0048】
【化5】
JP0004820988B2_000006t.gif

【0049】
なお、金型中に入れる際、磁場中で超音波を当てながら充填すると、微粒子の配向が揃い磁気特性の優れたマグネタイト磁石が得られることが確認できた。(図2)
【0050】
なお、上記実施例では、反応性基を含む化学吸着剤として式(化1)あるいは(化2)に示した物質を用いたが、上記のもの以外にも、下記(1)~(16)に示した物質が利用できた。
(1) (CHOCH)CH2O(CH2)Si(OCH)3
(2) (CHOCH)CH2O(CH2)11Si(OCH)3
(3) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(4) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(5) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(6) (CHOCH)CH2O(CH2)Si(OC)3
(7) (CHOCH)CH2O(CH2)11Si(OC)3
(8) (CHCHOCH(CH)CH(CH2)Si(OC)3
(9) (CHCHOCH(CH)CH (CH2)Si(OC)3
(10) (CHCHOCH(CH)CH(CH2)Si(OC)3
(11) H2N (CH2)Si(OCH)3
(12) H2N (CH2)Si(OCH)3
(13) H2N (CH2)Si(OCH)3
(14) H2N (CH2)Si(OC)3
(15) H2N (CH2)Si(OC)3
(16) H2N (CH2)Si(OC)3
ここで、(CHOCH)-基は、下記式(化6)で表される官能基を表し、(CHCHOCH(CH)CH-基は、下記式(化7)で表される官能基を表す。
【0051】
【化6】
JP0004820988B2_000007t.gif

【0052】
【化7】
JP0004820988B2_000008t.gif

【0053】
なお、実施例1にいて、シラノール縮合触媒には、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。さらに具体的には、酢酸第1スズ、ジブチルスズジラウレート、ジブチルスズジオクテート、ジブチルスズジアセテート、ジオクチルスズジラウレート、ジオクチルスズジオクテート、ジオクチルスズジアセテート、ジオクタン酸第1スズ、ナフテン酸鉛、ナフテン酸コバルト、2-エチルヘキセン酸鉄、ジオクチルスズビスオクチリチオグリコール酸エステル塩、ジオクチルスズマレイン酸エステル塩、ジブチルスズマレイン酸塩ポリマー、ジメチルスズメルカプトプロピオン酸塩ポリマー、ジブチルスズビスアセチルアセテート、ジオクチルスズビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート及びビス(アセチルアセトニル)ジプロピルチタネートを用いることが可能であった。
【0054】
また、膜形成溶液の溶媒として、水を含まない有機塩素系溶媒、炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒、あるいはそれら混合物を用いることが可能であった。なお、洗浄を行わず、溶媒を蒸発させて粒子濃度を上げようとする場合には、溶媒の沸点は50~250℃程度がよい。
さらに、吸着剤がアルコキシシラン系の場合で且つ溶媒を蒸発させて有機被膜を形成する場合には、前記溶媒に加え、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれら混合物が使用できた。
【0055】
具体的に使用可能なものは、有機塩素系溶媒、非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド、あるいはそれら混合物等を挙げることができる。
【0056】
また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を添加しても良い。
【0057】
一方、上述のシラノール縮合触媒の代わりに、ケチミン化合物又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いた場合、同じ濃度でも処理時間を半分~2/3程度まで短縮できた。
【0058】
さらに、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(1:9~9:1範囲で使用可能だが、通常1:1前後が好ましい。)して用いると、処理時間をさらに数倍早く(30分程度まで)でき、製膜時間を数分の一まで短縮できる。
【0059】
例えば、シラノール触媒であるジブチルスズオキサイドをケチミン化合物であるジャパンエポキシレジン社のH3に置き換え、その他の条件は同一にしてみたが、反応時間を1時間程度にまで短縮できた他は、ほぼ同様の結果が得られた。
【0060】
さらに、シラノール触媒を、ケチミン化合物であるジャパンエポキシレジン社のH3と、シラノール触媒であるジブチルスズビスアセチルアセトネートの混合物(混合比は1:1)に置き換え、その他の条件は同一にしてみたが、反応時間を30分程度に短縮できた他は、ほぼ同様の結果が得られた。
【0061】
したがって、以上の結果から、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物がシラノール縮合触媒より活性が高いことが明らかとなった。
【0062】
さらにまた、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物の内の1つとシラノール縮合触媒を混合して用いると、さらに活性が高くなることが確認された。
【0063】
なお、ここで、利用できるケチミン化合物は特に限定されるものではないが、例えば、2,5,8-トリアザ-1,8-ノナジエン、3,11-ジメチル-4,7,10-トリアザ-3,10-トリデカジエン、2,10-ジメチル-3,6,9-トリアザ-2,9-ウンデカジエン、2,4,12,14-テトラメチル-5,8,11-トリアザ-4,11-ペンタデカジエン、2,4,15,17-テトラメチル-5,8,11,14-テトラアザ-4,14-オクタデカジエン、2,4,20,22-テトラメチル-5,12,19-トリアザ-4,19-トリエイコサジエン等がある。
【0064】
また、利用できる有機酸としても特に限定されるものではないが、例えば、ギ酸、あるいは酢酸、プロピオン酸、酸、マロン酸等があり、ほぼ同様の効果があった。
【0065】
さらにまた、本発明で得られる磁石では、バインダーを含まないので、金属磁石並みの高性能な磁気特性を有する磁石を、比較定低温で金型に入れてプレスするだけで大量生産できる作用がある。
【産業上の利用可能性】
【0066】
また、上記実施例では、マグネタイト微粒子を例として説明したが、本発明は、表面に活性水素、すなわち水酸基の水素やアミノ基あるいはイミノ基の水素などを含んだ磁性微粒子で有れば、どのような磁性微粒子にでも適用可能である。
【0067】
具体的には、鉄、クロム、ニッケルやそれらの合金等よりなる磁性金属微粒子やフェライトやマグネタイト、酸化クロム等よりなる磁性金属酸化物微粒子等に適用可能である。
【図面の簡単な説明】
【0068】
【図1】本発明の実施例1における磁性微粒子の反応を分子レベルまで拡大した概念図であり、(a)は反応前の磁性微粒子表面の図、(b)は、エポキシ基を含む単分子膜が形成された後の図、(c)は、アミノ基を含む単分子膜が形成された後の図を示す。
【図2】本発明の実施例1における磁石を微粒子レベルまで拡大した概念図であり、エポキシ基を含む単分子膜が形成された磁性微粒子Aとアミノ基を含む単分子膜が形成された磁性微粒子Bを等量混合し、鋳型に入れて加熱反応させ固化後、着磁させた後の図を示す。
【符号の説明】
【0069】
1 マグネタイト微粒子
2 水酸基
3 エポキシ基を含む単分子膜
4 アミノ基を含む単分子膜
エポキシ基を含む単分子膜で被覆されたマグネタイト微粒子
アミノ基を含む単分子膜で被覆されたマグネタイト微粒子
マグネタイト磁石
Drawing
【図1】
0
【図2】
1