TOP > 国内特許検索 > 外来物質導入装置および外来物質導入細胞の製造方法 > 明細書

Specification :外来物質導入装置および外来物質導入細胞の製造方法

Country 日本国特許庁(JP)
Gazette 特許公報(B2)
Patent Number 特許第6269968号 (P6269968)
Date of registration 平成30年1月12日(2018.1.12)
Date of issue 平成30年1月31日(2018.1.31)
Title of the invention, or title of the device 外来物質導入装置および外来物質導入細胞の製造方法
IPC (International Patent Classification) C12M   1/00        (2006.01)
C12M   1/42        (2006.01)
C12Q   1/02        (2006.01)
C12N   5/10        (2006.01)
C12N   5/07        (2010.01)
C12N   1/00        (2006.01)
C12N  15/09        (2006.01)
FI (File Index) C12M 1/00 A
C12M 1/42
C12Q 1/02
C12N 5/10
C12N 5/07
C12N 1/00 U
C12N 1/00 Z
C12N 15/00 A
Number of claims or invention 15
Total pages 34
Application Number 特願2014-552090 (P2014-552090)
Date of filing 平成25年12月12日(2013.12.12)
International application number PCT/JP2013/083374
International publication number WO2014/092164
Date of international publication 平成26年6月19日(2014.6.19)
Application number of the priority 2012271810
Priority date 平成24年12月12日(2012.12.12)
Claim of priority (country) 日本国(JP)
Date of request for substantive examination 平成28年12月6日(2016.12.6)
Patentee, or owner of utility model right 【識別番号】304027349
【氏名又は名称】国立大学法人豊橋技術科学大学
Inventor, or creator of device 【氏名】水野 彰
【氏名】沼野 利佳
【氏名】栗田 弘史
Representative 【識別番号】100104178、【弁理士】、【氏名又は名称】山本 尚
【識別番号】100143960、【弁理士】、【氏名又は名称】藤田 早百合
Examiner 【審査官】福澤 洋光
Document or reference 特表2006-508663(JP,A)
浅田淳, et al.,電界中の油中液滴を用いる遺伝子導入法の開発,静電気学会講演論文集2011,2011年,p.155-158
浅田淳, et al.,直流電界と油中液滴を用いた遺伝子導入法の開発,第34回日本分子生物学会年会プログラム・要旨集,2011年,Vol.34,1P-0791
Field of search C12N 1/00-15/90
C12M 1/00-3/10
CA/MEDLINE/BIOSIS/WPIDS(STN)
JSTPlus/JMEDPlus/JST7580(JDreamIII)
PubMed
Scope of claims 【請求項1】
電気的作用によって細胞外から細胞内に外来物質を導入する外来物質導入装置(1、11、41、61、81)において、
外部からの物質供給が可能な開口部(17、18、68、83)を有する1以上の貯留槽(2、12、62、82)と、
前記1以上の貯留槽の各々の内に互いに離間して配置された、水平面に交差する方向に延設された一対の電極(5a、5b、15a、15b、25a、25b、35a、35b)を有する1以上の電極部(5、15、25、35)と、
前記1以上の電極部に、所定時間、直流電圧を印加して電界を発生させるよう構成された電界発生手段であって、絶縁性液体が貯留された前記1以上の貯留槽の各々において、外来物質および細胞を含有し、前記絶縁性液体と混和しない細胞懸濁液を、前記一対の電極の間に供給することにより、前記絶縁性液体中に前記一対の電極の間隔よりも小径の前記細胞懸濁液の液滴を形成させた状態で、前記1以上の電極部に直流電圧を印加した場合に、前記一対の電極間に生じる電界によって、前記液滴を前記一対の電極のうちの前記液滴とは逆の極性を有する電極である逆極性電極に向かって移動させ、前記逆極性電極に前記液滴を接触させて前記液滴の移動方向の反転を引き起こすよう構成された電界発生手段(9)と
を備えることを特徴とする外来物質導入装置。
【請求項2】
前記一対の電極は、前記1以上の電極部の各々に直流電圧が印加された場合の前記絶縁性液体の液面に仮想的な複数の電気力線を引いた場合に、当該複数の電気力線の分布が局所的な集中を生じる形状に形成されていることを特徴とする請求項1に記載の外来物質導入装置。
【請求項3】
前記一対の電極のうちの一方の電極は、水平面に対して略垂直方向に展延された面状体であって、他方の電極に向き合う対向面側が凹となる略円弧形状に湾曲して形成された面状体である第一面状体を有していることを特徴とする請求項2に記載の外来物質導入装置。
【請求項4】
前記一対の電極のうちの他方の電極は、水平面に対して略垂直方向に展延された面状体であって、前記一方の電極に向き合う対向面側が凹となる略円弧形状に湾曲して形成された面状体である第二面状体を有していることを特徴とする請求項3に記載の外来物質導入装置。
【請求項5】
前記一対の電極の少なくとも一方は、凹部又は凸部を有することを特徴とする請求項1に記載の外来物質導入装置。
【請求項6】
前記一対の電極の前記間隔は、1cm以内であり、
前記電界発生手段は、前記一対の電極の間に形成された前記液滴を、前記逆極性電極に向かって移動させ、前記逆極性電極に前記液滴を接触させて前記液滴の移動方向の反転を引き起こすことを繰り返すことで、前記一対の電極の間を複数回往復移動させるよう構成されたことを特徴とする請求項1から5のいずれかに記載の外来物質導入装置。
【請求項7】
前記1以上の貯留槽の各々は底面部(4、14、64、84)を有し、
前記絶縁性液体は、前記細胞懸濁液よりも低比重で且つ、前記電界発生手段による直流電圧の印加が終了した際の前記液滴の位置が、前記底面部と、前記絶縁性液体の液面との間の位置となる粘性を備えることを特徴とする請求項1から6のいずれかに記載の外来物質導入装置。
【請求項8】
前記1以上の貯留槽は並列された複数の貯留槽(12)であり、前記複数の貯留槽の各々には、上面に前記開口部(17)が形成され、1の電極部(15)が設けられており、
前記一対の電極は、各々少なくとも前記開口部まで延設されており、
前記複数の貯留槽の各々の前記一対の電極のうち一方を前記開口部において電気的に接続する第1接続部(45a)と、
前記複数の貯留槽の各々の前記一対の電極のうち他方を前記開口部において電気的に接続する第2接続部(45b)とを更に備え、
前記電界発生手段は、前記第1接続部および前記第2接続部を介して、前記複数の貯留槽の各々の前記1の電極部に直流電圧を印加することを特徴とする請求項1から7のいずれかに記載の外来物質導入装置。
【請求項9】
前記1以上の貯留槽(62)の各々は、互いに間隔をあけて配置された複数の電極部(35)を収容し、
前記一対の電極は、各々少なくとも前記開口部(68)まで延設されており、
前記1以上の貯留槽の各々の前記一対の電極のうち一方を前記開口部において電気的に接続する第1接続部(65a)と、
前記1以上の貯留槽の各々の前記一対の電極のうち他方を前記開口部において電気的に接続する第2接続部(65b)とを更に備え、
前記電界発生手段は、前記第1接続部および前記第2接続部を介して、前記1以上の貯留槽の各々の前記複数の電極部に直流電圧を印加することを特徴とする請求項1から7のいずれかに記載の外来物質導入装置。
【請求項10】
細胞と1種類以上の外来物質とを含む細胞懸濁液を、貯留槽に貯留され、該細胞懸濁液と混和しない絶縁性液体中へ供給して前記絶縁性液体中で液滴を形成させる第1工程(S3)と、
前記第1工程にて形成された前記液滴の両側に各々設けられ、前記絶縁性液体の液面に対して交差する方向に延びる一対の電極に所定時間直流電圧を印加して、前記一対の電極のうちの一方の電極と他方の電極との間を前記液滴を往復移動させ、前記液滴を電極に接触させることで、前記液滴中において前記1種類以上の外来物質を前記細胞に導入する第2工程(S4)と
を備えることを特徴とする外来物質導入細胞の製造方法。
【請求項11】
前記第2工程は、前記1種類以上の外来物質を前記細胞の核に導入する工程であることを特徴とする請求項10に記載の外来物質導入細胞の製造方法。
【請求項12】
前記第1工程は、複数種類の外来物質を含む細胞懸濁液を前記絶縁性液体中へ供給して液滴を形成させる工程であり、
前記第2工程で前記所定時間直流電圧を印加することで、前記複数種類の外来物質を前記細胞に導入する工程であることを特徴とする請求項10又は11に記載の外来物質導入細胞の製造方法。
【請求項13】
前記第1工程に使用される前記細胞は、ヒト由来の体細胞およびヒト以外の動物由来の体細胞の少なくとも一方であることを特徴とする請求項10から12のいずれかに記載の外来物質導入細胞の製造方法。
【請求項14】
前記絶縁性液体は、第一絶縁性液体と、前記第一絶縁性液体よりも比重が軽い第二絶縁性液体とを含み、
前記第1工程の前に、前記第一絶縁性液体と、前記第二絶縁性液体とを前記貯留槽に注入して、前記第一絶縁性液体の層の上に前記第二絶縁性液体の層を形成させる注入工程(S2)を更に備え、
前記第1工程は、前記第二絶縁性液体中で前記液滴を形成させる工程であり、
前記第2工程は、前記一対の電極に前記所定時間直流電圧を印加して、前記第二絶縁性液体中で、前記液滴を往復移動させる工程であることを特徴とする請求項10から13のいずれかに記載の外来物質導入細胞の製造方法。
【請求項15】
電気的作用によって細胞外から細胞内に外来物質を導入する外来物質導入装置(11、41、81)において、
外部からの物質供給が可能な開口部を有する貯留槽内に互いに離間して着脱可能に配置され、水平面に交差する方向に延設され、且つ、直流電圧が印加された場合の仮想的な複数の電気力線の分布が局所的な集中を生じる形状に形成された一対の電極(15a、15b)を有する電極部(15)と、
前記電極部に、所定時間、直流電圧を印加して電界を発生させるよう構成された電界発生手段であって、絶縁性液体が貯留された前記貯留槽において、外来物質および細胞を含有し、前記絶縁性液体と混和しない細胞懸濁液を、前記一対の電極の間に供給することにより、前記絶縁性液体中に前記一対の電極の間隔よりも小径の前記細胞懸濁液の液滴を形成させた状態で、前記電極部に直流電圧を印加した場合に、前記一対の電極間に生じる電界によって、前記液滴を前記一対の電極のうちの前記液滴とは逆の極性を有する電極である逆極性電極に向かって移動させ、前記逆極性電極に前記液滴を接触させて前記液滴の移動方向の反転を引き起こすよう構成された電界発生手段(9)と
を備えることを特徴とする外来物質導入装置。
Detailed description of the invention 【技術分野】
【0001】
本発明は、細胞に外来遺伝子等の外来物質を導入する外来物質導入装置および外来物質が導入された外来物質導入細胞の製造方法に関する。
【背景技術】
【0002】
これまで、DNA、RNA、タンパク質、および薬剤等の外来物質を、標的とする細胞内に導入するための様々な方法が開発されている。外来物質を標的細胞内に導入する手法には、大きく分けて生物学的手法、化学的手法、および物理的手法がある。生物学的手法としては、ウイルスを用いた方法が知られている。化学的方法としては、リン酸カルシウム法およびリポフェクション法が一般的に知られている。物理的手法にはエレクトロポレーション法、遺伝子銃(パーティクルガン)法、および超音波を使用する方法等がある。大腸菌等のバクテリアは、塩化カルシウム存在下でコンピテントセル化した細胞にヒートショックが与えられることで、簡便に細胞内にDNAが導入されることが知られている。大腸菌の形質転換には、ヒートショックを与える方法が広く用いられている。
【0003】
ウイルスを用いた生物学的手法は、ウイルスの感染を封じ込めるための特殊な研究施設を必要とする。その上、ウイルスを用いた生物学的手法は、ウイルスが導入された細胞がウイルスのもつ毒性および抗原性等に起因して、癌化するという問題を有する。リン酸カルシウム法は、特別な装置を必要としない。リン酸カルシウム法の実施に必要な試薬類は安価である。しかしリン酸カルシウム法では、標的細胞へのダメージが比較的大きい上、導入効率が低い。リポフェクション法は、リン酸カルシウム法に比べて導入効率がよく、必要とされるDNA(外来物質)量が少ないという利点を有する。しかしリポフェクション法では、標的細胞によって検討すべきパラメータが比較的多く、高価な試薬が必要とされる。化学的手法では、試薬の毒性のため適用できる細胞が限られており、海馬神経細胞等の細胞種を標的細胞とする場合には良好な導入効率が得られ難い。
【0004】
物理的手法は、上述の生物学的手法および化学的手法に比べて、細胞に対する毒性を考慮する必要がなく、高価な試薬が不要であるといった利点を有する。遺伝子銃法では、外来遺伝子(例えば、DNA)がコーティングされた金粒子が高圧ヘリウムガスによって標的細胞内へ打ち込まれ、標的細胞の核内に直接導入される。これによって、遺伝子銃法は、標的細胞へ外来遺伝子を導入し、発現させることを可能とする。即ち遺伝子銃法は、多数のDNA分子を標的細胞に打ち込む方法である。このため、遺伝子銃法では、単一細胞あたりの遺伝子発現量は高いが、多数の細胞を標的細胞として何個の細胞に遺伝子が導入されたかという意味での発現効率は低い。超音波を使用する方法は、細胞の種類毎に試行錯誤しながらの条件設定を要し、簡便ではない。
【0005】
エレクトロポレーション法(電気穿孔法)は、物理的手法の中で最も代表的な技法であり、細胞に高圧パルスを与え、細胞膜に外来物質が通過できる小孔を一過性に作ってDNA等を取り込ませる方法である。エレクトロポレーション法では、化学的手法と比較して高い導入効率が得られる上、操作が簡便で再現性および安全性が高く、様々な生物種(植物細胞も含む)および細胞種への適用が可能である。
【0006】
エレクトロポレーション法は、細胞と外来物質とを含む懸濁液に電極が浸漬された状態で処理を行う方法である。このため、エレクトロポレーション法では、同一の電極を用いて複数回の処理が行われると、電極に付着した古い懸濁液によって、新たな懸濁液に汚染が発生する可能性が高い。電極を一回の処理ごとに使い捨てとすれば汚染は回避されるが、処理にかかるコストが上昇する。
【0007】
更に、エレクトロポレーション法では、必要とされる試料体積が比較的大きいため、希少な細胞を多量に準備する必要がある。このためエレクトロポレーション法では、試料内の細胞が少量である場合、分析が困難となる可能性がある。必要な試料量を低減するべく、中空の毛細管又はチューブに試料を充填して電気穿孔を行う方法(特許文献1参照)、外来遺伝子の導入効率を向上させる方法(特許文献2参照)、およびピペットチップ式の電気穿孔装置(特許文献3参照)が提案されている。しかし、遺伝子治療および細胞移植等の臨床現場では、患者の負担軽減のため採取する細胞数は少ないほど良く、高価である外来遺伝子の使用量の更なる低減が求められている。
【0008】
加えて、エレクトロポレーション法では、高価なパルスジェネレータが必要とされ、外来物質導入のための最適条件の検討が煩雑になることが多い。
【0009】
本願発明者らは、オイルが満たされた容器と、容器内の底面に並列に固定された2の電極と、直流高電圧電源とを備え、一方の電極を高電圧電極、他方の電極を接地電極として直流高電圧電源から電圧を印加する装置を開発した。本願発明者らは、大腸菌のコンピテントセルとプラスミドDNAとを含む親水性の液滴を電極間に配置した状態で電圧を印加することで、液滴を電極間で往復移動させ、2μlという僅かな体積の試料で液滴中の大腸菌へプラスミドDNA(外来物質)を導入できることを見出した。本願発明者らは、高価なパルスジェネレータを不要とできる新たなエレクトロポレーションの技術を提案した(非特許文献1、2参照)。
【先行技術文献】
【0010】

【特許文献1】特開2010-178746号公報
【特許文献2】特開2011-147399号公報
【特許文献3】特表2011-516096号公報
【0011】

【非特許文献1】浅田淳他、「電界中の油中液滴を用いる遺伝子導入法の開発」、第35回静電気学会全国大会講演論文集、東京理科大学、2011年9月13日、p.155-158
【非特許文献2】A. Asada, H. Aoki, H. Kurita, A. Antoniu, H. Yasuda, K. Takashima, and A. Mizuno, "A novel gene transformation technique using water-in-oil droplet in an electrostatic field", IEEE Transactions on Industry Applications, Jan 2013, vol. 49, p. 311-315
【発明の概要】
【0012】
上記した方法では、上方に凸となる電気力線に沿って液滴が跳躍しながら電極間を往復運動する。このため、上記した方法は、液滴の運動が不安定であり、導入効率にばらつきが生じるという問題点がある。上記した方法は、液滴が電極から離反できず処理そのものが中断するという問題点がある。
【0013】
加えて、上記の方法の試験結果は、ヒートショックで簡単に遺伝子を導入できる大腸菌を用いた結果であり、動物細胞等の導入障壁の高い他の細胞に適用できるかは未知である。
【0014】
上記方法において、コンタミネーションを回避するための手段については考慮されておらず、未だ問題を残したままである。故に、標的細胞に対し外来物質を導入する技術において、多種多様な細胞に対し、最低限必要な細胞量および外来物質量を十分に低減でき、且つ、低コストで処理を行うことのできる技術は、未だ提供されないままである。このため、外来物質が導入された細胞(外来物質導入細胞又は導入細胞ともいう。)を低コストで得ることも困難である。
【0015】
本発明は、電気的な作用により少量の細胞に効率的且つ低コストで外来物質を導入する装置および低コストで多様な外来物質導入細胞を製造し得る外来物質導入細胞の製造方法を提供することを目的としている。
【0016】
本発明の第1態様によれば、電気的作用によって細胞外から細胞内に外来物質を導入する外来物質導入装置において、外部からの物質供給が可能な開口部を有する1以上の貯留槽と、前記1以上の貯留槽の各々の内に互いに離間して配置された、水平面に交差する方向に延設された一対の電極を有する1以上の電極部と、前記1以上の電極部に、所定時間、直流電圧を印加して電界を発生させるよう構成された電界発生手段であって、絶縁性液体が貯留された前記1以上の貯留槽の各々において、外来物質および細胞を含有し、前記絶縁性液体と混和しない細胞懸濁液を、前記一対の電極の間に供給することにより、前記絶縁性液体中に前記一対の電極の間隔よりも小径の前記細胞懸濁液の液滴を形成させた状態で、前記1以上の電極部に直流電圧を印加した場合に、前記一対の電極間に生じる電界によって、前記液滴を前記一対の電極のうちの前記液滴とは逆の極性を有する電極である逆極性電極に向かって移動させ、前記逆極性電極に前記液滴を接触させて前記液滴の移動方向の反転を引き起こすよう構成された電界発生手段とを備えることを特徴とする外来物質導入装置が提供される。
【0017】
電界によって液滴を移動させるとは、少なくとも液滴の水平面の移動方向が、電界を表す電気力線に沿うように正極から負極、又は負極から正極へ移動することを意味する。水平方向と水平方向と直交する鉛直方向との両方向において、厳格に仮想的な電気力線に沿って移動することを意味するものではない。
【0018】
第1態様の外来物質導入装置によれば、貯留槽に絶縁性液体が貯留され、外来物質と細胞とを含有し絶縁性液体と混和しない細胞懸濁液が、供給口より供給されると、絶縁性液体中に独立した液滴が形成される。電界発生手段によって貯留槽内の一対の電極に、所定時間、直流電圧が印加されると、一対の電極の間に電界が生じる。電圧の印加により、液滴表面に電荷が誘導され、液滴は、一対の電極の間に形成された電界を表す仮想的な電気力線に沿って、逆極性電極側へクーロン力により移動する。液滴は移動方向側に配設された逆極性電極に接触する。一対の電極との間の間隔よりも液滴の外径が小さいので、液滴は、両電極に同時には接触しない。液滴が逆極性電極に接触すると、それを契機として液滴の移動方向の反転が引き起こされ、反対側へ向かう液滴の移動が開始される。電極へ接触することで生じる液滴への電気的作用によって、液滴中において細胞内に外来物質を導入できると推定される。
【0019】
第1態様の外来物質導入装置では、高価なパルスジェネレータは不要である。よって第1態様の外来物質導入装置は、従来のエレクトロポレーション法と比較して装置を簡略化でき、外来物質を細胞に導入するための装置を安価に提供できる。一対の電極は水平面に交差する方向に延設されているので、電圧が一対の電極間に印加されることにより生じる電界を示す電気力線は、水平方向に延びる電気力線を含む。電界の作用により液滴が上下動する場合、液滴の動作は不安定になりやすい。本装置では、電界の作用で液滴は水平方向に移動し、安定して移動するので、本装置は、重力の影響によって液滴が電極に接触したまま動かなくなることを抑制できる。このため、本装置にて円滑かつ効率的に外来物質の導入作業を行うことができる。
【0020】
本装置によれば、良好な導入効率で外来物質を様々な細胞に導入でき、且つ導入後の細胞において良好な生存率を実現できる。処理を実行するために必要な細胞懸濁液の量は、微小な液滴を形成する量で足る。このため本装置は、例えば、外来遺伝子(DNA)を細胞へ導入して形質転換を行う場合には、外来遺伝子と細胞とを含有する細胞懸濁液の使用量を、従来の手法に比べて圧倒的に低減でき、結果として、必要な細胞数および外来遺伝子量を格段に減らすことができる。
【0021】
第1態様の外来物質導入装置において、前記一対の電極は、前記1以上の電極部の各々に直流電圧が印加された場合の前記絶縁性液体の液面に仮想的な複数の電気力線を引いた場合に、当該複数の電気力線の分布が局所的な集中を生じる形状に形成されてもよい。
【0022】
この場合の外来物質導入装置によれば、電界発生手段にて印加される電圧を低くしても液滴を円滑に移動させることができる。
【0023】
本装置は、絶縁性液体中において電気的引力によって液滴を移動させるため、電極部に印加される電圧が小さすぎると液滴の移動が困難となる。一方で、電極部に印加される電圧が高くなると、液滴が破裂したり、液滴が伸長して両導電体間を繋ぎ短絡が生じたりする。一対の電極が電気力線の分布に局所的な集中を生じる形状に形成されていると、一対の電極に印加される電圧が小さくとも局所的に電気的な作用を強めることができる。このため本装置は、印加電圧を低下させて液滴の破裂又は短絡を回避しつつ、液滴を円滑に移動させることができる。故に本装置は、外来物質を導入する処理の再現性および確実性を向上できる。
【0024】
第1態様の外来物質導入装置において、前記一対の電極のうちの一方の電極は、水平面に対して略垂直方向に展延された面状体であって、他方の電極に向き合う対向面側が凹となる略円弧形状に湾曲して形成された面状体である第一面状体を有してもよい。
【0025】
この場合の外来物質導入装置によれば、一方の電極は、第一面状体を有するので、液滴をより安定して移動させることができる。加えて本装置では、例えば、1枚の金属板又は金属箔が曲げ加工されることにより簡単に第一面状体が形成される。故に本装置は、装置の製造コストを抑制できる。
【0026】
第1態様の外来物質導入装置において、前記一対の電極のうちの他方の電極は、水平面に対して略垂直方向に展延された面状体であって、前記一方の電極に向き合う対向面側が凹となる略円弧形状に湾曲して形成された面状体である第二面状体を有してもよい。
【0027】
この場合の外来物質導入装置によれば、一対の電極のうち一方の電極は第一面状体を有し、他方の電極は第二面状体を有する。よって本装置は、他方の電極が第二面状体を有しない場合に比べ、更に安定して液滴を移動させることができる。更に本装置は、一対の電極の形状を同じとすれば、部品を共通化できるので一対の電極の加工コストを低廉化できる。
【0028】
第1態様の外来物質導入装置において、前記一対の電極の少なくとも一方は、凹部又は凸部を有してもよい。
【0029】
この場合の外来物質導入装置によれば、一対の電極の少なくとも一方には、凹部又は凸部が形成されているので、一対の電極に電圧が印加された場合に生じる電界を示す電気力線の分布に局所的な集中を生じさせることができる。よって本装置は、電界発生手段にて印加する電圧を低くしても液滴を円滑に移動させることができる。
【0030】
第1態様の外来物質導入装置において、前記一対の電極の前記間隔は、1cm以内であり、前記電界発生手段は、前記一対の電極の間に形成された前記液滴を、前記逆極性電極に向かって移動させ、前記逆極性電極に前記液滴を接触させて前記液滴の移動方向の反転を引き起こすことを繰り返すことで、前記一対の電極の間を複数回往復移動させるよう構成されてもよい。
【0031】
この場合の外来物質導入装置は、液滴に複数回電気的作用を及ぼすことができる。よって本装置は、液滴に十分に電気的作用を及ぼして、より確実に外来物質を細胞へ導入させ、外来物質の導入効率を向上できる。
【0032】
第1態様の外来物質導入装置において、前記1以上の貯留槽の各々は底面部を有し、前記絶縁性液体は、前記細胞懸濁液よりも低比重で且つ、前記電界発生手段による直流電圧の印加が終了した際の前記液滴の位置が、前記底面部と、前記絶縁性液体の液面との間の位置となる粘性を備えてもよい。
【0033】
貯留槽内の汚染は、貯留槽内に投入された物質が残存することで生じることが多い。本装置では貯留槽内に投入される細胞懸濁液は液滴を形成し、その内部に細胞と外来物質とが内包されるので、貯留槽内全体に細胞と外来物質とが広がり難い。更に、例えば、電界発生手段による電圧印加終了後、液滴を回収する際に、液滴への絶縁性液体の混合を回避するには、貯留槽へ供給した細胞懸濁液量よりも少ない量の液滴が回収されれば良い。その場合には、投入された細胞懸濁液の一部は貯留槽内に残留するが、細胞懸濁液と絶縁性液体との比重差によって残留した細胞懸濁液は沈降し、貯留槽底面部に絶縁性液体とは分離して滞留される。新たな液滴を用いた処理が実行される場合、電圧印加終了の際には、新たな液滴は貯留槽の底面部と絶縁性液体の液面との間にある。このため本装置では、貯留槽の上方から新たな液滴が回収されることで貯留槽底面部に滞留された古い細胞懸濁液が新たな液滴に混ざることが回避される。本装置によれば、絶縁性液体が回収された細胞懸濁液に混入することを回避するために、厳密で高精度の回収作業は不要である。従って本装置では、複数回、同じ貯留槽内で処理が実行されても、従来のエレクトロポレーション装置に比べて、外来物質を導入する細胞が汚染されることをより確実に抑制できる。
【0034】
第1態様の外来物質導入装置において、前記1以上の貯留槽は並列された複数の貯留槽であり、前記複数の貯留槽の各々には、上面に前記開口部が形成され、1の電極部が設けられており、前記一対の電極は、各々少なくとも前記開口部まで延設されており、前記複数の貯留槽の各々の前記一対の電極のうち一方を前記開口部において電気的に接続する第1接続部と、前記複数の貯留槽の各々の前記一対の電極のうち他方を前記開口部において電気的に接続する第2接続部とを更に備え、前記電界発生手段は、前記第1接続部および前記第2接続部を介して、前記複数の貯留槽の各々の前記1の電極部に直流電圧を印加してもよい。
【0035】
この場合の外来物質導入装置は、多数の貯留槽にて並列して処理できる。本装置は、貯留槽が絶縁性の材料で形成されれば、貯留槽に電流がほとんど流れないため、多数の貯留槽に対して同時に電圧を印加して操作をおこなっても安全性を確保できる。故に本装置は、安全性を担保しつつ、細胞へ外来物質を導入する処理を貯留槽の数だけ並行して行うことができる。
【0036】
第1態様の外来物質導入装置において、前記1以上の貯留槽の各々は、互いに間隔をあけて配置された複数の電極部を収容し、前記一対の電極は、各々少なくとも前記開口部まで延設されており、前記1以上の貯留槽の各々の前記一対の電極のうち一方を前記開口部において電気的に接続する第1接続部と、前記1以上の貯留槽の各々の前記一対の電極のうち他方を前記開口部において電気的に接続する第2接続部とを更に備え、前記電界発生手段は、前記第1接続部および前記第2接続部を介して、前記1以上の貯留槽の各々の前記複数の電極部に直流電圧を印加してもよい。
【0037】
この場合の外来物質導入装置は、1つの貯留槽内にて複数の処理を並列して実行できる。本装置は、貯留槽が絶縁性の材料で形成されれば、貯留槽に電流がほとんど流れないため、1つの貯留槽に設けられた複数の電極部に対して同時に電圧を印加して操作をおこなっても安全性を確保できる。故に本装置は、安全性を担保しつつ、細胞へ外来物質を導入する処理を電極部の数だけ並行して行うことができる。
【0038】
本発明の第2態様によれば、細胞と1種類以上の外来物質とを含む細胞懸濁液を、貯留槽に貯留され、該細胞懸濁液と混和しない絶縁性液体中へ供給して前記絶縁性液体中で液滴を形成させる第1工程と、前記第1工程にて形成された前記液滴の両側に各々設けられ、前記絶縁性液体の液面に対して交差する方向に延びる一対の電極に所定時間直流電圧を印加して、前記一対の電極のうちの一方の電極と他方の電極との間を前記液滴を往復移動させ、前記液滴を電極に接触させることで、前記液滴中において前記1種類以上の外来物質を前記細胞に導入する第2工程とを備える外来物質導入細胞の製造方法が提供される。
【0039】
第2態様の外来物質導入細胞の製造方法によれば、良好な導入効率で外来物質を細胞に導入でき、且つ導入後の細胞の生存率は良好である。その上本製造方法によれば、処理に必要な細胞懸濁液の量は、貯留槽の容量に規定されず、微小な液滴を形成する量で足る。このため本製造方法に従って、例えば、外来遺伝子(DNA)を動物細胞へ導入して形質転換を行う場合には、外来遺伝子と動物細胞とを含有する細胞懸濁液の使用量を、従来の手法に比べて圧倒的に低減でき、結果として、必要な細胞数および外来遺伝子量を格段に低減できる。
【0040】
第2態様の外来物質導入細胞の製造方法において、前記第2工程は、前記1種類以上の外来物質を前記細胞の核に導入する工程であってもよい。
【0041】
この場合の外来物質導入細胞の製造方法によれば、第2工程は、外来物質を細胞核に導入するものである。本製造方法は、従来の外来物質導入方法に比べ、細胞核に外来物質を、簡便且つ確実に導入することができる。
【0042】
第2態様の外来物質導入細胞の製造方法において、前記第1工程は、複数種類の外来物質を含む細胞懸濁液を前記絶縁性液体中へ供給して液滴を形成させる工程であり、前記第2工程で前記所定時間直流電圧を印加することで、前記複数種類の外来物質を前記細胞に導入する工程であってもよい。
【0043】
第2態様の外来物質導入細胞の製造方法によれば、一回の第2工程で複数種類の外来物質を細胞に導入でき、優れた導入効率で複数種類の外来物質が導入され細胞を、良好な生存率で得ることができる。
【0044】
第2態様の外来物質導入細胞の製造方法において、前記第1工程に使用される前記細胞は、ヒト由来の体細胞およびヒト以外の動物由来の体細胞の少なくとも一方であってもよい。
【0045】
この場合の外来物質導入細胞の製造方法によれば、簡便且つ低コストで、ヒト由来の体細胞およびヒト以外の動物由来の体細胞の少なくとも一方に対し優れた導入効率で外来物質を導入でき、良好な生存率で形質転換された体細胞が得られる。
【0046】
第2態様の外来物質導入細胞の製造方法において、前記絶縁性液体は、第一絶縁性液体と、前記第一絶縁性液体よりも比重が軽い第二絶縁性液体とを含み、前記第1工程の前に、前記第一絶縁性液体と、前記第二絶縁性液体とを前記貯留槽に注入して、前記第一絶縁性液体の層の上に前記第二絶縁性液体の層を形成させる注入工程を更に備え、前記第1工程は、前記第二絶縁性液体中で前記液滴を形成させる工程であり、前記第2工程は、前記一対の電極に前記所定時間直流電圧を印加して、前記第二絶縁性液体中で、前記液滴を往復移動させる工程であってもよい。
【0047】
この場合の外来物質導入細胞の製造方法は、第二絶縁性液体中で、液滴を円滑に移動させることができる。本製造方法は、液滴が円滑に移動しない場合に比べ、優れた導入効率で細胞に外来物質を導入することができる。
【0048】
第2態様の外来物質導入細胞の製造方法において、前記第1工程の前に、前記細胞と、前記1種類以上の外来物質とを、リン酸バッファーに懸濁して、細胞懸濁液を調製する調製工程を更に備え、前記第1工程は、前記調製工程で調製された前記細胞懸濁液を前記絶縁性液体中に供給して前記液滴を形成させる工程であってもよい。この場合の外来物質導入細胞の製造方法は、細胞と、1種類以上の外来物質とが、細胞を培養するための液体培地に懸濁されている場合に比べ、外来物質の導入効率が高い。
【0049】
第2態様の外来物質導入細胞の製造方法において、前記絶縁性液体は、前記細胞懸濁液よりも低比重で且つ、前記所定時間直流電圧の印加が終了した際の前記液滴の位置が、前記貯留槽の底面部と、前記絶縁性液体の液面との間の位置となる粘性を備えてもよい。この場合の外来物質導入細胞の製造方法は、所定時間直流電圧の印加が終了した際の液滴の位置が、貯留槽の底面部と接触する位置となる場合に比べ、外来物質の導入効率が高い。
【0050】
本発明の第3態様によれば、電気的作用によって細胞外から細胞内に外来物質を導入する外来物質導入装置において、外部からの物質供給が可能な開口部を有する貯留槽内に互いに離間して着脱可能に配置され、水平面に交差する方向に延設され、且つ、直流電圧が印加された場合の仮想的な複数の電気力線の分布が局所的な集中を生じる形状に形成された一対の電極を有する電極部と、前記電極部に、所定時間、直流電圧を印加して電界を発生させるよう構成された電界発生手段であって、絶縁性液体が貯留された前記貯留槽において、外来物質および細胞を含有し、前記絶縁性液体と混和しない細胞懸濁液を、前記一対の電極の間に供給することにより、前記絶縁性液体中に前記一対の電極の間隔よりも小径の前記細胞懸濁液の液滴を形成させた状態で、前記電極部に直流電圧を印加した場合に、前記一対の電極間に生じる電界によって、前記液滴を前記一対の電極のうちの前記液滴とは逆の極性を有する電極である逆極性電極に向かって移動させ、前記逆極性電極に前記液滴を接触させて前記液滴の移動方向の反転を引き起こすよう構成された電界発生手段とを備える外来物質導入装置が提供される。
【0051】
第3態様の外来物質導入装置によれば、一対の電極が貯留槽内に互いに離間して配置されて使用されることにより、第1態様の外来物質導入装置と同様の効果を奏する。
【図面の簡単な説明】
【0052】
【図1】第1実施の形態における外来物質導入装置1の概要を示した図である。
【図2】外来物質導入装置1内に生じる電界の電気力線を破線にて示した平面図である。
【図3】第2実施の形態における外来物質導入装置11の容器12と電極構造15の概要を示した外観概略図である。
【図4】電極15a、15b間に生じうる電界の電気力線を破線にて示した図である。
【図5】針状の電極25a、25bを有する電極部25の斜視図と、電極25a、25bとの間に生じる電界の電気力線を破線にて示した平面図である。
【図6】電極15aと、針状の電極25bとの斜視図と、電極15aと電極25bとの間に生じる電界の電気力線を破線にて示した平面図である。
【図7】板状の電極35aと、針状の電極25bとの斜視図と、電極35aと電極25bとの間に生じる電界の電気力線を破線にて示した平面図である。
【図8】第3実施の形態における外来物質導入装置41の概要を示した図である。
【図9】第3実施の形態における外来物質導入装置41の、平面視での処理容器50の部分拡大図である。
【図10】第4実施の形態における外来物質導入装置61の概要を示した図である。
【図11】変形例における外来物質導入装置81の概要を示した図である。
【図12】変形例における外来物質導入細胞の製造工程のフローチャートである。
【図13】第3実施例のヒト胎児腎臓由来HEK293細胞株の外来遺伝子導入操作から1日後の遺伝子導入効率評価結果を示すグラフである。
【図14】第3実施例のヒト胎児腎臓由来HEK293細胞株の外来遺伝子導入操作直後の生存率の評価結果を示すグラフである。
【図15】第3実施例の5分間直流電圧を印加してプラスミドDNA1遺伝子を導入させた操作から1日後に観察したヒト胎児腎臓由来HEK293細胞株の明視野における顕微鏡観察画像である(観察倍率10倍)。
【図16】第3実施例の5分間直流電圧を印加してプラスミドDNA1遺伝子を導入させた操作から1日後に観察したヒト胎児腎臓由来HEK293細胞株の蛍光画像である(観察倍率10倍)。
【図17】第3実施例の5分間直流電圧を印加してプラスミドDNA1遺伝子を導入させた操作から1日後に観察したヒト胎児腎臓由来HEK293細胞株の明視野の画像と蛍光視野の蛍光画像とのMerge画像である(観察倍率10倍)。
【図18】第4実施例の遺伝子導入操作から1日後に観察したmouse由来Neuro2A神経腫由来細胞株の蛍光画像である(観察倍率10倍)。
【図19】第4実施例の遺伝子導入操作から3日後に観察したmouse由来Neuro2A神経腫由来細胞株の蛍光画像である(観察倍率10倍)。
【図20】第4実施例の遺伝子導入操作から3日後に観察したmouse由来Neuro2A神経腫由来細胞株の蛍光画像である(観察倍率10倍)。
【図21】第5実施例の遺伝子導入操作を行った後、3日後に観察した高齢ヒト皮膚由来繊維芽細胞株の明視野における顕微鏡観察画像である(観察倍率60倍)。
【図22】第5実施例の遺伝子導入操作を行った後、3日後に観察した高齢ヒト皮膚由来繊維芽細胞株の蛍光画像である(観察倍率60倍)。
【図23】第5実施例の遺伝子導入操作を行った後、3日後に観察した高齢ヒト皮膚由来繊維芽細胞株の明視野の画像と蛍光視野の蛍光画像とのMerge画像である観察倍率60倍)。
【図24】第5実施例の遺伝子導入操作を行った後、3日後に観察した高齢ヒト皮膚由来繊維芽細胞株の明視野における顕微鏡観察画像である(観察倍率60倍)。
【図25】第5実施例の遺伝子導入操作を行った後、3日後に観察した高齢ヒト皮膚由来繊維芽細胞株の蛍光画像である(観察倍率60倍)。
【図26】第5実施例の遺伝子導入操作を行った後、3日後に観察した高齢ヒト皮膚由来繊維芽細胞株の明視野の画像と蛍光視野の蛍光画像とのMerge画像である(観察倍率60倍)。
【図27】第5実施例の遺伝子導入操作を行った後、3日後に観察した高齢ヒト皮膚由来繊維芽細胞株の明視野における顕微鏡観察画像である(観察倍率60倍)。
【図28】第5実施例の遺伝子導入操作を行った後、3日後に観察した高齢ヒト皮膚由来繊維芽細胞株の蛍光画像である(観察倍率60倍)。
【図29】第5実施例の遺伝子導入操作を行った後、3日後に観察した高齢ヒト皮膚由来繊維芽細胞株の明視野の画像と蛍光視野の蛍光画像とのMerge画像である観察倍率60倍)。
【図30】第6実施例の遺伝子導入操作から2日後に観察したmouse由来Neuro2A神経腫由来細胞株の緑色蛍光視野の蛍光画像である(観察倍率60倍)。
【図31】第6実施例の遺伝子導入操作から2日後に観察したmouse由来Neuro2A神経腫由来細胞株の赤色蛍光視野の蛍光画像である(観察倍率60倍)。
【図32】第6実施例の遺伝子導入操作から2日後に観察したmouse由来Neuro2A神経腫由来細胞株の明視野の画像と緑色蛍光視野の蛍光画像と赤色蛍光視野の蛍光画像とのMerge画像である(観察倍率60倍)。
【図33】第7実施例の装置を用いて、直流電圧が印加された場合の液滴の動きを経時的に撮影して得られた画像である(基準時)。
【図34】第7実施例の装置を用いて、直流電圧が印加された場合の液滴の動きを経時的に撮影して得られた画像である(基準時から0.1s後)。
【図35】第7実施例の装置を用いて、直流電圧が印加された場合の液滴の動きを経時的に撮影して得られた画像である(基準時から0.2s後)。
【図36】第7実施例の装置を用いて、直流電圧が印加された場合の液滴の動きを経時的に撮影して得られた画像である(基準時から0.3s後)。
【図37】第8実施例において、直流電圧が印加された場合の液滴の動きを経時的に撮影して得られた画像である(基準時)。
【図38】第8実施例において、直流電圧が印加された場合の液滴の動きを経時的に撮影して得られた画像である(基準時から0.1s後)。
【図39】第8実施例において、直流電圧が印加された場合の液滴の動きを経時的に撮影して得られた画像である(基準時から0.2s後)。
【図40】第8実施例において、直流電圧が印加された場合の液滴の動きを経時的に撮影して得られた画像である(基準時から0.3s後)。
【図41】第8実施例において、直流電圧が印加された場合の液滴の動きを経時的に撮影して得られた画像である(基準時から0.4s後)。
【発明を実施するための形態】
【0053】
以下、本発明の好ましい実施の形態について、図面を参照して説明する。まず、図1および図2を参照して、本発明の第1実施の形態における外来物質導入装置1について説明する。

【0054】
外来物質導入装置1(以下、装置1ともいう。)は、標的細胞内に目的の外来物質を電気的作用によって導入するよう構成された装置である。標的細胞は、外来物質を導入する対象となる細胞である。装置1では、パルスジェネレータは不要である。更に、装置1は、1回の処理に必要な細胞懸濁液量(標的細胞数および外来物質量)を極めて低用量化できるよう構成されている。

【0055】
具体的には、外来物質導入装置1は、図1に示すように、絶縁性の油6が貯留される容器2と、電極部5と、電源9とを備える。容器2は、底面部4と、底面部4の周縁から立設された4つの側壁部3とを有し、全体として略直方体に形成されている。容器2の上面には開口部17が形成されている。装置1は、容器2内部に液体を収容できる。容器2は、例えば、プラスチック、ガラス、およびセラミックス等の絶縁性の素材で形成されている。容器2の形状は、液体を収容できる形状であれば、如何なる形状であっても良い。本実施形態では、容器2として、底面部4が1cm角、側壁部3の高さが4.5cmのプラスチック製の容器(例えば、3ml分光光度計用キュベット)が用いられている。

【0056】
容器2の左右の側壁部3の内壁面側には、各々0.1mm厚の導電性のアルミテープが貼着され、電極部5が形成されている。電極部5は、左右一対の電極5a、5bを有する。電極5a、5bは、各々左右の側壁部3の内壁と略同寸で、側壁部3の内壁をほぼ覆う矩形状に形成されている。電極5a、5bの高さ方向の端部は各々、容器2の開口部17に達している。このため、電極5a、5bは、鉛直方向(即ち、水平方向に交差する方向)に沿って延設された状態で、略1cmの間隔を隔てて容器2内に対向して配置される。

【0057】
電極5a、5bと各々電気的に接続された金属製のクリップ7a、7bが、容器2の開口部付近の左右両側の側壁部3を各々挟持している。電極5aと電気的に接続されるクリップ7aは、導線8を介して電源9の負極に接続されている。電極5bと電気的に接続されるクリップ7bは、導線8を介して電源9の正極に接続されている。

【0058】
電源9は、直流高電圧電源である。電源9の最大出力電圧は5kV程度以上である。電源9の最大出力電流は0.5mA以上である。電源9は、導線8を介して容器2に設けられた電極5a、5bに電気的に接続される。電源9の負極側は接地されている。電源9から電圧が印加されると、容器2の内壁面側に貼られた一対の電極5a、5b間に電界が発生する。図示を省略しているが、電源9は、電圧供給をオンとオフとに切り替えるためのスイッチと、供給される電圧を調整するためのダイヤルと、任意の時間をセットするためのタイマーとを備える。装置1は、作業者により、供給される電圧がダイヤルによって設定され、タイマーに任意の時間がセットされると、スイッチがオンとなって電圧供給が開始され、タイマーにセットされた時間が終了するとスイッチがオフとなって電圧出力が停止するよう構成されている。

【0059】
電源9から供給される電圧は、使用される容器2の形状および容量に応じて変更される。電界強度が低すぎると液滴Wは電極5a、5b間を往復運動せず、逆に電界強度が高すぎると液滴Wが変形して電極5a、5b間を導通させること、又は液滴Wが破壊されるといったことが生じる。このため印加電圧は、容器2で形成される電界強度が1~数kV/cmとなるように調整される。

【0060】
遺伝子等の外来物質を標的細胞に導入する処理を実行する際には、標的細胞と外来物質とが含まれる細胞懸濁液(液滴を形成する水系の親水性液体)が、容器2の開口部17から供給される。細胞懸濁液は、細胞懸濁液にて形成される液滴Wが、両方の電極5a、5bに同時に接触しないように調整された量で容器2内に供給される。本実施形態では、細胞懸濁液の1回の供給量は約2~5μlである。細胞懸濁液は水系の液体であり、容器2に貯留される油6とは混和しない。1回の供給で1つの液滴W(油中液滴)が形成される。形成された液滴Wは電極5a、5b間に配置される。詳細は後述するが、電源9から電極5a、5bに電圧が供給されると、電気的な作用により、液滴W中において外来物質が標的細胞に導入される。

【0061】
容器2に貯留される油6は、水と相分離し、細胞懸濁液(水)よりも疎水性の物質であって、常温近傍で液体であり、絶縁性の性質を具有する。油6として、例えば、石油由来のアルカン類である鉱油、アルキルベンゼンを主成分とする絶縁油、ポリブテンを主成分とする絶縁油、アルキルナフタレンを主成分とする絶縁油、アルキルジフェニルアルカンを主成分とする絶縁油、およびシリコーンオイル等が例示される。油6として、これらの油を1種又は複数種を混合して用いられても良い。油6は、絶縁性であり、且つ、細胞懸濁液と混和しない疎水性液体であれば、これらの例示に限られない。

【0062】
液滴Wを油6中に配置するために、液滴Wよりも低比重の絶縁油が油6として選択される。更に、液滴Wは油6中を沈降するが、比較的緩慢に液滴Wが沈降するように、適切な粘性を有する絶縁油が油6として選択される。好適には、電源9による電圧印加が終了した時点でも液滴Wが底面部4より上方に位置するように沈降速度を制御する粘度を備えた絶縁油が油6として選択される。液滴Wの比重は、厳密には、細胞懸濁液の比重であるが、細胞懸濁液に占める細胞および外来物質の量は僅かである。故に簡易的に、溶媒(分散媒)として用いられる水系の液体(後述する緩衝液等の溶液)の比重、又は水の比重が液滴Wの比重として代用されても良い。

【0063】
上記したように細胞懸濁液(液滴W)と油6とは混和しない。このため、装置1で外来物質を導入するための電気的処理を行った後、液滴Wが回収されれば、引き続き新たな液滴を容器2内で形成させて外来物質の導入を行っても、新たな液滴にコンタミネーションが発生する可能性が抑制される。作業者が油6を滅菌フィルターを通してから使用し、一連の操作をクリーンベンチ内で行えば、コンタミネーションの発生を抑制できる。好適には、液滴Wが回収される際には、液滴Wへの油6の混入がないことが望ましい。供給量と同じ量で細胞懸濁液が厳密に回収されることが理想的である。作業者は厳密に供給量と同じ量の細胞懸濁液を回収する操作が困難である場合には、供給量よりも若干少ない量の液滴Wを回収することで液滴Wへの油6の混入を回避してもよい。この場合には、容器2内に細胞懸濁液が残存するが、装置1では、細胞懸濁液と、油6との比重差によって、残存した細胞懸濁液は沈降し、底面部4に滞留する。故に、電気的処理が終了した時点で液滴Wが底面部4より上方に位置するように油6の粘度が調整され、容器2の上面の開口部17からピペット等で細胞懸濁液(即ち液滴W)が回収されればよい。このようにすれば、容器2における液滴Wの電気的処理が行われる位置及および回収が行われる位置には、残像した古い細胞懸濁液はない。このため、同じ容器2に新たに細胞懸濁液を供給して処理を行っても、新たな液滴にコンタミネーションが発生することがない。

【0064】
外来物質としては、既存のエレクトロポレーション法で導入できる物質が含まれ、例えば、通常の状態では細胞膜を透過できない各種生理活性物質、薬剤、治療薬、核酸物質、ペプチド、およびタンパク質等が例示される。核酸物質は、例えば、DNA分子、RNA分子(siRNAを含む)、ウイルスDNA、プラスミドDNA、オリゴヌクレオチド(アンチセンスオリゴヌクレオチド、アプタマー)、およびペプチド核酸であってよい。DNAとしては、標的細胞内に導入したい核酸配列を備えたDNAが適宜選択され、例えば、遺伝子の全長配列(cDNA配列、ゲノム配列)、部分配列、調節領域、スペーサー領域、および変異を加えた配列等、目的に応じて設計されたDNAが用いられる。DNAにコードされたポリペプチドは、導入細胞によって産生され得る。

【0065】
標的細胞の種類は、特に制限されず、標的細胞として各種細胞を用いることができる。標的細胞として、例えば、植物細胞、ヒト由来細胞を含む動物細胞、およびバクテリア等が例示できる。装置1は、従来のエレクトロポレーション法にて外来物質を導入できる細胞に外来物質を導入可能である。従来のエレクトロポレーション法にて外来物質を導入できる細胞としては、例えば、ヒト由来およびヒト以外の動物由来の体細胞、胚細胞(ES細胞)、受精卵、および動物胎児組織細胞が例示される。装置1では、従来のエレクトロポレーション法に比べ、良好な導入効率で外来遺伝子が導入され、十分な生存率が得られる。故に装置1は、従来のエレクトロポレーション法にて外来物質を導入できる細胞の形質転換方法として有用である。特に、装置1にて、薬剤(レチノイン酸)添加で動物由来の神経細胞様細胞に分化させた神経細胞様細胞株に外来物質(外来遺伝子)が導入された場合にも、良好な導入効率および細胞生存率が得られる。また装置1は、マウス海馬初代細胞においても、同じ方法で、外来物質(外来遺伝子)を標的細胞に導入できる。このため、これまで外来遺伝子導入後の生存率に対して問題を有していた神経細胞の形質転換に装置1を適用した場合、良好な遺伝子導入効率と細胞生存率とを実現し得る。装置1は、付着細胞、浮遊細胞を問わず外来物質を導入可能である。

【0066】
外来物質および標的細胞は、水系の溶液に懸濁される。水系の溶液は、油6と混和しない親水性を有し、外来物質および標的細胞に悪影響を及ぼさない溶液であれば特に限定されない。水系の溶液としては、例えば、リン酸緩衝生理食塩水(Phosphate buffered saline、以下単に「PBS緩衝液」と略す)、HEPES緩衝液(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)等の通常のエレクトロポレーション法で用いることのできるバッファー、および通常の緩衝液が用いられる。標的細胞が動物細胞であれば、水系の溶液として、動物細胞の培養に使用できる液体培地(例えば、MEM培地、DMEM培地、Opti-MEM培地、α-MEM培地、RPMI-1640培地、DMEM/F-12培地、Williams培地、ES培地等)を用いることができる。これらの液体培地は、血清濃度が低い方が導入効率の点で好ましく、特には無血清培地であることが望ましい。一般には、抗生物質を含まない液体培地の方が水系の溶液として好ましい。装置1による外来物質を導入する処理の後は、液体培地に血清又は抗生物質が自由に添加されてよい。導入効率および細胞への影響の観点からは、水系の溶液として、リン酸バッファーが用いられることが好ましい。水系の溶液pHは、細胞への影響を考慮して調製されるのが好ましく、例えば、pH7.0~7.6に調製されるのが好ましい。

【0067】
溶液に含有させる外来物質の量は、従来のエレクトロポレーション法を実施可能な量であればよい。細胞懸濁液中の外来物質の濃度は、標的細胞の生存率と外来物質の導入効率との観点から好適には0.1~3μg/μlであり、更に好適には0.2~3μg/μlであり、外来物質によって適宜調整される。細胞懸濁液中に含まれる外来物質は1種類に限られず、細胞懸濁液中に複数種類の外来物質が含まれても良い。これにより装置1は、例えば、一度の処理で複数種類の外来遺伝子を標的細胞に導入できる。

【0068】
作業者は、装置1を用いれば、上記したように標的細胞と複数の外来遺伝子とを細胞懸濁液中に含有させという簡便な操作で複数の外来遺伝子を標的細胞に導入させることができる。装置1を用いれば、複数の外来遺伝子を良好な導入効率で体細胞へ導入でき、且つ、処理後の標的細胞の細胞生存率が優れている。このため装置1は、例えば、ヒト繊維芽細胞等の分化した細胞に4つの初期化遺伝子(所謂山中因子Oct3/4、Sox2、Klf4、c-Myc)を1回の処理で導入可能である。つまり、装置1は、胚性幹細胞(ES細胞)のような分化万能性と、分裂増殖を経ても分化万能性を維持できる自己複製能とを有する人工多能性幹細胞(iPS細胞)の製造に好適に適用される。装置1は、人工多能性幹細胞から、更に新たな分化細胞に分化させるための遺伝子の導入にも、使用され得る。更には、装置1は、細胞懸濁液中に含有される外来遺伝子を、標的細胞の細胞質のみならず細胞核に導入できる。このため装置1は、外来遺伝子を標的細胞の核に導入させることによって、外来遺伝子が標的細胞の細胞質に導入された場合に比べ、標的細胞に導入された外来遺伝子が、標的細胞の次の世代の細胞に引き継がれる確率を向上させることができる。

【0069】
装置1は、油6の中で形成される数μlの液滴W内で、標的細胞に外来物質の導入を実行できるので、処理に必要な標的細胞の数は、液滴W中に含まれる数だけあれば十分であり、例えば、10~10cellsあれば良い。故に装置1は、例えば、ヒトから採取した希少サンプル(微量の標的細胞)を高い効率で形質転換させることができる。

【0070】
電源9にて直流電圧が容器2に印加されると、一対の電極5a、5b間に直流電界が形成される。容器2内には貯留される液体は絶縁性の油6であるため、油6に流れる電流は微小である。油6中に存在する液滴Wは水溶液であり、数kV/cmの直流電界が電極5a、5b間に生じると液滴Wの表面に電荷が誘導される。帯電した液滴Wは、一対の電極5a、5bのうち液滴Wが持つ極性と異なる極性を有する電極(逆極性電極)側へ移動し、移動方向に配置された逆極性電極に接触する。これによって液滴Wの極性が逆極性へ変わり、移動方向が反転して逆方向の電極側へ移動する。

【0071】
直流電圧の印加時間は、外来物質の導入効率と標的細胞の生存率とを両立できる時間であり、例えば、10秒~1時間であり、好適には30秒~15分である。更に好適には、直流電圧の印加時間は、容器2の高さ、油6の粘度(液滴Wの沈降速度)の点から、つまり、電源9による電圧印加が終了した時点でも液滴Wが底面部4より上方に位置することが考慮され、30秒~1分である。

【0072】
装置1において一対の電極5a、5b間に生じる電界を表す電気力線は、平面視で図2に破線で示される。電極5a、5bは、水平方向と垂直な鉛直方向に沿って平行に対向配置され、且つ同じ幅で形成されているため、電気力線は電極5a、5bに対し直角(即ち水平方向)に描かれ、均等に分布する。液滴Wは、電気力線の延伸方向に沿って電極5a、5b間を移動する。電源9から直流電圧が供給されている間、液滴Wには電界の作用が及ぼされる。故に液滴Wは、電極5a、5b間を繰り返し往復移動し、複数回電極部5に接触する。例えば、水平方向に延びる底面に沿って一対の電極が設置された場合には、液滴Wは底面に沿って移動せず、一対の電極間を結び、油6の液面に向かって凸の放物線状の電気力線に沿って移動する。故に、液滴Wが電極に接触する際の電気的引力の方向は、重力方向と重なる。一方、装置1では、電気力線が水平方向に延びる電界が生じ、電極部5が容器2の側壁部3に形成されているので、電極部5に液滴Wが接触する際に電気的引力の方向と重力方向とは一致しない。このため装置1は、液滴Wが電極部5と接触したまま移動を停止することを抑制し、水平方向に延びる底面に沿って一対の電極が形成された場合に比べて、安定して液滴Wを電極間で往復移動させることができる。液滴Wが電極に接触したままとなった場合、例えば、装置1は、印加電圧を高くして電極部5から液滴Wを離反させることも可能である。しかしこの場合、液滴Wが破裂する可能性が高くなる。液滴Wが破裂すれば、液滴を油6から回収することが困難となり、結果として容器2内が破損した液滴によって著しく汚染される。装置1のように、印加電圧をなるべく低くしつつ、液滴Wを円滑に移動させることは、液滴Wを油6中で破損させない観点から非常に重要である。

【0073】
電極部5と液滴Wとが接触する際、電荷は液滴Wの表面を移動すると考えられる。その際に、液滴Wの表面付近に局所的な強電界が形成されると考えられ、その作用により、細胞膜に一過的に微小な孔が形成されて標的細胞に外来物質が導入されると推定される。

【0074】
以上説明したように、第1実施の形態における外来物質導入装置1によれば、電気的作用によって良好な導入効率で外来物質を標的細胞に導入できる。装置1は、電気的作用を利用するため、特別な試薬を必要とせず、化学的手法と比較してランニングコストを抑制できる。更に装置1は、ウイルスを用いる生物学的手法のように標的細胞に対する毒性および抗原性に起因する癌化等の懸念がなく、良好な生存率で導入細胞を得ることができる。その上装置1では、汎用のエレクトロポレーション装置に必須のパルスジェネレータは不要である。装置1の構成は、簡素であるため、装置1は、低コストで製造される。

【0075】
更に、装置1は、遺伝子を標的細胞に導入する場合に、必要な細胞懸濁液量を数μl程度に抑えることができる。結果として、装置1は、必要な標的細胞数およびDNA量(外来物質量)を既存の方法と比較して格段に低減できる。このため装置1は、例えば、ヒトから採取した希少サンプルを形質転換する装置として、非常に有用である。

【0076】
図3を参照して、第2実施の形態の外来物質導入装置11(以下、装置11ともいう。)について説明する。第1実施の形態では、装置1は、全体として略直方体状に形成された容器2と、容器2の左右両側の側壁部3内側に矩形状の電極5a、5bとを備えていた。これに対し第2実施の形態の装置11では、装置1において、貯留槽である容器12は円筒状に形成され、容器12の内周に沿って曲面状の電極15a、15bが配設されている。第1実施の形態と同一の部分は、同一の符号を付して以下の説明を省略する。図3において、導線8および電源9の図示は省略している。

【0077】
容器12は、第1実施の形態と同様に絶縁性素材で形成された貯留槽である。容器12は、絶縁性の油6を貯留可能である。容器12は、円形の底面部14と、底面部14周縁において上方に向かって立設する側壁部13と、上面に形成された開口部18とを有する有底円筒状に形成されている。本実施形態では、容器12は、内径8mm、高さ10mmの形状に形成されている。

【0078】
容器12に配設される電極部15は、左右一対の電極15a、15bを有する。一対の電極15a、15bは、互いに同じ形状である。

【0079】
電極15a、15bは各々、矩形状の板状体を曲面に成形した面状体15a1、15b1と、接続部15a2、15b2とを備える。接続部15a2、15b2は各々、各面状体15a1、15b1の上端に連設されている。面状体15a1、15b1は、側壁部13の内側の高さと略同寸の高さを有する。面状体15a1、15b1は、容器12の内周の半分よりも短い幅の方形部材を、容器12の内周に沿った曲率で加工された形状を有する。面状体15a1、15b1の高さ方向と直交方向の断面形状は円弧状である。接続部15a2、15b2は各々、面状体15a1、15b1上端部において各面状体15a1、15b1に対し直角に屈曲する方向に延設されており、クリップ7で挟持可能な大きさの矩形状に形成されている。

【0080】
電極15a、15bは各々、容器12内に挿入され、容器12の内壁に面状体15a1、15b1の外周面が接触するようにセットされる。このため、面状体15a1、15b1は、容器12の上下方向に沿って延設した状態で互いに対向する。面状体15a1の幅方向の両端部は、面状体15b1の幅方向の両端部と接触しない間隙を隔てて位置する。本実施形態では電極15a、15bとして、裏面に粘着剤層を備えた0.09mm厚のアルミテープが用いられている。アルミテープは容器12内の予め定められた位置へ貼着され固定される。電極は、アルミテープに代えてアルミニウム箔又はアルミニウムの薄板を用いて形成されてもよい。更に電極は、電極として使用できる導電性素材であればアルミニウムに代えて他の材料(例えば、白金、金、およびカーボン電極等)を用いて形成されても良い。液滴Wを円滑に移動させる観点から、電極は、親水性であるよりは、アルミニウム程度の疎水性を有する材料で形成されることが好ましい。

【0081】
電極15aの接続部15a2は端子であり、クリップ7、および導線8を介して電源9の負極に接続される。電極15bの接続部15b2も同様に端子であり、クリップ7、導線8を介して電源9の正極に接続される。

【0082】
電源9から電圧が供給されると、電極15a、15b間に不均一な電界が形成される。即ち、図4に破線で示すように、電極15a、15b間には、平面視において電束密度に分布を有する電気力線によって表される電界が生じる。特に、電気力線の分布は、電極15a、15bの面状体15a1、15b1の幅方向の端部(エッジ付近)で密になる。幅方向の端部は電極間距離が最短の場所であり、幅方向の端部では静電引力が局所的に強い。容器12内の液滴Wは、局所的に強い静電引力の作用により、面状体15a1、15b1の幅方向の端部間を結ぶ電気力線に沿って電極15a、15b間を最短距離で円滑に往復運動できる。

【0083】
装置11は、不均一電界を形成させることで、液滴Wが電極15a、15bと接触したまま動かなくなる現象を著しく抑制でき、液滴Wの電極15a、15bへの接触と離反とを良好に遂行させ、安定した処理を実行できる。これによって装置11は、電極間に均一な電界が形成される場合に比べ、液滴W中の標的細胞へ、より高い導入効率で外来物質を導入できる。

【0084】
第2実施の形態の装置11においては、電極部15は、同じ構造を有する一対の電極15a、15bを有していた。各電極15a、15bは、曲面形状の面状体(面状体15a1、15b1)と、面状体に連結された接続部(接続部15a2、15b2)とを備えていた。第2実施の形態の装置11は、不均一電界を形成させる電極であれば、上記電極に限られるものではなく、上記した構造の電極に代えて、図5から図7に示すような電極であっても良い。

【0085】
例えば、装置11の電極部は、図5に示すように、容器12の内径に比して十分に小さな径を有する円柱状(針状)の一対の電極25a、25bを有する電極部25であっても良い。一対の電極25a、25bは、容器12内で容器12の直径方向に十分に離間された位置で、一対の電極25a、25bの長手方向が上下方向(水平方向と交差する方向)となるように立設される。電極25a、25bは、容器12上面に形成された開口部18から上方に突出する長さに形成されている。開口部18から突出した端部はクリップ7にて挟持される。装置11が図5の電極部25を備える場合、装置11は、各電極25a、25b近傍に電気力線が集中する不均一電界を形成させる。これにより、装置11は、第2実施の形態と同様に、液滴Wを円滑に移動させることができる。

【0086】
図6に示すように、第2実施の形態における一方の電極15aと、上記の電極25bとによって一対の電極が形成されてもよい。装置11が電極15a、25bを備える場合、図6に示す各電極15a、25b近傍に電気力線が集中する不均一電界が形成され、第2実施の形態と同様に装置11は、液滴Wを円滑に移動させることができる。

【0087】
図7は、図6の電極15aの面状体形状を平板状に変更した板状の電極35aが用いられた場合である。図7に示す変形例では、一方の電極を電極35a、他方の電極を電極25bとして一対の電極が形成されている。電極35aは、平面状の面状体35a1に対して90度の方向で外方(電極25bと対向する側の逆側)へ延設された接続部35a2を有している。接続部35a2は、平面視矩形状に形成され、接続部35a2の長手方向長さは、面状体35a1の幅よりも長い。接続部35a2の端部は、電極部35が容器12内に配設された状態で容器12の側壁部13より外側にはみ出す。接続部35a2は、クリップ7にて挟持される大きさと剛性を具有している。

【0088】
面状体35a1の幅は容器12の内径よりも小さく、高さは容器12の側壁部3の内壁高さと略同寸である。電極35aに対して、電極35aの幅方向(上下方向に直交する方向)の中心近傍に対向する位置において、電極35aと十分に離間させて電極25bは配設される。

【0089】
装置11が図7に示す電極35a、25bを備える場合、装置11は、電極25b近傍に電気力線が集中する不均一電界を形成させる。これにより、装置11は、第2実施の形態と同様に、液滴Wを円滑に移動させることができる。

【0090】
図8および図9を参照して、第3実施の形態の外来物質導入装置41(以下、装置41ともいう。)について説明する。第2実施の形態と同一の部分は、同一の符号を付して以下の説明を省略する。装置41は、複数の容器(ウェル)12で外来物質を導入する処理を一度に並行して実行できるよう構成されている。

【0091】
図8に示すように、装置41は、96穴細胞培養プレートである処理容器50を備えている。処理容器50は、長方形の枠体40aと、枠体40a上面に立設された4つの側壁面40bと、側壁面40bの上面端部に架設される天板40cとが一体で成形された支持体40とを備えている。複数の容器12は各々、支持体40によって保持されている。

【0092】
天板40cには、容器12の内周と同寸の円形の貫通孔が形成されている。容器12の開口部18(図3参照)と天板40cの貫通孔とが一致する位置で、容器12の側壁部13上面と天板40cの下面とは接合されている。容器12の高さは、側壁面40bの高さと同じである。これにより、容器12は、処理容器50の設置面から枠体40aの高さ分浮き上がった状態で天板40cに固定され、支持体40に一体化されている。

【0093】
処理容器50には、96個の容器12が設けられている。96個の容器12は、8行12列に整列されている。各容器12には、電極部15がセットされる。電極15aの面状体15a1は容器12内に挿入される。接続部15a2は天板40cの上面に載置されている。電極15aの面状体15a1は、容器12の側壁部13の高さと略同寸の高さであるので、面状体15a1の底面側端部は、底面部14の内底から天板40cの厚み分上方に位置して配設される。面状体15a1の大きさは、容器12内において液滴Wを良好に移動させることができる電界を形成可能な大きさであれば特に制限されるものではない。面状体15a1の高さは、更に低くしても良い。面状体15a1の高さは、天板40cの厚み分の長さを面状体15a1の高さに加えて、面状体15a1の底面側端部が底面部14に到達する高さとしても良い。電極15bは、電極15aと所定の間隔をあけて、電極15aと同様に各容器12にセットされる。所定の間隔は、例えば、電極間の最短距離を基準に設定される。

【0094】
天板40cには、容器12の列を挟んで、細長い長方形の一対の板状体45a、45bを有する板状体部45が載置されている。板状体部45は、金属等の導電性部材で形成されている。板状体45a、45bの長手方向の長さは、天板40cの幅方向(容器12の列方向)の長さと略同寸である。板状体45a、45bの短辺方向の長さは、容器12の隣り合う列と列との間隔と略同寸ある。板状体45a、45bの図8の裏側の端部には導線8との電気的接点が設けられている。一対の板状体45a、45bの一方(板状体45a)は、電気的接点に接続される導線8を介して電源9の正極と接続されている。一対の板状体45a、45bの他方(板状体45b)は、電気的接点に接続される導線8を介して電源9の負極に接続されている。

【0095】
図9に示すように、板状体45a、45bは各々、電極部15の接続部15a2、15b2に重ねて(接触するように)配置される。これにより、各電極15a、15bは、板状体45a、45bに電気的に接続される。各電極15a、15bに電源9から電圧が供給され得る。

【0096】
処理容器50は容器12と同様に絶縁性素材で形成されている。電源9から直流高電圧が供給されても処理容器50に流れる電流は微小である。このため、装置41は、並列して複数の容器12に電圧を印加可能である。装置41は、油6が貯留された各容器12に、細胞懸濁液の液滴Wが形成された状態で電源9から電圧を印加することによって、容器12の一つの列に含まれる8個の容器12全てにおいて、外来物質を導入する処理を並列して行うことができる。

【0097】
板状体部45は、天板40c上面において、容器12の一つの列を挟んで設置され、装置41は、一つの列に含まれる8個の容器12に対し並列して処理を行う構成である。装置41は、複数の容器12に対して並列処理できれば、板状体部45によって電圧が印加される容器12の数、板状体部45の形状に特に制限はない。板状体部45は、処理容器50に対して着脱可能に構成されていても良い。装置41は、一つの列での処理が終了した後に板状体部45を移動させ、別の列を挟むように板状体部45をセットして、列毎に順次処理を行っても良い。

【0098】
上記実施形態において、第1工程としては、標的細胞と外来物質とが含まれる細胞懸濁液を容器の開口部から油中に供給して液滴Wを形成する工程が該当する。第2工程としては、電源9から所定時間電圧を印加することで発生する電界の作用により液滴Wを電極間で往復移動させる工程が該当する。従って、上記各実施の形態において、動物細胞を標的細胞とし、遺伝子を外来物質として細胞懸濁液が調製され、細胞懸濁液が容器に供給されて電極間で液滴が形成される。その後に電源9から電極部に電圧が供給されることによって、遺伝子が導入された動物細胞(外来物質導入細胞)が製造される。

【0099】
図10を参照して、第4実施の形態の外来物質導入装置61(以下、装置61ともいう。)について説明する。第1から第3実施の形態と同一の部分は、同一の符号を付して以下の説明を省略する。装置61では、1つの容器62に複数の電極部35が配置されている。装置61は、複数の電極部35の各々で外来物質を導入する処理を並行して実行できるよう構成されている。複数の電極部35は各々、一対の電極35a、35bを有する。電極35bは電極35aと同様の形状を有する。電極35bは、電極35aの面状体35a1に対応する面状体35b1と、接続部35a2に対応する接続部35b2とを有する。

【0100】
図10に示すように、装置61は、処理容器60を備えている。処理容器60は、平面視左右方向に長い直方体状の8個の容器62を有する。容器62は、底面部64と、開口部68とを備える。処理容器60は、長方形の枠体70aと、枠体70a上面に立設された4つの側壁面70bと、側壁面70bの上面端部に架設される天板70cとが一体で成形された支持体70とを備えている。複数の容器62は支持体70によって保持されている。

【0101】
天板70cには、容器62の開口部68の内周と同寸の矩形状の貫通孔が形成されている。容器62の開口部68と天板70cの貫通孔とが一致する位置で、容器62の側壁部上面と天板70cの下面とは接合されている。容器62の高さは、側壁面70bと同じ高さである。これにより、容器62は、処理容器60の設置面から枠体70aの高さ分浮き上がった状態で天板70cに固定され、支持体70に一体化されている。

【0102】
8個の容器62は、8行に整列されている。各容器62には、複数の電極部35が所定の間隔(例えば、5mm)で配置されている。電極35aは、以下のように配置される。接続部35a2は天板70cの上面に載置されている。面状体35a1の高さは、容器62の側壁部63の高さよりも短い。面状体35a1の底面側端部は、容器62の底面部64よりも上方に位置する。面状体35a1の大きさは、容器62内において液滴Wを良好に移動させることができる電界を形成可能な大きさであれば特に制限されるものではない。面状体35a1の幅は、例えば、5mmである。電極35bは、電極35aと所定の間隔をあけて、電極35aと同様に容器62にセットされる。

【0103】
天板70cには、容器62の長手方向に沿って、細長い長方形の板状体65a、65bを有する板状体部65が載置されている。板状体部65は、金属等の導電性部材で形成されている。板状体65a、65bの長手方向の長さは、天板70cの長手方向(容器62の長手方向)と略同寸である。板状体65a、65bの短辺方向の長さは、容器62の隣り合う行と行との間隔と略同寸ある。天板70cの左端部および右端部の各々には、容器62の短辺方向に沿って、細長い長方形の板状体66a、66bが載置されている。板状体65a、65bは各々、板状体66a、66bと連結している。板状体部65と、板状体66a、66bとは、全体として、一対の櫛歯状をなしている。より具体的には、図10の下側から数えて偶数個目の板状体65aは天板70cの左端部に載置された板状体66aと連結されている。図10の下側から数えて奇数個目の板状体65bは板状体66aと離間している。板状体65bは天板70cの右端部に載置された板状体66bと連結している。板状体65aは、板状体66bと離間している。板状体66a、66bの各々には導線8との電気的接点が設けられている。板状体66aは、電気的接点に接続される導線8を介して電源9の正極と接続されている。板状体66bは、電気的接点に接続される導線8を介して電源9の負極に接続されている。

【0104】
板状体65a、65bは各々、電極部35の接続部35a2、35b2に重ねて(接触するように)配置される。これにより、各電極35a、35bは各々、板状体65a、65bに電気的に接続される。各電極35a、35bの各々に電源9から電圧が供給され得る。

【0105】
処理容器60と、容器62とは、絶縁性素材で形成されている。電源9から直流高電圧が供給されても処理容器60に流れる電流は微小である。このため、装置61では、並列して複数対の電極に電圧を印加可能である。装置61は、油6が貯留された各容器62に、細胞懸濁液の液滴Wが形成された状態で電源9から電圧が印加することによって、処理容器60の複数対の電極の間の各々に配置された全ての液滴において、外来物質を導入する処理を並列して行うことができる。

【0106】
装置61において、処理容器60が備える容器62の形状および数は適宜変更されてよい。1つの容器62に配置される電極の数および電極の形状は適宜変更されてよい。より具体的には、装置61は、電気力線の分布が不均一である電界が形成される電極部、例えば、複数の電極部15(図3参照)を備えてもよい。第3の実施形態と同様に、装置61は、処理容器60に対して着脱可能に構成された複数対の電極を用意し、一の容器62の処理が終了した後に複数の電極を他の容器62に移動させ、容器62毎に順次処理を行っても良い。

【0107】
以上、各実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記各実施の形態で挙げた各電極(電極5a、5b、15a、15b、25a、25b、35a、35b)の表面部分は平滑な表面で形成されたが、これに限られるものではない。例えば外来物質導入装置は、電極部5、25の表面部分又は電極部15、電極部35の面状体は、凹部および凸部の少なくとも一方を備えてもよく、凹部および凸部の少なくとも一方によって不均一な電界を電極間に形成させても良い。各電極は、必ずしも水平面に垂直な方向に沿って延設されている必要はなく、水平面に対して交差するように配設されていれば良い。使い捨ての容器又は汎用の容器が使用される場合等には、装置1、11、41および61は各々、容器を備えなくてもよい。この場合の外来物質導入装置は、一対の電極が容器内に互いに離間して配置されて使用されることにより、装置1、11、41および61と同様の効果を奏する。

【0108】
絶縁性液体として、2種類の比重の異なる絶縁性の液体が用いられてもよい。この変形例では、例えば、図11に例示する外来物質導入装置81(以下、装置81ともいう。)で処理が実行される。第1から第4実施の形態と同一の部分は、同一の符号を付して以下の説明を省略する。変形例の装置81は、容器82、電極部15、導線8、および電源9を備える。容器82は、半球状の底面部84を有する、開口部83の直径が7mmである有底筒状の容器である。容器82は、絶縁性材料で形成される。容器82は、絶縁性液体46を貯留可能である。絶縁性液体46は、第一絶縁性液体46aおよび第二絶縁性液体46bを有する。第二絶縁性液体46bの比重は、第一絶縁性液体46aの比重よりも軽い。第一絶縁性液体46aは、例えば、フルオロカーボン油(比重は1より大きい)である。第二絶縁性液体46bは、例えば、動粘度が30cStであるシリコーン油(比重は0.9から1)である。電極部15は、一対の電極15a、15bを有する。一対の電極15a、15bは、第二絶縁性液体46bと接触するが、第一絶縁性液体46aとは接触しない。開口部83から電極15a、15bの下端部までの距離は5mmである。

【0109】
変形例では、例えば、図12に示す工程によって処理が実行される。図12に示すように、細胞と外来物質とを含む細胞懸濁液が調整される(S1)。第1工程の前に、第一絶縁性液体46aと、第二絶縁性液体46bとが容器82に注入される(S2)。S2では、比重差によって、第一絶縁性液体46aの層の上に第二絶縁性液体46bの層が形成される。S1で調整された細胞懸濁液が、S2で第一絶縁性液体46aと、第二絶縁性液体46bとが注入された容器82に供給される(S3)。S3によって、第二絶縁性液体46bの層中に、細胞懸濁液の液滴Wが形成される。電源9から一対の電極15a、15bに所定時間、直流電圧が印加される(S4)。S4において液滴Wは、一対の電極15a、15b間に生じる電界の作用で第二絶縁性液体46b内において一対の電極15a、15b間を往復移動する。液滴Wは、第一絶縁性液体46aの層と、第二絶縁性液体46bの層との境界よりも上側(第二絶縁性液体46bの液面側)において、図11に示す如く境界面側に凸となる放物線に沿って移動する。電圧印加終了後、絶縁性液体46(第二絶縁性液体46b)から液滴Wが回収される(S5)。回収された液滴中の細胞のうち、外来物質が導入された細胞が選別され、外来物質導入細胞が得られる(S6)。

【0110】
変形例の外来物質導入細胞の製造方法は、第二絶縁性液体46b中で、液滴Wを円滑に移動させることができる。本製造方法は、液滴が円滑に移動しない場合に比べ、優れた導入効率で細胞に外来物質を導入することができる。変形例の外来物質導入細胞の製造方法は、装置1、装置11、装置41、および装置61のいずれかに適用されてもよい。S1の工程と、S2の工程とは順序が入れ替えられてもよい。同じ装置を用いて繰り返し処理が実行される場合には、複数回目のS2の処理は省略されてもよい。
【実施例1】
【0111】
以下、実施例により本発明を更に具体的に説明する。本発明は以下の実施例に限定されるものではない。実施例で使用した材料は以下のとおりである。
【実施例1】
【0112】
シリコーンオイル:信越シリコーンKF-96L-100、信越化学工業(株)
PBS緩衝液:D-PBS、0.1mol/lリン酸緩衝生理食塩水、wako
HEK293細胞:ヒト胎児腎臓由来HEK293細胞株、JCRB9068、JCRB細胞バンク
mouse由来Neuro2A神経腫由来細胞株:IFO50081、JCRB細胞バンク
高齢human(81歳)由来繊維芽細胞株:JCRB0532 TIG-107、JCRB細胞バンク
mouse由来海馬神経初代細胞:MB-X0403、住友ベークライ株式会社
プラスミドDNA1: Venus、黄色(黄緑色)蛍光たんぱくをコードするプラスミドDNA、RIKEN
プラスミドDNA2:EGFP、緑色蛍光たんぱくをコードするプラスミドDNA、clontech
プラスミドDNA3:mcherry、赤色蛍光たんぱくをコードするプラスミドDNA、clontech
トリパンブルー:Trypan Blue、0.4% solution、MP Biomedicals LLC
レチノイン酸:all-trans-Retinoic Acid、wako
【実施例1】
【0113】
下記の方法により外来遺伝子の導入結果の評価を行った。
【実施例1】
【0114】
(遺伝子導入効率評価)
外来遺伝子としてプラスミドDNA1が選択され、遺伝子導入操作後の油中液滴はマイクロピペットによって回収された。回収された液滴は、液体培地に移された後、37℃、二酸化炭素5%の条件下で一晩培養された。蛍光顕微鏡(TE-2000U、ニコン社)を用いて、明視野観察にて全細胞数が計測され、蛍光観察で蛍光を発する細胞数(外来遺伝子導入細胞)が計数された。蛍光する細胞数を全細胞数で除して遺伝子導入効率が算出された。
【実施例1】
【0115】
(生存率評価)
標的細胞の生存率の計測には、死細胞を特異的に染色する色素トリパンブルーが用いられた。遺伝子導入操作後(即ち、所定時間の電圧印加後)の油中液滴は、マイクロピペットによって回収され、PBS緩衝液に懸濁された。その後、液滴内の細胞はトリパンブルーで染色され、Countess Automated Cell Counter(life technologies)又は顕微鏡 (TE-2000U、ニコン社)を用いて明視野で観察された。生細胞数 (染色されない細胞数)と死細胞数 (染色された細胞数)とが各々計数され、生細胞数を全細胞数(生細胞数と死細胞数との和)で除して生存率が算出された。
【実施例1】
【0116】
<第1実施例>
図1に示す装置1が以下の手順で作成された。幅10mmの分光光度計用ポリスチレン製ディスポーサブルセル(Macro cuvettes、759007、PEQLAB)が容器として用いられた。容器の向かい合う一対の内壁全面に、電極となるアルミテープ(古藤工業株式会社)が貼着された。容器上面の開口部が導電性のクリップで挟持され、アルミテープとクリップとが接触した。クリップと、直流高電圧電源(HAR-30R10、松定プレシジョン)とが導線で接続され、直流高電圧電源とアルミテープとが電気的に接続された。動粘度100cStのシリコーンオイルが容器の7分目まで注がれ、静置された。超純水製造装置(MilliQ、ミリポア社)を用いて製造された超純水が、容器にピペットにより3μl滴下され、シリコーンオイル中で直径約1.8mmの球状の液滴が形成された。次いで、直流高電圧電源によって3.5kV(電界強度3.5kV/cm)の電圧が印加された。液滴の運動は、高速度カメラ(FASTCAM-1280PCI、Photron)で撮影され、撮影動画が低速で再生され、液滴の往復回数が目視でカウントされた。その結果、アルミテープ間で1分間に約100回、液滴が往復移動することおよびアルミテープに接触することが確認された。以下の実施例は、第1実施例と同様のアルミテープと、同様の直流高電圧電源とを用いて行った。
【実施例1】
【0117】
<第2実施例>
図8に示す装置41が以下のように作成された。内径6.7mmの有底円筒形の容器(ウェル)を96個有する96穴細胞培養プレート(Cat.No.92696、TPP)が処理容器として用いられた。処理容器の1列に含まれる8つの容器のうち、隣接する4つの容器において、幅5mmの2枚のアルミテープ(電極)が容器の内周面に対向するように貼着された。2枚のアルミテープは、2枚のアルミテープのうちの一方が、周方向の両側端部で他方と接触しないように、隙間を形成して配置された。電極間距離は、最も狭いところ(アルミテープの端部間)で6mmであった。各アルミテープは、容器の上方において容器の外側まで引き出され、容器の列間に形成された処理容器の天板に固定された。天板には、容器を挟んで、矩形状の金属箔が、容器の列方向に沿って配設された。各金属箔は、容器の外側に引き出されたアルミテープの上面(接触部)に接触した。一方の金属箔の端部は高電圧電源の正極に電気的に接続された。他方の金属箔の端部は高電圧電源の負極に電気的に接続された。これにより、各容器に電圧が印加され得る。
【実施例1】
【0118】
上記4つの容器の各々に動粘度100cStのシリコーンオイルが注がれ、静置された。超純水製造装置(MilliQ、ミリポア社)を用いて製造された超純水は、各容器にピペットを用いて3μl滴下され、シリコーンオイル中に直径約1.8mmの球状の液滴が形成された。直流高電圧電源から1kV(電界強度1.67kV/cm)の電圧が印加された。4つの容器の各々において、容器内の電極間距離の最も短い箇所で、液滴がアルミテープ間を1分間に約300回往復移動することが確認された。液滴の運動の確認は、第1実施例と同様の手法で行われた。第2実施例が、第1実施例の容器を用いた場合よりも液滴の往復回数が多いのは、電極の端部付近で局所的に電界強度が強くなっているためだと考えられる。
【実施例1】
【0119】
<第3実施例>
第2実施例で作製された装置41にて、ヒト胎児腎臓由来HEK293細胞株への外来遺伝子導入試験が実施された。DMEM(Dulbecco's Modified Eagle's Medium High Glucose、wako)、10%FBS(Fetal bovine serum)、およびPenicillin-Streptomycin(wako)を含む培地(調製培地ともいう。)が調製された。調製培地は、直径10cmのプラスチックシャーレ(Orange scientific、以下単にシャーレという。)に注入された。シャーレに、ヒト胎児腎臓由来HEK293細胞株が1.0×10cells/mlとなるように添加され、37℃、二酸化炭素5%の条件下で培養された。0.05%トリプシン-0.53mmol/lEDTA-4Na(wako)にてシャーレからはがされたヒト胎児腎臓由来HEK293細胞株は、PBS緩衝液に懸濁された。PBS緩衝液中のヒト胎児腎臓由来HEK293細胞株の濃度は1.0×10cells/droplet(即ち、液滴3μl中に1.0×10cells)に調製された。更に、PBS緩衝液にプラスミドDNA1を濃度が258ng/μlとなるように加えられて、細胞懸濁液が調製された。絶縁油として動粘度100cStのシリコーンオイルが貯留された容器に、調製された細胞懸濁液が3μl滴下され、直径約1.8mmの球状の液滴が形成された。液滴が形成された容器に、1.0~4kV、0~15分(0.5分、1分、2分、3分、4分、5分、15分)の条件で直流高電圧電源から電圧が印加された。生存率測定のため、印加時間30分についても試験が実施された。試験結果は図13および図14に示される。
【実施例1】
【0120】
図13の横軸は印加時間、縦軸は遺伝子導入効率を示す。印加時間に対する遺伝子導入効率は実線にて表示されている。図13に示すように、0分を除くいずれの印加時間においても70%~90%の遺伝子導入効率が得られ、第3実施例の方法が既存の手法に劣らない方法であることが示された。図14の横軸は印加時間、縦軸は標的細胞の生存率である。印加時間に対する生存率は実線で表示されている。図14に示すように、電圧印加時間が30分に到達した場合にも生存率は80%を下回らなかった。以上より、装置41を用いて外来遺伝子を標的細胞に導入することによって、高い遺伝子導入効率と生存率とが両立されることが示された。
【実施例1】
【0121】
図15に示す明視野画像は、白色透過光の下で観察された画像である。図16に示す蛍光画像は、暗視野の下で、水銀ランプ光源が光源とされ、490nm波長付近の励起光がフィルターを介して標的細胞に照射されて、510nm波長付近の蛍光がフィルターを介して観察された画像である。図17に示すMerge画像は、明視野画像と蛍光画像とが画像処理によって合成された画像である。図16に示す蛍光画像から、プラスミドDNA1にコードされた蛍光タンパク質が標的細胞内で発現されたこと(白色および灰白色部分)が確認され、遺伝子導入に成功していることが示された。
【実施例1】
【0122】
<第4実施例>
調製培地が注入されたシャーレにmouse由来Neuro2A神経腫由来細胞株が1.0×10cells/mlとなるように添加され、37℃、二酸化炭素5%の条件下で培養された。その後更に、シャーレにレチノイン酸が終濃度5μmol/lで添加され、37℃、二酸化炭素5%の条件下で一晩培養され、mouse由来Neuro2A神経腫由来細胞株が神経細胞様に分化された。PBS緩衝液に、分化されたmouse由来Neuro2A神経腫由来細胞株が1.0×10cells/droplet(即ち、液滴3μl中に1.0×10cells)となるように添加され、プラスミドDNA1が濃度260ng/μlとなるように加えられて、細胞懸濁液が調製された。第2実施例で作製された装置41(図8参照)が用いられた。動粘度100cStのシリコーンオイルが貯留された容器に細胞懸濁液が3μl滴下され、シリコーンオイル中に液滴が形成された。一対の電極に、3.8kVで5分間電圧が印加された。電圧印加後、調製培地が注入された6well硝子ボトムプレート(EZViewカバーガラスボトム、IWAKI)に、油中から回収した液滴が添加され、37℃、二酸化炭素5%の条件下で培養された。培養開始1日後、3日後の細胞が顕微鏡を用いて観察された。水銀ランプ光源が光源とされ、490nm波長付近の励起光がフィルターを介して標的細胞に照射されて、510nm波長付近の蛍光がフィルターを介して観察された。試験結果は図18から図20に示される。
【実施例1】
【0123】
図18から図20に示すように、外来遺伝子の導入が困難となり易い神経細胞様分化細胞に、良好に外来遺伝子(プラスミドDNA1)が導入されていることが、蛍光発光(白色および灰白色部分)によって確認された。
【実施例1】
【0124】
<第5実施例>
高齢human(81歳)由来繊維芽細胞株が、DMEM(wako)が注入されたシャーレに1.0×10cells/mlで添加され、37℃、二酸化炭素5%の条件下で培養された。その後、PBS緩衝液に、高齢human(81歳)由来繊維芽細胞株が1.0×10cells/droplet(即ち、液滴3μl中に1.0×10cells)添加され、プラスミドDNA1が濃度が260ng/μlとなるように加えられて、細胞懸濁液が調製された。第2実施例で作製された装置41が用いられた。動粘度100cStのシリコーンオイルが貯留された容器に3μlの細胞懸濁液が滴下され、3.8kVで5~30分間電圧が印加された。電圧印加後、調製培地が注入された6well硝子ボトムプレートに、油中から回収された液滴が添加され、37℃、二酸化炭素5%の条件下で培養された。培養開始3日後の細胞は顕微鏡を用いて観察された。水銀ランプ光源が光源とされ、490nm波長付近の励起光がフィルターを介して標的細胞に照射され、510nm波長付近の蛍光はフィルターを介して観察された。試験結果は図21~図29に示される。
【実施例1】
【0125】
図22、図25および図28に示すように、外来遺伝子が高齢human(81歳)由来繊維芽細胞株にプラスミドDNA1が導入されていることが蛍光発光(白色および灰白色部分)によって確認された。このように、装置41を用いて行った第5実施例の外来物質導入細胞の製造方法によれば、1.0×10cells/dropletのような少量の細胞数であっても外来遺伝子(外来物質)が良好に導入されることが示された。つまり、希少サンプルへ優れた効率での形質転換が実現されることが示された。図25および図28の蛍光画像では、標的細胞の細胞質からの蛍光発光が観察された一方、図22の蛍光画像では、標的細胞の中心にある核(略円形状の部分)における蛍光発光が観察された。このことから第5実施例の外来物質導入細胞の製造方法によれば、標的細胞の細胞質のみならず細胞核にも外来遺伝子(外来物質)が良好に導入されることが示された。このように、第5実施例の外来物質導入細胞の製造方法によれば、既存の方法に比べて、細胞核に対する外来遺伝子導入効率を向上させることができる。
【実施例1】
【0126】
<第6実施例>
DMEM(wako)が注入されたシャーレに、mouse由来Neuro2A神経腫由来細胞株が1.0×10cells/mlで添加され、37℃、二酸化炭素5%の条件下で培養された。その後更に、シャーレにレチノイン酸が終濃度5μmol/lで添加され、37℃、二酸化炭素5%の条件下で一晩培養された。PBS緩衝液に、神経細胞様に分化されたmouse由来Neuro2A神経腫由来細胞株が1.0×10cells/droplet(即ち、液滴3μl中に1.0×10cells)となるように添加され、2種類のプラスミドDNAが次の濃度となるように加えられて、細胞懸濁液が調製された。即ち、緑色蛍光タンパク質をコードするプラスミドDNA2は、濃度200ng/μlとなるよう添加された。赤色蛍光タンパク質をコードするプラスミドDNA3は、600ng/μlとなるよう添加された。第2実施例で作製された装置41(図8参照)が用いられた。動粘度100cStのシリコーンオイルが貯留された容器に3μlの細胞懸濁液が滴下され、液滴が形成された。一対の電極に、3.8kVで5分間電圧が印加された。電圧印加後、調製培地が注入された6well硝子ボトムプレートに、油中から回収された液滴が添加され、37℃、二酸化炭素5%の条件下で培養された。培養開始2日後の細胞は顕微鏡(オリンパスIX81)を用いて観察された。水銀ランプ光源が光源とされ、490nm波長付近の励起光がフィルターを介して照射されて、510nm波長付近の緑蛍光シグナルがフィルターを介して観察された。水銀ランプ光源が光源とされ、590nm波長付近の励起光がフィルターを介して照射され、610nm波長付近の赤蛍光シグナルがフィルターを介して観察された。観察結果は図30から図32に示される。
【実施例1】
【0127】
同一細胞において、赤色蛍光(図30における白色および灰白色部分)と緑色蛍光(図31における白色および灰白色部分)との双方が観察された。このことから、装置41を用いて行った第6実施例の外来物質導入細胞の製造方法により、一度の操作で複数の遺伝子を標的細胞に導入できることが確認された。このように装置41を用いて行った外来物質導入細胞の製造方法によれば、複数種類の遺伝子を簡便な手法で標的細胞に導入できる。
【実施例1】
【0128】
<第7実施例>
図10に示す装置61が以下の手順で作成された。8レーンリザ-バー(R08R01S、ビーエム機器株式会社)が処理容器として用いられた。処理容器が備える容器の向かい合う一対の内壁に、電極となるアルミテープ(古藤工業株式会社)が5mm幅で貼着された。各電極部の間隔は5mmとした。各アルミテープは、容器の上方において容器の外側まで引き出され、容器の列間に形成された処理容器の天板に固定された。天板には、容器を挟んで、矩形状の金属箔が、容器の行方向に沿って配設された。各金属箔は、容器の外側に引き出されたアルミテープの上面(接触部)に接触した。一方の金属箔の端部は高電圧電源の正極に電気的に接続された。他方の金属箔の端部は高電圧電源の負極に電気的に接続された。これにより、各容器に電圧が印加され得る。
【実施例1】
【0129】
8つの容器の各々に動粘度100cStのシリコーンオイルが注がれ、静置された。キシレンシアノール水溶液は、各容器の各電極部の電極間にピペットを用いて3μl供給され、シリコーンオイル中に直径約1.8mmの球状の液滴が形成された。直流高電圧電源から2.5kV(電界強度3.6kV/cm)の電圧が印加された。液滴の運動の確認は、第1実施例と同様の手法で行われた。
【実施例1】
【0130】
液滴の移動状況を図33から図36に示す。図33から図36に示すように、複数の電極部の各々において、液滴(図33から図36において黒い円状部分)が電極間を往復移動していることが確認された。液滴が電極間を1分間に約200回往復移動することが確認された。第7実施例によって、1つの容器内にて複数の処理が並列して実行され得ることが確認された。故に第7実施例の方法および装置は、安全性を担保しつつ、細胞へ外来物質を導入する処理を電極部の数だけ並行して行うことができることが示唆された。
【実施例1】
【0131】
<第8実施例>
第1実施例と同様の装置に、動粘度約50cStの菜種油 (ナカライテスク)が容器の7分目まで注がれ、静置された。ピペットによりキシレンシアノール水溶液3μlが容器に供給され、菜種油中で直径約1.8mmの球状の液滴が形成された。次いで、直流高電圧電源によって2.8kV(電界強度2.8kV/cm)の電圧が印加された。液滴の運動の確認は、第1実施例と同様の手法で行われた。
【実施例1】
【0132】
液滴の移動状況を図37から図41に示す。図37から図41中、液滴(図37から図41において濃い灰色の円状又は楕円状部分)の移動方向を矢印で示している。図39の矢印は、液滴が右方に進んだ後、図中右側の電極と接触して、移動方向が反転されたことを示している。図37から図41に示すように、液滴が一対の電極間を往復移動していることが確認された。アルミテープ間で1分間に約150回、液滴が往復移動することおよびアルミテープに接触することが確認された。第8実施例の方法によって、第1実施例と同様の装置は、シリコーンオイル以外の絶縁油が絶縁性液体として用いられた場合にも細胞へ外来物質を導入する処理を行うことができることが示唆された。
【実施例1】
【0133】
<第9実施例>
図11に示す装置81が以下の手順で作成された。各容器(ウェル)の幅7mmの8レーンリザ-バー(R08R01S、ビーエム機器株式会社)が容器として用いられた。容器の向かい合う一対の内壁に、電極となるアルミテープ(古藤工業株式会社)が5mm幅で貼着された。容器の開口部からアルミテープの下端までの距離は5mmとした。容器の外側に引き出された一方のアルミテープの上面の端部は高電圧電源の正極に電気的に接続された。他方のアルミテープの上面の端部は高電圧電源の負極に電気的に接続された。これにより、容器に電圧が印加され得る。比重1.0以上のフルオロカーボン(フロリナートFC-75、スリーエム)と、比重0.9から1.0であり、動粘度が30cStのシリコーン油とが容器に注がれ、静置された。フルオロカーボン油と、シリコーン油との比重差によって、容器内にフルオロカーボン油の層の上に、シリコーン油の層が形成された。超純水製造装置(MilliQ、ミリポア社)を用いて製造された超純水は、容器の電極間にピペットを用いて3μl供給され、シリコーン油中に直径約1.8mmの球状の液滴が形成された。直流高電圧電源から2.5kV(電界強度約3.6kV/cm)の電圧が印加された。液滴の運動の確認は、第1実施例と同様の手法で行われた。
【実施例1】
【0134】
液滴が一対の電極間を往復移動していることが確認された。アルミテープ間で1分間に約200回、液滴が往復移動することおよびアルミテープに接触することが確認された。第8実施例によって、絶縁性液体として、比重の異なる2種類の絶縁油が用いられる場合にも、装置81は、細胞へ外来物質を導入する処理を行うことができることが示唆された。
【実施例1】
【0135】
<第10実施例>
パパイン酵素主成分の組織分散液が注入されたシャーレに、ICRマウス(胎生16日)海馬由来神経細胞(住友ベークライト)が1.5×10cells/mlで添加され、分散された。海馬由来神経細胞の濃度は液滴2μl中に1.5×10cellsの濃度に調整された。シャーレに2種類のプラスミドDNAが次の濃度となるように加えられて、細胞懸濁液が調製された。即ち、黄色(黄緑色)蛍光タンパク質をコードするプラスミドDNA1は、濃度200ng/μlとなるよう添加された。赤色蛍光タンパク質をコードするプラスミドDNA3は、150ng/μlとなるよう添加された。第2実施例で作製された装置41(図8参照)が用いられた。動粘度30cStのシリコーンオイルが貯留された容器に2μlの細胞懸濁液が滴下され、液滴が形成された。一対の電極に、2.1kVで5分間電圧が印加された。電圧印加後、調製培地が注入された24well硝子ボトムプレート(EZViewカバーガラスボトム、IWAKI)に、油中から回収された液滴が添加され、37℃、二酸化炭素5%の条件下で培養された。
【実施例1】
【0136】
培養開始7日後の細胞は顕微鏡(オリンパスIX81)を用いて観察された。水銀ランプ光源が光源とされ、490nm波長付近の励起光がフィルターを介して照射されて、510nm波長付近の緑蛍光シグナルがフィルターを介して観察された。水銀ランプ光源が光源とされ、590nm波長付近の励起光がフィルターを介して照射され、610nm波長付近の赤蛍光シグナルがフィルターを介して、観察された(観察倍率60倍)。
【実施例1】
【0137】
図示は省略するが、培養開始7日後の同一細胞において、赤色蛍光と緑色蛍光との双方が観察された。このことから、装置41を用いて行った第10実施例の外来物質導入細胞の製造方法により、マウス海馬初代細胞においても、一度の操作で複数の遺伝子を標的細胞に導入できることが確認された。このように装置41を用いて行った外来物質導入細胞の製造方法によれば、複数種類の遺伝子を簡便な手法で標的細胞に導入できる。
【符号の説明】
【0138】
1、11、41、61、81 外来物質導入装置
6、46 油
2、12、62、82 容器
5a、5b、15a、15b、25a、25b、35a、35b 電極
5、15、25、35 電極部
9 電源
15a1、15b1、35a1 面状体
45、65 板状体部
45a、45b、65a、65b 板状体
Drawing
【図1】
0
【図2】
1
【図3】
2
【図4】
3
【図5】
4
【図6】
5
【図7】
6
【図8】
7
【図9】
8
【図10】
9
【図11】
10
【図12】
11
【図13】
12
【図14】
13
【図15】
14
【図16】
15
【図17】
16
【図18】
17
【図19】
18
【図20】
19
【図21】
20
【図22】
21
【図23】
22
【図24】
23
【図25】
24
【図26】
25
【図27】
26
【図28】
27
【図29】
28
【図30】
29
【図31】
30
【図32】
31
【図33】
32
【図34】
33
【図35】
34
【図36】
35
【図37】
36
【図38】
37
【図39】
38
【図40】
39
【図41】
40